Advertisement

Principles and Methods

  • Akitoshi ShiotariEmail author
Chapter
  • 237 Downloads
Part of the Springer Theses book series (Springer Theses)

Abstract

In this chapter, I describe the principles and methods of the experimental techniques used in this thesis. I briefly introduce the principles of STM, RAIRS, and EELS experiments in Sect. 2.1. In my studies, I conducted STM imaging, STS and IETS measurements, and manipulation of single molecules. The principles of these measurements/techniques are described in Sect. 2.1. In Sect. 2.2, I report the experimental methods of STM, RAIRS, and EELS carried out in separate ultrahigh-vacuum (UHV) chambers and the DFT methods of electronic structure calculations and STM/IETS simulations. The atomic structures of the sample substrates and their preparations are also described in this section.

Keywords

Scanning tunneling microscopy Inelastic electron tunneling spectroscopy Reflection adsorption infrared spectroscopy Electron energy loss spectroscopy 

References

  1. 1.
    J. Tersoff, D.R. Hamann, Phys. Rev. Lett. 50(25), 1998 (1983). doi: 10.1103/PhysRevLett.50.1998
  2. 2.
    J. Tersoff, D.R. Hamann, Phys. Rev. B 31(2), 805 (1985). doi: 10.1103/PhysRevB.31.805
  3. 3.
    N.D. Lang, Phys. Rev. B 34(8), 5947 (1986). doi: 10.1103/PhysRevB.34.5947
  4. 4.
    R.S. Becker, J.A. Golovchenko, D.R. Hamann, B.S. Swartzentruber, Phys. Rev. Lett. 55(19), 2032 (1985). doi: 10.1103/PhysRevLett.55.2032
  5. 5.
    M.F. Crommie, C.P. Lutz, D.M. Eigler, Phys. Rev. B 48(4), 2851 (1993). doi: 10.1103/PhysRevB.48.2851
  6. 6.
    R.C. Jaklevic, J. Lambe, Phys. Rev. Lett. 17(22), 1139 (1966). doi: 10.1103/PhysRevLett.17.1139
  7. 7.
    P.K. Hansma, Tunneling Spectroscopy: Capabilities, Applications and New Techniques (Plenum Press, New York, 1982). http://www.springer.com/book/9781468411546
  8. 8.
    B.C. Stipe, M.A. Rezaei, W. Ho, Science 280(5370), 1732 (1998). doi: 10.1126/science.280.5370.1732
  9. 9.
    B.C. Stipe, M.A. Rezaei, W. Ho, Rev. Sci. Instrum. 70(1), 137 (1999). doi: 10.1063/1.1149555
  10. 10.
    B.C. Stipe, M.A. Rezaei, W. Ho, Phys. Rev. Lett. 82(8), 1724 (1999). doi: 10.1103/PhysRevLett.82.1724
  11. 11.
    W. Ho, J. Chem. Phys. 117(24), 11033 (2002). doi: 10.1063/1.1521153
  12. 12.
    T. Komeda, Prog. Surf. Sci. 78(2), 41 (2005). doi: 10.1016/j.progsurf.2005.05.001
  13. 13.
    K. Morgenstern, N. Lorente, K.H. Rieder, Phys. Status Solidi B 250(9), 1671 (2013). doi: 10.1002/pssb.201248392
  14. 14.
    Y. Kim, H. Song, Appl. Spectrosc. Rev. 51(7–9), 603 (2016). doi: 10.1080/05704928.2016.1166435
  15. 15.
    S. Li, A. Yu, F. Toledo, Z. Han, H. Wang, H.Y. He, R. Wu, W. Ho, Phys. Rev. Lett. 111(14), 146102 (2013). doi: 10.1103/PhysRevLett.111.146102
  16. 16.
