Advertisement

NO Reduction by Co-adsorbed Water Molecules on Cu(110)

  • Akitoshi ShiotariEmail author
Chapter
  • 220 Downloads
Part of the Springer Theses book series (Springer Theses)

Abstract

Catalytic reactions on surfaces consist of complex elementary processes, such as adsorption, diffusion, collision, electron/atom transfer, and desorption of molecules. The understanding of the catalytic processes at the single-molecule level has remained challenging. Heterogeneous catalysis is inherently complex, and it is difficult to follow these reactions and clarify their mechanisms. In this chapter, the reduction of NO by water on Cu(110) using STM is demonstrated, where STM was used to control and image the reaction, and to characterize the product and intermediate. A one-to-one reaction yields a characteristic NO–water complex, in which water induces partial filling of the empty \(2\pi ^*\) orbital of NO, leading to N–O bond weakening. Subsequent reaction of the complex with another water molecule induces further weakening of the N–O bond, leading to bond rupture. Furthermore, hydrogen-bond coupling is shown to induce back donation and, thus, plays a crucial role in N–O bond cleavage; this provides a fundamental insight into the catalytic reduction of NO under ambient conditions.

Keywords

Hydrogen bonding Reduction of nitric oxide Scanning tunneling microscopy 

References

  1. 1.
    M. Iwamoto, H. Yahiro, N. Mizuno, Y. Mine, S. Kagawa, J. Phys. Chem. 95(9), 3727 (1991). doi: 10.1021/j100162a053 CrossRefGoogle Scholar
  2. 2.
    V.I. Pârvulescu, P. Grange, B. Delmon, Catal. Today 46(4), 233 (1998). doi: 10.1016/S0920-5861(98)00399-X CrossRefGoogle Scholar
  3. 3.
    W.S. Epling, L.E. Campbell, A. Yezerets, N.W. Currier, J.E. Parks, Catal. Rev. 46(2), 163 (2004). doi: 10.1081/CR-200031932 CrossRefGoogle Scholar
  4. 4.
    Y. Hu, K. Griffiths, P.R. Norton, Surf. Sci. 603(10), 1740 (2009). doi: 10.1016/j.susc.2008.09.051 CrossRefGoogle Scholar
  5. 5.
    W.W. Crew, R.J. Madix, Surf. Sci 349(3), 275 (1996). doi: 10.1016/0039-6028(96)80026-4 CrossRefGoogle Scholar
  6. 6.
    J. Wintterlin, S. Völkening, T.V.W. Janssens, T. Zambelli, G. Ertl, Science 278(5345), 1931 (1997). doi: 10.1126/science.278.5345.1931 CrossRefGoogle Scholar
  7. 7.
    O. Nakagoe, K. Watanabe, N. Takagi, Y. Matsumoto, Phys. Rev. Lett. 89(4), 046101 (2002). doi: 10.1103/PhysRevLett.89.046101 CrossRefGoogle Scholar
  8. 8.
    O. Nakagoe, K. Watanabe, N. Takagi, Y. Matsumoto, Phys. Rev. Lett. 90(22), 226105 (2003). doi: 10.1103/PhysRevLett.90.226105 CrossRefGoogle Scholar
  9. 9.
    S. Völkening, K. Bedürftig, K. Jacobi, J. Wintterlin, G. Ertl, Phys. Rev. Lett. 83(13), 2672 (1999). doi: 10.1103/PhysRevLett.83.2672 CrossRefGoogle Scholar
  10. 10.
    T. Mitsui, M.K. Rose, E. Fomin, D.F. Ogletree, M. Salmeron, J. Chem. Phys. 117(12), 5855 (2002). doi: 10.1063/1.1502655 CrossRefGoogle Scholar
  11. 11.
    K. Rider, K. Hwang, M. Salmeron, G. Somorjai, Phys. Rev. Lett. 86(19), 4330 (2001). doi: 10.1103/PhysRevLett.86.4330 CrossRefGoogle Scholar
  12. 12.
    K.B. Rider, K.S. Hwang, M. Salmeron, G.a. Somorjai, J. Am. Chem. Soc. 124(19), 5588 (2002). doi: 10.1021/ja020055w
  13. 13.
