Advertisement

Thermal and Electron-Induced Configuration Changes of NO on Cu(110)

  • Akitoshi ShiotariEmail author
Chapter
  • 215 Downloads
Part of the Springer Theses book series (Springer Theses)

Abstract

To understand the elementary process of the surface reactions, it is of fundamental importance to reveal the adsorption structures and dynamics on the surface at the single-molecule level. However, the direct observations of surface dynamics in single NO molecules are scarce. In this chapter, the bonding structure of NO on Cu(110) is investigated using STM, RAIRS, and EELS at 6–160 K. At low temperatures, the NO molecule is bonded to the short-bridge site via the nitrogen end in an upright configuration. This species are thermally converted into a flat-lying configuration at about 50 K, in which both the N and O atoms interact with the surface. The flat configuration is characterized by a significantly redshifted N–O stretching mode, which can be detected by EELS. At 5 K, the conversion from the flat-lying NO to the upright NO can be induced by injecting electrons using STM. The flat-lying NO flips back and forth between two orientations when the temperature increases to about 80 K. The thermal dissociation of NO eventually occurs at about 160 K. Based on these results, a potential energy diagram for the conversion of NO on the surface is proposed.

Keywords

Dissociation of nitric oxide Molecular dynamics Scanning tunneling microscopy Reflection adsorption infrared spectroscopy Electron energy loss spectroscopy 

