Skip to main content

Part of the book series: Springer Theses ((Springer Theses))

  • 303 Accesses

Abstract

Nitric oxide (NO or nitrogen monoxide) is a diatomic molecule consisting of a nitrogen atom and an oxygen atom. It is a free radical, i.e., a relatively stable molecule with an unpaired electron. Owing to its radical reactivity, NO is of considerable importance not only in chemical engineering and industry but also in medicine and physiology.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    This diagram is depicted based on energy diagrams of CO on transition metal surfaces [43, 44].

  2. 2.

    Experimental studies with photoemission spectroscopy (PES) [45, 46] and inverse photoemission spectroscopy (IPES) [9] show that the NO \(2\pi ^*\)-derived resonance states are detected at 2.1–2.6 eV below the Fermi level and 1.5–1.6 eV above the Fermi level, respectively.

  3. 3.

    Brodén et al. [57] also proposed the border between elements in the periodic table for the adsorption geometries of CO on metal surfaces; CO is dissociatively (molecularly) adsorbed onto surfaces of metals farther from the left-hand (right-hand) side of Fe, Tc, and W (Co, Ru, and Re). Later, Fielicke et al. [23] summarized more detailed data concerning the adsorption geometries of CO on each metal surface.

  4. 4.

    Close-packed surfaces means the (111) surfaces for face-centered cubic (fcc) metals (Co, Ni, Ru, Rh, Pd, Ir, Pt, Cu, Ag, and Au) and (0001) surfaces for hexagonal close-packed (hcp) metals (Co and Ru).

  5. 5.

    Sheppard and De La Cruz [17] did not refer to the N–O stretching energy of upright NO bonded to fourfold hollow sites, and therefore, no energy range of this species is shown in Fig. 1.6. On the other hand, for NO/Pd(001), RAIRS measurements [76] and DFT calculations [77] have been assigned the peak found between 1470 and 1512 cm\(^{-1}\) to the N–O stretching mode of upright NO bonded to the fourfold hollow site.

  6. 6.

    According to Gajdoš et al. [13], upright NO bonded to the atop site was calculated to be the most stable species on Ir(111), and bent NO bonded to the bridge site was calculated to be the most stable species on Au(111). Conversely, for NO/Au(111), later theoretical studies concluded that NO is preferably bonded to the atop site in a bent configuration (see Sect. 1.4.2).

  7. 7.

    This species is also known as a lying-down configuration or an inclined configuration.

  8. 8.

    For CO on transition metal surfaces, generally, the vibrational energies of C–O stretching modes lie in the range 1800 to 2100 cm\(^{-1}\) [22, 23]. In contrast, for CO/K/Rh(001) [83], CO/Cr(110) [84], and CO/Fe(001) [85, 86], vibrational peaks with much lower energies (in a range of 1150–1465 cm\(^{-1}\)) have been detected and assigned to flat-lying CO.

  9. 9.

    The upright and end-on configurations are sometimes described as U-shaped and C-shaped dimers, respectively.

  10. 10.

    The SCR of NO is a reaction where NO is selectively reduced together with the oxidation of hydrocarbons, such as alcohols or alkanes, to yield N\(_2\).

  11. 11.

    The DFT calculations [30] revealed that the molecule is in a bent configuration. However, the STM experiments cannot determine the configuration of the molecule (i.e., whether upright or bent configuration) because of molecular diffusion induced by the STM tip.

  12. 12.

    When a spin of magnetic adsorbates is screened by conduction electrons of the substrate (the Kondo–Yoshida singlet state), a resonance state, namely the Kondo resonance, appears near the Fermi level due to the many-body effect on flipping of the adsorbate spin [149].

  13. 13.

    An anti-absorption peak, a RAIRS peak with a negative intensity, arises from a RAIRS-inactive vibrational mode. The frustrated rotation mode of a bent NO is RAIRS-active whereas that of an upright NO is inactive. Therefore, the anti-absorption peak was ascribed to an upright NO [167].

  14. 14.

    For Cu(111), 1 ML = 1.76 \(\times \) 10\(^{15}\) molecules/cm\(^2\).

