Advertisement

Visualization of Covalent Bonding between NO Molecules on Cu(110)

  • Akitoshi ShiotariEmail author
Chapter
  • 226 Downloads
Part of the Springer Theses book series (Springer Theses)

Abstract

Using STM at 6 K, the valence states of NO molecules adsorbed monomerically on Cu(110) upon deposition at about 15 K were investigated. The NO monomer was found to be bonded at the short-bridge site in an upright configuration. An STM image of the monomer appears as a dumbbell-shaped protrusion, corresponding to the shape of the \(2\pi ^*\) orbital aligned in the [1–10] direction. In contrast, the resonance state of the \(2\pi ^*\) orbital in the [001] direction is located about 0.4 eV above the Fermi level. Although the double degeneracy of the NO \(2\pi ^*\) orbital is lifted by the interaction with the anisotropic surface, the mixing of the NO \(2\pi ^*\) and the Cu d band is relatively weak and the two orthogonal \(2\pi ^*\) valence states are still localized on the molecule. Two isolated NO molecules on the surface were manipulated to approach each other closely along the [1–10] direction, and, at the separation less than 5.12 Å, the resonance states of the \(2\pi ^*\) orbital in the [1–10] direction split, modifying the shape of the STM image. This result demonstrates the covalent interactions between two NO molecules are controlled by manipulating the overlap of their “active” \(2\pi ^*\) orbitals.

Keywords

Valence orbitals Covalent bonding Scanning tunneling microscopy 

References

  1. 1.
    N. Nilius, T.M. Wallis, M. Persson, W. Ho, Phys. Rev. Lett. 90(19), 196103 (2003). doi: 10.1103/PhysRevLett.90.196103
  2. 2.
    N. Nilius, T.M. Wallis, W. Ho, Appl. Phys. A 80(5), 951 (2005). doi: 10.1007/s00339-004-3121-0 CrossRefGoogle Scholar
  3. 3.
    A. Sperl, J. Kröger, R. Berndt, A. Franke, E. Pehlke, New J. Phys. 11(6), 063020 (2009). doi: 10.1088/1367-2630/11/6/063020 CrossRefGoogle Scholar
  4. 4.
    S. Fölsch, J. Yang, C. Nacci, K. Kanisawa, Phys. Rev. Lett. 103(9), 096104 (2009). doi: 10.1103/PhysRevLett.103.096104
  5. 5.
    Z. Li, H.Y. Chen, K. Schouteden, K. Lauwaet, L. Giordano, M. Trioni, E. Janssens, V. Iancu, C. Van Haesendonck, P. Lievens, G. Pacchioni, Phys. Rev. Lett. 112(2), 026102 (2014). doi: 10.1103/PhysRevLett.112.026102
  6. 6.
    L.J. Lauhon, W. Ho, Phys. Rev. B 60(12), R8525 (1999). doi: 10.1103/PhysRevB.60.R8525 CrossRefGoogle Scholar
  7. 7.
    N. Lorente, H. Ueba, Eur. Phys. J. D 35(2), 341 (2005). doi: 10.1140/epjd/e2005-00214-6 CrossRefGoogle Scholar
  8. 8.
    X.H. Cui, X.M. Duan, J. Phys.: Condens. Matter 28(8), 085001 (2016). doi: 10.1088/0953-8984/28/8/085001
  9. 9.
    A.X. Brión-Ríos, D. Sánchez-Portal, P. Cabrera-Sanfelix, Phys. Chem. Chem. Phys. 18(14), 9476 (2016). doi: 10.1039/C6CP00253F CrossRefGoogle Scholar
  10. 10.
    M. Gajdoš, J. Hafner, A. Eichler, J. Phys.: Condens. Matter 18(1), 13 (2006). doi: 10.1088/0953-8984/18/1/002
  11. 11.
    A.A.B. Padama, H. Kishi, R.L. Arevalo, J.L.V. Moreno, H. Kasai, M. Taniguchi, M. Uenishi, H. Tanaka, Y. Nishihata, J. Phys.: Condens. Matter 24(17), 175005 (2012). doi: 10.1088/0953-8984/24/17/175005
  12. 12.
    L. Bartels, G. Meyer, K.H. Rieder, Phys. Rev. Lett. 79(4), 697 (1997). doi: 10.1103/PhysRevLett.79.697
  13. 13.
    C.E. Dinerman, J. Chem. Phys. 53(2), 626 (1970). doi: 10.1063/1.1674038 CrossRefGoogle Scholar
  14. 14.
    W.A. Brown, R.K. Sharma, D.A. King, S. Haq, J. Phys. Chem. 100(30), 12559 (1996). doi: 10.1021/jp9602888 CrossRefGoogle Scholar
  15. 15.
    N.G. Rey, H. Arnolds, J. Chem. Phys. 135(22), 224708 (2011). doi: 10.1063/1.3664861 CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2017

Authors and Affiliations

  1. 1.The University of TokyoKashiwaJapan

Personalised recommendations