References

  1. 1.
    J.F. Wendelken, Appl. Surf. Sci. 11–12, 172 (1982). doi: 10.1016/0378-5963(82)90064-2 CrossRefGoogle Scholar
  2. 2.
    W.A. Brown, R.K. Sharma, D.A. King, S. Haq, J. Phys. Chem. 100(30), 12559 (1996). doi: 10.1021/jp9602888 CrossRefGoogle Scholar
  3. 3.
    N. Sheppard, C. De La Cruz, Phys. Chem. Chem. Phys. 12(10), 2275 (2010). doi: 10.1039/b914016f CrossRefGoogle Scholar
  4. 4.
    P. Dumas, M. Suhren, Y.J. Chabal, C.J. Hirschmugl, G.P. Williams, Surf. Sci. 371(2–3), 200 (1997). doi: 10.1016/S0039-6028(96)00987-9 CrossRefGoogle Scholar
  5. 5.
    C.J. Hirschmugl, P. Dumas, Y.J. Chabal, F.M. Hoffmann, M. Suhren, G.P. Williams, J. Elec. Spec. Rel. Phen. 64–65, 67 (1993). doi: 10.1016/0368-2048(93)80062-Q CrossRefGoogle Scholar
  6. 6.
    J.S. Villarrubia, L.J. Richter, B.A. Gurney, W. Ho, J. Vac. Sci. Technol. A 4(3), 1487 (1986). doi: 10.1116/1.573549 CrossRefGoogle Scholar
  7. 7.
    J.S. Villarrubia, W. Ho, J. Chem. Phys. 87(1), 750 (1987). doi: 10.1063/1.453573 CrossRefGoogle Scholar
  8. 8.
    F. Bondino, G. Comelli, A. Baraldi, E. Vesselli, R. Rosei, A. Goldoni, S. Lizzit, C. Bungaro, S. de Gironcoli, S. Baroni, J. Chem. Phys. 119(23), 12525 (2003). doi: 10.1063/1.1627756 CrossRefGoogle Scholar
  9. 9.
    K. Tian, X.Y. Tu, S.S. Dai, Surf. Sci. 601(15), 3186 (2007). doi: 10.1016/j.susc.2007.05.053 CrossRefGoogle Scholar
  10. 10.
    C. Popa, A.P. van Bavel, R.A. van Santen, C.F.J. Flipse, A.P.J. Jansen, Surf. Sci. 602(13), 2189 (2008). doi: 10.1016/j.susc.2008.04.035 CrossRefGoogle Scholar
  11. 11.
    W.A. Brown, P. Gardner, D.A. King, J. Phys. Chem. 99(18), 7065 (1995). doi: 10.1021/j100018a045 CrossRefGoogle Scholar
  12. 12.
    C. Hess, E. Ozensoy, C.W. Yi, D.W. Goodman, J. Am. Chem. Soc. 128(9), 2988 (2006). doi: 10.1021/ja057131q CrossRefGoogle Scholar
  13. 13.
    N.G. Rey, H. Arnolds, J. Chem. Phys. 135(22), 224708 (2011). doi: 10.1063/1.3664861 CrossRefGoogle Scholar
  14. 14.
    C.E. Dinerman, J. Chem. Phys. 53(2), 626 (1970). doi: 10.1063/1.1674038 CrossRefGoogle Scholar
  15. 15.
    A.X. Brión-Ríos, D. Sánchez-Portal, P. Cabrera-Sanfelix, Phys. Chem. Chem. Phys. 18(14), 9476 (2016). doi: 10.1039/C6CP00253F CrossRefGoogle Scholar
  16. 16.
    J.T. Yates Jr., T.E. Madey, Vibrational Spectroscopy of Molecules on Surfaces (Plenum Press, New York, 1987), http://www.springer.com/book/9781468487619
  17. 17.
    J.A. Stroscio, M. Persson, S.R. Bare, W. Ho, Phys. Rev. Lett. 54(13), 1428 (1985). doi: 10.1103/PhysRevLett. 54.1428 CrossRefGoogle Scholar
  18. 18.
    T. Zambelli, J. Wintterlin, J. Trost, G. Ertl, Science 273(5282), 1688 (1996). doi: 10.1126/science.273.5282.1688 CrossRefGoogle Scholar
  19. 19.
    M. Forster, R. Raval, J. Carrasco, A. Michaelides, A. Hodgson, Chem. Sci. 3(1), 93 (2012). doi: 10.1039/c1sc00355k CrossRefGoogle Scholar
  20. 20.
    E.M. Stuve, S.W. Jorgensen, R.J. Madix, Surf. Sci. 146(1), 179 (1984). doi: 10.1016/0039-6028(84)90236-X CrossRefGoogle Scholar
  21. 21.
    T.H. Ellis, E.J. Kruus, H. Wang, J. Vac. Sci. Technol. A 11(4), 2117 (1993). doi: 10.1116/1.578378 CrossRefGoogle Scholar
  22. 22.
    N. Takehiro, F. Besenbacher, E. Lægsgaard, K. Tanaka, I. Stensgaard, Surf. Sci. 397(1–3), 145 (1998). doi: 10.1016/S0039-6028(97)00726-7 CrossRefGoogle Scholar
  23. 23.
    A.F. Carley, P.R. Davies, K.R. Harikumar, R.V. Jones, G.U. Kulkarni, M.W. Roberts, Top. Catal. 14(1), 101 (2000). doi: 10.1023/A:1009015318393 CrossRefGoogle Scholar
  24. 24.
    J.F. Wendelken, Surf. Sci. 108(3), 605 (1981). doi: 10.1016/0039-6028(81)90568-9 CrossRefGoogle Scholar
  25. 25.
    J.M. Mundenar, A.P. Baddorf, E.W. Plummer, L.G. Sneddon, R.A. Didio, D.M. Zehner, Surf. Sci. 188(3), 15 (1987). doi: 10.1016/0163-8343(87)90006-5 CrossRefGoogle Scholar
  26. 26.
    H. Ueba, Surf. Rev. Lett. 10(5), 771 (2003). doi: 10.1142/S0218625X03005578 CrossRefGoogle Scholar
  27. 27.
    H. Ueba, B.N.J. Persson, Surf. Sci. 566–568(1), 1 (2004). doi: 10.1016/j.susc.2004.06.130 CrossRefGoogle Scholar
  28. 28.
    H. Ueba, S.G. Tikhodeev, B.N.J. Persson, in Current-Driven Phenomena in Nanoelectronics, ed. by T. Seideman (Pan Stanford Publishing, Singapore, 2010), chap. 2, pp. 26–89. doi: 10.4032/9789814241519
  29. 29.
    M. Gajdoš, J. Hafner, A. Eichler, J. Phys.: Condens. Matter 18(1), 41 (2006). doi: 10.1088/0953-8984/18/1/003
  30. 30.
    M.Y. Yen, J.J. Ho, Chem. Phys. 373(3), 300 (2010). doi: 10.1016/j.chemphys.2010.06.005 CrossRefGoogle Scholar
  31. 31.
    A.A.B. Padama, H. Kishi, R.L. Arevalo, J.L.V. Moreno, H. Kasai, M. Taniguchi, M. Uenishi, H. Tanaka, Y. Nishihata, J. Phys.: Condens. Matter 24(17), 175005 (2012). doi: 10.1088/0953-8984/24/17/175005
  32. 32.
    C.Z. He, H. Wang, P. Zhu, J.Y. Liu, J. Chem. Phys. 135(20), 204707 (2011). doi: 10.1063/1.3663621 CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2017

Authors and Affiliations

  1. 1.The University of TokyoKashiwaJapan

Personalised recommendations