References

  1. E. Culotta, D.E. Koshland Jr., Science 258(5090), 1862 (1992). doi:10.1126/science.1361684

    Article  CAS  Google Scholar 

  2. D. Möller, Chemistry of the Climate System (Walter de Gruyter GmbH & Co KG, Berlin, 2014), https://www.degruyter.com/view/product/210698

  3. J.H. Enemark, R.D. Feltham, Coord. Chem. Rev. 13(4), 339 (1974). doi:10.1016/S0010-8545(00)80259-3

    Article  CAS  Google Scholar 

  4. T.W. Hayton, P. Legzdins, W.B. Sharp, Chem. Rev. 102(2), 935 (2002). doi:10.1021/cr000074t

    Article  CAS  Google Scholar 

  5. J.W. Godden, S. Turley, D.C. Teller, E.T. Adman, M.Y. Liu, W.J. Payne, J. LeGall, Science 253(5018), 438 (1991). doi:10.1126/science.1862344

    Article  CAS  Google Scholar 

  6. I.M. Wasser, S. de Vries, P. Moënne-Loccoz, I. Schröder, K.D. Karlin, Chem. Rev. 102(4), 1201 (2002). doi:10.1021/cr0006627

    Article  CAS  Google Scholar 

  7. S. Zhang, M.M. Meizer, S.N. Sen, N. Çelebi-Ölçüm, T.H. Warren, Nat. Chem. 8(7), 663 (2016). doi:10.1038/nchem.2502

    Article  CAS  Google Scholar 

  8. J. Hochmuth, K. Wassermann, R.J. Farrauto, in Comprehensive Inorganic Chemistry II, ed. by J. Reedijk, K. Poeppelmeier (Elsevier, Amsterdam, 2013), Chap. 7.19, pp. 505–523. doi:10.1016/B978-0-08-097774-4.00724-5

  9. P.D. Johnson, S.L. Hulbert, Phys. Rev. B 35(18), 9427 (1987). doi:10.1103/PhysRevB.35.9427

    Article  CAS  Google Scholar 

  10. R. Imbihl, G. Ertl, Chem. Rev. 95(3), 697 (1995). doi:10.1021/cr00035a012

    Article  CAS  Google Scholar 

  11. H. Over, Prog. Surf. Sci. 58(4), 249 (1998). doi:10.1016/S0079-6816(98)00029-X

    Article  CAS  Google Scholar 

  12. W.A. Brown, D.A. King, J. Phys. Chem. B 104(12), 2578 (2000). doi:10.1021/jp9930907

    Article  CAS  Google Scholar 

  13. M. Gajdoš, J. Hafner, A. Eichler, J. Phys.: Condens. Matter 18(1), 13 (2006). doi:10.1088/0953-8984/18/1/002

  14. M. Gajdoš, J. Hafner, A. Eichler, J. Phys.: Condens. Matter 18(1), 41 (2006). doi:10.1088/0953-8984/18/1/003

  15. F. Garin, Appl. Catal. A 222(1–2), 183 (2001). doi:10.1016/S0926-860X(01)00827-4

    Article  CAS  Google Scholar 

  16. Y. Hu, K. Griffiths, P.R. Norton, Surf. Sci. 603(10–12), 1740 (2009). doi:10.1016/j.susc.2008.09.051

    Article  CAS  Google Scholar 

  17. N. Sheppard, C. De La Cruz, Phys. Chem. Chem. Phys. 12(10), 2275 (2010). doi:10.1039/b914016f

    Article  CAS  Google Scholar 

  18. J.T. Yates Jr., Surf. Sci. 299/300, 731 (1994). doi:10.1016/0039-6028(94)90693-9

  19. G. Ertl, Chem. Rec. 1(1), 33 (2001). doi:10.1016/S1381-1169(01)00460-5

    Article  CAS  Google Scholar 

  20. P.J. Feibelman, B. Hammer, J.K. Nørskov, F. Wagner, M. Scheffler, R. Stumpf, R. Watwe, J. Dumesic, J. Phys. Chem. B 105(18), 4018 (2001). doi:10.1021/jp002302t

    Article  CAS  Google Scholar 

  21. A. Nilsson, L.G.M. Pettersson, Surf. Sci. Rep. 55(2–5), 49 (2004). doi:10.1016/j.surfrep.2004.06.002

    Article  CAS  Google Scholar 

  22. M. Gajdoš, A. Eichler, J. Hafner, J. Phys.: Condens. Matter 16(8), 1141 (2004). doi:10.1088/0953-8984/16/8/001

  23. A. Fielicke, P. Gruene, G. Meijer, D.M. Rayner, Surf. Sci. 603(10–12), 1427 (2009). doi:10.1016/j.susc.2008.09.064

    Article  CAS  Google Scholar 

  24. G. Binnig, H. Rohrer, Rev. Mod. Phys. 59(3), 615 (1987). doi:10.1103/RevModPhys.59.615

    Article  CAS  Google Scholar 

  25. C.J. Chen, Introduction to Scanning Tunneling Microscopy, 2nd edn. (Oxford University Press Inc., New York, 2008), http://www.oupcanada.com/catalog/9780195071504.html