    F.D. Natterer, F. Patthey, H. Brune, ACS Nano 8(7), 7099 (2014). doi: 10.1021/nn501999k
  17. 17.
    A.J. Heinrich, J.A. Gupta, C.P. Lutz, D.M. Eigler, Science 306(5695), 466 (2004). doi: 10.1126/science.1101077
  18. 18.
    N. Tsukahara, K.I. Noto, M. Ohara, S. Shiraki, N. Takagi, S. Shin, M. Kawai, Phys. Rev. Lett. 102(16), 167203 (2009). doi: 10.1103/PhysRevLett.102.167203
  19. 19.
    H. Gawronski, M. Mehlhorn, K. Morgenstern, Science 319(5865), 930 (2008). doi: 10.1126/science.1152473
  20. 20.
    L. Vitali, S.D. Borisova, G.G. Rusina, E.V. Chulkov, K. Kern, Phys. Rev. B 81(15), 153409 (2010). doi: 10.1103/PhysRevB.81.153409
  21. 21.
    E. Minamitani, R. Arafune, N. Tsukahara, Y. Ohda, S. Watanabe, M. Kawai, H. Ueba, N. Takagi, Phys. Rev. B 93(8), 085411 (2016). doi: 10.1103/PhysRevB.93.085411
  22. 22.
    C.l. Chiang, C. Xu, Z. Han, W. Ho, Science 344(6186), 885 (2014). doi: 10.1126/science.1253405
  23. 23.
    P. Hapala, R. Temirov, F.S. Tautz, P. Jelínek, Phys. Rev. Lett. 113(22), 226101 (2014). doi: 10.1103/PhysRevLett.113.226101
  24. 24.
    B.N.J. Persson, A. Baratoff, Phys. Rev. Lett. 59(3), 339 (1987). doi: 10.1103/PhysRevLett.59.339
  25. 25.
    G. Binnig, N. Garcia, H. Rohrer, Phys. Rev. B 32(2), 1336 (1985). doi: 10.1103/PhysRevB.32.1336
  26. 26.
    B.N.J. Persson, J.E. Demuth, Solid State Commun. 57(9), 769 (1986). doi: 10.1016/0038-1098(86)90856-2
  27. 27.
    N. Lorente, M. Persson, Phys. Rev. Lett. 85(14), 2997 (2000). doi: 10.1103/PhysRevLett.85.2997
  28. 28.
    H. Ueba, T. Mii, S. Tikhodeev, Surf. Sci. 601(22), 5220 (2007). doi: 10.1016/j.susc.2007.04.195
  29. 29.
    M. Paulsson, T. Frederiksen, H. Ueba, N. Lorente, M. Brandbyge, Phys. Rev. Lett. 100(22), 226604 (2008). doi: 10.1103/PhysRevLett.100.226604
  30. 30.
    H. Nakamura, K. Yamashita, A. Rocha, S. Sanvito, Phys. Rev. B 78(23), 235420 (2008). doi: 10.1103/PhysRevB.78.235420
  31. 31.
    J.R. Hahn, H.J. Lee, W. Ho, Phys. Rev. Lett. 85(9), 1914 (2000). doi: 10.1103/PhysRevLett.85.1914
  32. 32.
    M. Alducin, D. Sánchez-Portal, A. Arnau, N. Lorente, Phys. Rev. Lett. 104(13), 136101 (2010). doi: 10.1103/PhysRevLett.104.136101
  33. 33.
    J.T. Lü, R.B. Christensen, G. Foti, T. Frederiksen, T. Gunst, M. Brandbyge, Phys. Rev. B 89(8), 081405 (2014). doi: 10.1103/PhysRevB.89.081405
  34. 34.
    S. Monturet, M. Alducin, N. Lorente, Phys. Rev. B 82(8), 085447 (2010). doi: 10.1103/PhysRevB.82.085447
  35. 35.
    J. Guo, J.T. Lü, Y. Feng, J. Chen, J. Peng, Z. Lin, X. Meng, Z. Wang, X.Z. Li, E.G. Wang, Y. Jiang, Science 352(6283), 321 (2016). doi: 10.1126/science.aaf2042
  36. 36.
    K.J. Franke, G. Schulze, J.I. Pascual, J. Phys. Chem. Lett. 1(2), 500 (2010). doi: 10.1021/jz900260v
  37. 37.
    N. Liu, C. Silien, W. Ho, J.B. Maddox, S. Mukamel, B. Liu, G.C. Bazan, J. Chem. Phys. 127(24), 244711 (2007). doi: 10.1063/1.2815814
