Skip to main content

Formation of Unique Trimer of NO on Cu(111)

  • Chapter
  • First Online:
Reactivity of Nitric Oxide on Copper Surfaces

Part of the book series: Springer Theses ((Springer Theses))

  • 268 Accesses

Abstract

In this chapter, the unexpected formation of a NO trimer on Cu(111) is reported. Using STM at 6 K, the NO molecule was found to be bonded to the fcc hollow site in an upright configuration. The individual NO molecule is imaged as a ring-like protrusion, which is characteristic of the doubly degenerate \(2\pi ^*\) orbital. The triangular trimer is thermodynamically more favorable than a monomer or a dimer, and its bonding structure was characterized by STM manipulation. This unique behavior of NO on Cu(111) is ascribed to the threefold symmetry of the surface, facilitating the effective mixing of the \(2\pi ^*\) orbitals in a triangular configuration.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    For Cu(111), 1 ML \(= 1.76 \times 10^{15}\) molecules/cm\(^{2}\).

  2. 2.

    Applying a further voltage pulse of 0.5 eV to the trimer in Fig. 8.4e induced molecular diffusion and rotation yielding the original trimer (Fig. 8.4d).

  3. 3.

    The diagrams are not calculated but depicted for qualitative argument of the orbital mixing. A series of orbitals for the dimer are depicted according to that for gas-phase (NO)\(_2\) [14, 15]. The molecular orbitals for (NO)\(_3\) are illustrated by reference to 2p orbitals of three C atoms for cyclopropane [16].

  4. 4.

    The STM image (Fig. 8.3b) of the dimer shows two protrusions with inequivalent apparent heights. As the adsorption site of the dimer shows \(C_\mathrm {s}\) symmetry (Fig. 8.3c–e), the geometry and/or electronic state of the dimer are/is asymmetric relative to the molecular plane.

References

  1. T. Sueyoshi, T. Sasaki, Y. Iwasawa, J. Phys. Chem. 100(32), 13646 (1996). doi:10.1021/jp9606265

    Article  CAS  Google Scholar 

  2. P. Dumas, M. Suhren, Y.J. Chabal, C.J. Hirschmugl, G.P. Williams, Surf. Sci. 371(2–3), 200 (1997). doi:10.1016/S0039-6028(96)00987-9

    Article  CAS  Google Scholar 

  3. A.J. Heinrich, C.P. Lutz, J.A. Gupta, D.M. Eigler, Science 298(5597), 1381 (2002). doi:10.1126/science.1076768

    Article  CAS  Google Scholar 

  4. L. Vitali, R. Ohmann, K. Kern, A. Garcia-Lekue, T. Frederiksen, D. Sanchez-Portal, A. Arnau, Nano Lett. 10(2), 657 (2010). doi:10.1021/nl903760k

    Article  CAS  Google Scholar 

  5. A. Bogicevic, K.C. Hass, Surf. Sci. 506(1–2), L237 (2002). doi:10.1016/S0039-6028(02)01491-7

    Article  CAS  Google Scholar 

  6. M. Gajdoš, J. Hafner, A. Eichler, J. Phys.: Condens. Matter 18(1), 13 (2006). doi:10.1088/0953-8984/18/1/002

  7. M.Y. Yen, J.J. Ho, Chem. Phys. 373(3), 300 (2010). doi:10.1016/j.chemphys.2010.06.005

    Article  CAS  Google Scholar 

  8. A.A.B. Padama, H. Kishi, R.L. Arevalo, J.L.V. Moreno, H. Kasai, M. Taniguchi, M. Uenishi, H. Tanaka, Y. Nishihata, J. Phys.: Condens. Matter 24(17), 175005 (2012). doi:10.1088/0953-8984/24/17/175005

  9. J.W. Gadzuk, Surf. Sci. 43(1), 44 (1974). doi:10.1016/0039-6028(74)90218-0

    Article  CAS  Google Scholar 

  10. J.K. Nørskov, Rep. Prog. Phys. 53, 1253 (1990). doi:10.1088/0034-4885/53/10/001

    Article  Google Scholar 

  11. M. Matsumoto, N. Tatsumi, K. Fukutani, T. Okano, T. Yamada, K. Miyake, K. Hate, H. Shigekawa, J. Vac. Sci. Technol. A 17(4), 1577 (1999). doi:10.1116/1.581853

    Article  CAS  Google Scholar 

  12. J.H.A. Hagelaar, C.F.J. Flipse, A.P.J. Jansen, J. Phys. Conf. Ser. 61, 379 (2007). doi:10.1088/1742-6596/61/1/076

    Article  CAS  Google Scholar 

  13. M. Matsumoto, S. Ogura, K. Fukutani, T. Okano, Surf. Sci. 603(19), 2928 (2009). doi:10.1016/j.susc.2009.07.022

    Article  CAS  Google Scholar 

  14. M.P. Jigato, V. Termath, P. Gardner, N.C. Handy, D.A. King, S. Rassias, M. Surman, Mol. Phys. 85(3), 619 (1995). doi:10.1080/00268979500101341

    Article  CAS  Google Scholar 

  15. H.A. Duarte, E. Proynov, D.R. Salahub, J. Chem. Phys. 109(1), 26 (1998). doi:10.1063/1.476561

    Article  CAS  Google Scholar 

  16. T.A. Albright, J.K. Burdett, M.H. Whangbo, Orbital Interactions in Chemistry, 2nd edn. (Willey, New Jersey, 2013), http://as.wiley.com/WileyCDA/WileyTitle/productCd-047108039X.html

  17. L. Bartels, Chem. Phys. Lett. 313(3–4), 544 (1999). doi:10.1016/S0009-2614(99)01108-2

    Article  CAS  Google Scholar 

  18. H. Koshida, H. Okuyama, S. Hatta, T. Aruga, J. Chem. Phys. 145(5), 054705 (2016). doi:10.1063/1.4960053

    Article  CAS  Google Scholar 

  19. D.W. Johnson, M.H. Matloob, M.W. Roberts, J. Chem. Soc. Faraday Trans. 1(75), 2143 (1979). doi:10.1039/F19797502143

    Article  Google Scholar 

  20. S.K. So, R. Franchy, W. Ho, J. Chem. Phys. 95(2), 1385 (1991). doi:10.1063/1.461120

    Article  CAS  Google Scholar 

  21. B. Chen, Y. Ma, L. Ding, L. Xu, Z. Wu, Q. Yuan, W. Huang, Chin. J. Catal. 34(5), 964 (2013). doi:10.1016/S1872-2067(12)60585-3

    Article  CAS  Google Scholar 

  22. T. Munakata, K. Mase, I. Kinoshita, Surf. Sci. 286(1–2), 73 (1993). doi:10.1016/0039-6028(93)90557-Z

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Akitoshi Shiotari .

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Nature Singapore Pte Ltd.

About this chapter

Cite this chapter

Shiotari, A. (2017). Formation of Unique Trimer of NO on Cu(111). In: Reactivity of Nitric Oxide on Copper Surfaces. Springer Theses. Springer, Singapore. https://doi.org/10.1007/978-981-10-4582-0_8

Download citation

Publish with us

Policies and ethics