  26. M. Matsumoto, N. Tatsumi, K. Fukutani, T. Okano, T. Yamada, K. Miyake, K. Hate, H. Shigekawa, J. Vac. Sci. Technol. A 17(4), 1577 (1999). doi:10.1116/1.581853

    Article  CAS  Google Scholar 

  27. N. Tsukahara, K. Mukai, Y. Yamashita, J. Yoshinobu, H. Aizawa, Surf. Sci. 600(17), 3477 (2006). doi:10.1016/j.susc.2006.06.040

    Article  CAS  Google Scholar 

  28. M. Matsumoto, S. Ogura, K. Fukutani, T. Okano, Surf. Sci. 603(19), 2928 (2009). doi:10.1016/j.susc.2009.07.022

    Article  CAS  Google Scholar 

  29. C.I. Carlisle, D.A. King, J. Phys. Chem. B 105(18), 3886 (2001). doi:10.1021/jp0033871

    Article  CAS  Google Scholar 

  30. R. Requist, S. Modesti, P.P. Baruselli, A. Smogunov, M. Fabrizio, E. Tosatti, Proc. Natl. Acad. Sci. U.S.A. 111(1), 69 (2014). doi:10.1073/pnas.1322239111

    Article  CAS  Google Scholar 

  31. W. Ho, J. Chem. Phys. 117(24), 11033 (2002). doi:10.1063/1.1521153

    Article  CAS  Google Scholar 

  32. S.W. Hla, K.H. Rieder, Annu. Rev. Phys. Chem. 54(4), 307 (2003). doi:10.1146/annurev.physchem.54.011002.103852

    Article  CAS  Google Scholar 

  33. T. Komeda, Prog. Surf. Sci. 78(2), 41 (2005). doi:10.1016/j.progsurf.2005.05.001

    Article  CAS  Google Scholar 

  34. J.G. Hou, A. Zhao, NANO: Brief Rep. Rev. 1(1), 15 (2006). doi:10.1142/S1793292006000082

  35. I. Swart, L. Gross, P. Liljeroth, Chem. Commun. 47(32), 9011 (2011). doi:10.1039/c1cc11404b

    Article  CAS  Google Scholar 

  36. D.A. Bonnell, D.N. Basov, M. Bode, U. Diebold, S.V. Kalinin, V. Madhavan, L. Novotny, M. Salmeron, U.D. Schwarz, P.S. Weiss, Rev. Mod. Phys. 84(3), 1343 (2012). doi:10.1103/RevModPhys.84.1343

    Article  CAS  Google Scholar 

  37. K. Morgenstern, N. Lorente, K.H. Rieder, Phys. Status Solidi B 250(9), 1671 (2013). doi:10.1002/pssb.201248392

    Article  CAS  Google Scholar 

  38. S.W. Hla, Rep. Prog. Phys. 77(5), 056502 (2014). doi:10.1021/j100792a006

    Article  CAS  Google Scholar 

  39. Y. Kim, K. Motobayashi, T. Frederiksen, H. Ueba, M. Kawai, Prog. Surf. Sci. 90(2), 85 (2015). doi:10.1016/j.progsurf.2014.12.001

    Article  CAS  Google Scholar 

  40. T. Kumagai, Prog. Surf. Sci. 90(3), 239 (2015). doi:10.1016/j.progsurf.2015.04.001

    Article  CAS  Google Scholar 

  41. J. Guo, K. Bian, Z. Lin, Y. Jiang, J. Chem. Phys. 145(16), 1609101 (2016). doi:10.1063/1.4964668

    Article  CAS  Google Scholar 

  42. G. Blyholder, J. Phys. Chem. 68(10), 2772 (1964). doi:10.1088/0034-4885/77/5/056502

    Article  CAS  Google Scholar 

  43. B. Hammer, O.H. Nielsen, J.K. Nørskov, Catal. Lett. 46(1), 31 (1997). doi:10.1023/A:1019073208575

    Article  CAS  Google Scholar 

  44. M.T.M. Koper, R.A. van Santen, S.A. Wasileski, M.J. Weaver, J. Chem. Phys. 113(10), 4392 (2000). doi:10.1063/1.1288592