  38. 38.
    N. Lorente, M. Persson, L.J. Lauhon, W. Ho, Phys. Rev. Lett. 86(12), 2593 (2001). doi: 10.1103/PhysRevLett.86.2593
  39. 39.
    S. Paavilainen, M. Persson, Phys. Rev. B 74(8), 085417 (2006). doi: 10.1103/PhysRevB.74.085417
  40. 40.
    L. Vitali, R. Ohmann, K. Kern, A. Garcia-Lekue, T. Frederiksen, D. Sanchez-Portal, A. Arnau, Nano Lett. 10(2), 657 (2010). doi: 10.1021/nl903760k
  41. 41.
    N. Okabayashi, M. Paulsson, H. Ueba, Y. Konda, T. Komeda, Phys. Rev. Lett. 104(7), 077801 (2010). doi: 10.1103/PhysRevLett.104.077801
  42. 42.
    S.R. Burema, K. Seufert, W. Auwärter, J.V. Barth, M.L. Bocquet, ACS Nano 7(6), 5273 (2013). doi: 10.1021/nn4010582
  43. 43.
    S.R. Burema, N. Lorente, M.L. Bocquet, J. Chem. Phys. 136(24), 244507 (2012). doi: 10.1063/1.4730168
  44. 44.
    S.R. Burema, M.L. Bocquet, J. Phys. Chem. Lett. 3(20), 3007 (2012). doi: 10.1021/jz3012832
  45. 45.
    A. Garcia-Lekue, D. Sanchez-Portal, A. Arnau, T. Frederiksen, Phys. Rev. B 83(15), 155417 (2011). doi: 10.1103/PhysRevB.83.155417
  46. 46.
    J.M. Beebe, H.J. Moore, T.R. Lee, J.G. Kushmerick, Nano Lett. 7(5), 1364 (2007). doi: 10.1021/nl070460r
  47. 47.
    S.R. Burema, M.L. Bocquet, Nanotechnology 23(31), 315702 (2012). doi: 10.1088/0957-4484/23/31/315702
  48. 48.
    K. Morgenstern, J. Phys.: Condens. Matter 23(48), 484007 (2011). doi: 10.1088/0953-8984/23/48/484007
  49. 49.
    F. Moresco, G. Meyer, K.H. Rieder, Mod. Phys. Lett. B 13(20), 709 (1999). doi: 10.1142/S0217984999000890
  50. 50.
    J.R. Hahn, W. Ho, Phys. Rev. Lett. 87(19), 196102 (2001). doi: 10.1103/PhysRevLett.87.196102
  51. 51.
    N. Okabayashi, A. Gustafsson, A. Peronio, M. Paulsson, T. Arai, F.J. Giessibl, Phys. Rev. B 93(16), 165415 (2016). doi: 10.1103/PhysRevB.93.165415
  52. 52.
    Z. Han, G. Czap, C. Xu, C.l. Chiang, D. Yuan, R. Wu, W. Ho. Phys. Rev. Lett. 118(3), 036801 (2017). doi: 10.1103/PhysRevLett.118.036801
  53. 53.
    J. Lambe, R.C. Jaklevic, Phys. Rev. 165(3), 821 (1968). doi: 10.1103/PhysRev.165.821
  54. 54.
    J. Klein, A. Léger, M. Belin, D. Défourneau, M.J.L. Sangster, Phys. Rev. B 7(6), 2336 (1973). doi: 10.1103/PhysRevB.7.2336
  55. 55.
    L.J. Lauhon, W. Ho, Rev. Sci. Instrum. 72(1), 216 (2001). doi: 10.1063/1.1327311
  56. 56.
    D.M. Eigler, E.K. Schweizer, Nature 344(6266), 524 (1990). doi: 10.1038/344524a0
  57. 57.
    M.F. Crommie, C.P. Lutz, D.M. Eigler, Science 262(5131), 218 (1993). doi: 10.1126/science.262.5131.218
  58. 58.
    I.W. Lyo, P. Avouris, Science 253(5016), 173 (1991). doi: 10.1126/science.253.5016.173
  59. 59.
    R.G. Greenler, J. Chem. Phys. 44(1), 310 (1966). doi: 10.1063/1.1726462
  60. 60.
    F.M. Hoffmann, Surf. Sci. Rep. 3(2–3), 107 (1983). doi: 10.1016/0167-5729(83)90001-8
  61. 61.