    C.T. Herbschleb, S.C. Bobaru, J.W.M. Frenken, Catal. Today 154(1–2), 61 (2010). doi: 10.1016/j.cattod.2010.03.029 CrossRefGoogle Scholar
  14. 14.
    H.J. Lee, W. Ho, Science 286(5445), 1719 (1999). doi: 10.1126/science.286.5445.1719 CrossRefGoogle Scholar
  15. 15.
    J.R. Hahn, W. Ho, Phys. Rev. Lett. 87(16), 166102 (2001). doi: 10.1103/PhysRevLett.87.166102 CrossRefGoogle Scholar
  16. 16.
    S.W. Hla, L. Bartels, G. Meyer, K.H. Rieder, Phys. Rev. Lett. 85(13), 2777 (2000). doi: 10.1103/PhysRevLett.85.2777 CrossRefGoogle Scholar
  17. 17.
    S.W. Hla, K.H. Rieder, Annu. Rev. Phys. Chem. 54(4), 307 (2003). doi: 10.1146/annurev.physchem.54.011002.103852 CrossRefGoogle Scholar
  18. 18.
    T. Kumagai, M. Kaizu, H. Okuyama, I. Hamada, Y. Morikawa, Phys. Rev. B 81(4), 045402 (2010). doi: 10.1103/PhysRevB.81.045402 CrossRefGoogle Scholar
  19. 19.
    T. Kumagai, A. Shiotari, H. Okuyama, S. Hatta, T. Aruga, I. Hamada, T. Frederiksen, H. Ueba, Nat. Mater. 11(2), 167 (2012). doi: 10.1038/nmat3176
  20. 20.
    A. Shiotari, H. Okuyama, S. Hatta, T. Aruga, I. Hamada, Phys. Chem. Chem. Phys. 18(6), 4541 (2016). doi: 10.1039/C5CP07726E CrossRefGoogle Scholar
  21. 21.
    P.E. Fanta, Chem. Rev. 38(1), 139 (1946). doi: 10.1021/cr60119a004 CrossRefGoogle Scholar
  22. 22.
    T. Kumagai, M. Kaizu, H. Okuyama, S. Hatta, T. Aruga, I. Hamada, Y. Morikawa, e-J. Surf. Sci. Nanotech. 6, 296 (2008). doi: 10.1380/ejssnt.2008.296
  23. 23.
    H. Okuyama, I. Hamada, J. Phys. D: Appl. Phys. 44(46), 464004 (2011). doi: 10.1088/0022-3727/44/46/464004
  24. 24.
    H. Cybulski, P.S. Zuchowski, B. Fernández, J. Sadlej, J. Chem. Phys. 130(10), 104303 (2009). doi: 10.1063/1.3079541 CrossRefGoogle Scholar
  25. 25.
    S. Gao, J.R. Hahn, W. Ho, J. Chem. Phys. 119(12), 6232 (2003). doi: 10.1063/1.1603715 CrossRefGoogle Scholar
  26. 26.
    J.R. Hahn, W. Ho, J. Phys. Chem. B 109(43), 20350 (2005). doi: 10.1021/jp051431c CrossRefGoogle Scholar
  27. 27.
    T. Kumagai, M. Kaizu, H. Okuyama, I. Hamada, Y. Morikawa, Phys. Rev. B 79(3), 035423 (2009). doi: 10.1103/PhysRevB.79.035423 CrossRefGoogle Scholar
  28. 28.
    Y. Kitaguchi, A. Shiotari, H. Okuyama, S. Hatta, T. Aruga, J. Chem. Phys. 134(17), 174703 (2011). doi: 10.1063/1.3589256 CrossRefGoogle Scholar
  29. 29.
    I. Hamada, S. Meng, Chem. Phys. Lett. 521, 161 (2012). doi: 10.1016/j.cplett.2011.11.070 CrossRefGoogle Scholar
  30. 30.
    Y. Ootsuka, T. Frederiksen, H. Ueba, M. Paulsson, Phys. Rev. B 84(19), 193403 (2011). doi: 10.1103/PhysRevB.84.193403 CrossRefGoogle Scholar
  31. 31.
    H. Okuyama, A. Shiotari, T. Kumagai, S. Hatta, T. Aruga, Y. Ootsuka, M. Paulsson, H. Ueba, Phys. Rev. B 85(20), 205424 (2012). doi: 10.1103/PhysRevB.85.205424 CrossRefGoogle Scholar
  32. 32.
    T. Hino, Y. Matsumoto, S. Nagano, H. Sugimoto, Y. Fukumori, T. Murata, S. Iwata, Y. Shiro, Science 330(6011), 1666 (2010). doi: 10.1126/science.1195591 CrossRefGoogle Scholar
  33. 33.
    C.H. Chuang, W.F. Liaw, C.H. Hung, Angew. Chem. Int. Edition 55(17), 5190 (2016). doi: 10.1002/anie.201512063 CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2017

Authors and Affiliations

  1. 1.The University of TokyoKashiwaJapan

Personalised recommendations