Advertisement

Symmetry Correlation between Molecular Vibrations and Valence Orbitals: NO/Cu(110) and NO/Cu(001)

  • Akitoshi ShiotariEmail author
Chapter
  • 214 Downloads
Part of the Springer Theses book series (Springer Theses)

Abstract

In this chapter, STM-IET spectra of NO monomers and dimers on Cu(110) and Cu(001) surfaces are reported. Frustrated rotational and translational modes were detected as a peak-and-dip structures in the spectra.The experimental observations were also studied theoretically by electronic structure calculations for the role of vibrational excitations in the tunneling process.Considering symmetries of valence orbitals and vibrational modes of the molecules, the intensity of the observed IETS signals were successfully explained in a qualitative manner.

Keyword

Valence orbitals; Inelastic electron tunneling spectroscopy; Propensity rules 

References

  1. 1.
    W. Ho, J. Chem. Phys. 117(24), 11033 (2002). doi: 10.1063/1.1521153 CrossRefGoogle Scholar
  2. 2.
    R. Zhang, Y. Zhang, Z.C. Dong, S. Jiang, C. Zhang, L.G. Chen, L. Zhang, Y. Liao, J. Aizpurua, Y. Luo, J.L. Yang, J.G. Hou, Nature 498(7452), 82 (2013). doi: 10.1038/nature12151 CrossRefGoogle Scholar
  3. 3.
    A. Shiotari, T. Kumagai, M. Wolf, J. Phys. Chem. C 118(22), 11806 (2014). doi: 10.1021/jp502965r CrossRefGoogle Scholar
  4. 4.
    E.A. Pozzi, G. Goubert, N. Chiang, N. Jiang, C.T. Chapman, M.O. McAnally, A.-I. Henry, T. Seideman, G.C. Schatz, M.C. Hersam, R. P. Van Duyne, Chem. Rev. 117(7), 4961 (2017). doi: 10.1021/acs.chemrev.6b00343
  5. 5.
    Y. Sugimoto, P. Pou, M. Abe, P. Jelinek, R. Pérez, S. Morita, O. Custance, Nature 446(7131), 64 (2007). doi: 10.1038/nature05530 CrossRefGoogle Scholar
  6. 6.
    M. Setvín, P. Mutombo, M. Ondrác̆ek, Z. Majzik, M. S̆vec, V. Cháb, I. Os̆t’ádal, P. Sobotík, P. Jelínek. ACS Nano 6(8), 6969 (2012). doi: 10.1021/nn301996k
  7. 7.
    S. Kawai, A.S. Foster, T. Björkman, S. Nowakowska, J. Björk, F.F. Canova, L.H. Gade, T.A. Jung, E. Meyer, Nat. Commun. 7, 11559 (2016). doi: 10.1038/ncomms11559
  8. 8.
    N. Liu, C. Silien, W. Ho, J.B. Maddox, S. Mukamel, B. Liu, G.C. Bazan, J. Chem. Phys. 127(24), 244711 (2007). doi: 10.1063/1.2815814 CrossRefGoogle Scholar
  9. 9.
    K.J. Franke, G. Schulze, J.I. Pascual, J. Phys. Chem. Lett. 1(2), 500 (2010). doi: 10.1021/jz900260v CrossRefGoogle Scholar
  10. 10.
    N. Lorente, M. Persson, Phys. Rev. Lett. 85(14), 2997 (2000). doi: 10.1103/PhysRevLett. 85.2997 CrossRefGoogle Scholar
  11. 11.
    N. Lorente, M. Persson, L.J. Lauhon, W. Ho, Phys. Rev. Lett. 86(12), 2593 (2001). doi: 10.1103/PhysRevLett. 86.2593 CrossRefGoogle Scholar
  12. 12.
    M. Paulsson, T. Frederiksen, H. Ueba, N. Lorente, M. Brandbyge, Phys. Rev. Lett. 100(22), 226604 (2008). doi: 10.1103/PhysRevLett. 100.226604 CrossRefGoogle Scholar
  13. 13.
    S. Monturet, M. Alducin, N. Lorente, Phys. Rev. B 82(8), 085447 (2010). doi: 10.1103/PhysRevB.82.085447 CrossRefGoogle Scholar
  14. 14.
    M. Alducin, D. Sánchez-Portal, A. Arnau, N. Lorente, Phys. Rev. Lett. 104(13), 136101 (2010). doi: 10.1103/PhysRevLett. 104.136101 CrossRefGoogle Scholar
  15. 15.
    S.R. Burema, N. Lorente, M.L. Bocquet, J. Chem. Phys. 136(24), 244507 (2012). doi: 10.1063/1.4730168 CrossRefGoogle Scholar
  16. 16.
    J.R. Hahn, H.J. Lee, W. Ho, Phys. Rev. Lett. 85(9), 1914 (2000). doi: 10.1103/PhysRevLett. 85.1914 CrossRefGoogle Scholar
  17. 17.
    A. Garcia-Lekue, D. Sanchez-Portal, A. Arnau, T. Frederiksen, Phys. Rev. B 83(15), 155417 (2011). doi: 10.1103/PhysRevB.83.155417 CrossRefGoogle Scholar
  18. 18.
    E. Rossen, C. Flipse, J. Cerdá, Phys. Rev. B 87(23), 235412 (2013). doi: 10.1103/PhysRevB.87.235412 CrossRefGoogle Scholar
  19. 19.
    N. Okabayashi, A. Gustafsson, A. Peronio, M. Paulsson, T. Arai, F.J. Giessibl, Phys. Rev. B 93(16), 165415 (2016). doi: 10.1103/PhysRevB.93.165415 CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2017

Authors and Affiliations

  1. 1.The University of TokyoKashiwaJapan

Personalised recommendations