    J.T. Yates Jr., T.E. Madey, Vibrational Spectroscopy of Molecules on Surfaces (Plenum Press, New York, 1987). http://www.springer.com/book/9781468487619
  62. 62.
    H. Ibach, D.L. Mills, Electron Energy Loss Spectroscopy and Surface Vibrations (Academic Press, New York, 1982). http://www.sciencedirect.com/science/book/9780123693501
  63. 63.
    J.P. Ibe, P.P. Bey Jr., S.L. Brandow, R.A. Brizzolara, N.A. Burnham, D.P. DiLella, K.P. Lee, C.R.K. Marrian, R.J. Colton, J. Vac. Sci. Technol. A 8(4), 3570 (1990). doi: 10.1116/1.576509
  64. 64.
    L. Bartels, G. Meyer, K.H. Rieder, Surf. Sci. 432(3), L621 (1999). doi: 10.1016/S0039-6028(99)00640-8
  65. 65.
    J. Repp, G. Meyer, K.H. Rieder, P. Hyldgaard, Phys. Rev. Lett. 91(20), 206102 (2003). doi: 10.1103/PhysRevLett.91.206102
  66. 66.
    L. Limot, J. Kröger, R. Berndt, A. Garcia-Lekue, W.A. Hofer, Phys. Rev. Lett. 94(12), 126102 (2005). doi: 10.1103/PhysRevLett.94.126102
  67. 67.
    L. Bartels, G. Meyer, K.H. Rieder, Phys. Rev. Lett. 79(4), 697 (1997). doi: 10.1103/PhysRevLett.79.697
  68. 68.
    J.G. Hou, A. Zhao, NANO: Brief Rep. Rev. 1(1), 15 (2006). doi: 10.1142/S1793292006000082
  69. 69.
    D.P. Woodruff, B.E. Hayden, K. Prince, A.M. Bradshaw, Surf. Sci. 123(2–3), 397 (1982). doi: 10.1016/0039-6028(82)90336-3
  70. 70.
    P. Hollins, K.J. Davies, J. Pritchard, Surf. Sci. 138(1), 75 (1984). doi: 10.1016/0039-6028(84)90496-5
  71. 71.
    T. Koitaya, K. Mukai, S. Yoshimoto, J. Yoshinobu, J. Chem. Phys. 135(23), 234704 (2011). doi: 10.1063/1.3670014
  72. 72.
    T. Koitaya, S. Shimizu, K. Mukai, S. Yoshimoto, J. Yoshinobu, J. Chem. Phys. 136(21), 214705 (2012). doi: 10.1063/1.4725714
  73. 73.
    J.A. Stroscio, M. Persson, S.R. Bare, W. Ho, Phys. Rev. Lett. 54(13), 1428 (1985). doi: 10.1103/PhysRevLett.54.1428
  74. 74.
    J.P. Perdew, K. Burke, M. Ernzerhof, Phys. Rev. Lett. 77(18), 3865 (1996). doi: 10.1103/PhysRevLett.77.3865
  75. 75.
    G. Kresse, J. Furthmüller, Phys. Rev. B 54(16), 11169 (1996). doi: 10.1103/PhysRevB.54.11169
  76. 76.
    P.E. Blöchl, Phys. Rev. B 50(24), 17953 (1994). doi: 10.1103/PhysRevB.50.17953
  77. 77.
    G. Kresse, D. Joubert, Phys. Rev. B 59(3), 1758 (1999). doi: 10.1103/PhysRevB.59.1758
  78. 78.
    M. Methfessel, A. Paxton, Phys. Rev. B 40(6), 3616 (1989). doi: 10.1103/PhysRevB.40.3616
  79. 79.
    N. Gonzalez-Lakunza, N. Lorente, A. Arnau, J. Phys. Chem. C 111(33), 12383 (2007). doi: 10.1021/jp0726586
  80. 80.
    N. Lorente, M. Persson, Faraday Discuss. 117, 277 (2000) doi: 10.1039/B002826F
  81. 81.
    N. Lorente, J.I. Pascual, Philos. Trans. R. Soc. Lond. A 362(1819), 1227 (2004). doi: 10.1098/rsta.2004.1375

Copyright information

© Springer Nature Singapore Pte Ltd. 2017

Authors and Affiliations

  1. 1.The University of TokyoKashiwaJapan

Personalised recommendations