    Article  CAS  Google Scholar 

  45. D. Peebles, E. Hardegree, J.D. White, Surf. Sci. 148(2–3), 635 (1984). doi:10.1016/0039-6028(84)90602-2

    Article  CAS  Google Scholar 

  46. H. Conrad, G. Ertl, J. Küppers, E.E. Latta, Surf. Sci. 65(1), 235 (1977). doi:10.1016/0039-6028(77)90304-1

    Article  CAS  Google Scholar 

  47. K.C. Hass, M.H. Tsai, R.V. Kasowski, Phys. Rev. B 53(1), 44 (1996). doi:10.1103/PhysRevB.53.44

    Article  CAS  Google Scholar 

  48. Q. Ge, D.A. King, Chem. Phys. Lett. 285(1–2), 15 (1998). doi:10.1016/S0009-2614(97)01467-X

    Article  CAS  Google Scholar 

  49. B. Hammer, Phys. Rev. Lett. 83(18), 3681 (1999). doi:10.1103/PhysRevLett.83.3681

    Article  CAS  Google Scholar 

  50. A. Bogicevic, K.C. Hass, Surf. Sci. 506(1–2), L237 (2002). doi:10.1016/S0039-6028(02)01491-7

    Article  CAS  Google Scholar 

  51. A. Nilsson, M. Weinelt, T. Wiell, P. Bennich, O. Karis, N. Wassdahl, J. Stöhr, M.G. Samant, Phys. Rev. Lett. 78(14), 2847 (1997). doi:10.1103/PhysRevLett.78.2847

    Article  CAS  Google Scholar 

  52. A. Föhlisch, M. Nyberg, P. Bennich, L. Triguero, J. Hasselström, O. Karis, L.G.M. Pettersson, A. Nilsson, J. Phys. Chem. 112(4), 1946 (2000). doi:10.1063/1.480773

    Article  Google Scholar 

  53. A. Nilsson, L.G.M. Pettersson, in Chemical Bonding at Surfaces and Interfaces, ed. by A. Nilsson, L.G.M. Pettersson, J.K. Nørskov (Elsevier, Amsterdam, 2007), Chap. 2, pp. 57–142. doi:10.1016/B978-044452837-7.50003-4

  54. M. Staufer, U. Birkenheuer, T. Belling, F. Nörtemann, N. Rösch, M. Stichler, C. Keller, W. Wurth, D. Menzel, L.G.M. Pettersson, A. Föhlisch, A. Nilsson, J. Chem. Phys. 111(10), 4704 (1999). doi:10.1063/1.479232

    Article  CAS  Google Scholar 

  55. M. Stichler, C. Keller, C. Heske, M. Staufer, Surf. Sci. 448(2–3), 164 (2000). doi:10.1016/S0039-6028(99)01232-7

    Article  CAS  Google Scholar 

  56. T.A. Albright, J.K. Burdett, M.H. Whangbo, Orbital Interactions in Chemistry, 2nd edn. (Willey, New Jersey, 2013), http://as.wiley.com/WileyCDA/WileyTitle/productCd-047108039X.html

  57. G. Brodén, T.N. Rhodin, C. Brucker, R. Benbow, Z. Hurych, Surf. Sci. 59(2), 593 (1976). doi:10.1016/0039-6028(76)90038-8

    Article  Google Scholar 

  58. B. Hammer, Top. Catal. 37(1), 3 (2006). doi:10.1007/s11244-006-0004-y

    Article  CAS  Google Scholar 

  59. T. Zambelli, J. Wintterlin, J. Trost, G. Ertl, Science 273(5282), 1688 (1996). doi:10.1126/science.273.5282.1688

    Article  CAS  Google Scholar 

  60. B. Hammer, Farad. Discuss. 110, 323 (1998). doi:10.1039/A801126E

    Article  CAS  Google Scholar 

  61. E.H.G. Backus, A. Eichler, M.L. Grecea, A.W. Kleyn, M. Bonn, J. Chem. Phys. 121(16), 7946 (2004). doi:10.1063/1.1799956

    Article  CAS  Google Scholar 

  62. G. Pirug, H.P. Bonzel, H. Hopster, H. Ibach, J. Chem. Phys. 71(2), 593 (1979). doi:10.1063/1.438410

    Article  CAS  Google Scholar 

  63. R. Raval, M.A. Harrison, S. Haq, D.A. King, Surf. Sci. 294(1–2), 10 (1993). doi:10.1016/0039-6028(93)90154-C

    Article  CAS  Google Scholar 

  64. W. Erley, Surf. Sci. 205(1–2), L771 (1988). doi:10.1016/0039-6028(88)90158-6

    Article  CAS  Google Scholar 

  65. S. Aminpirooz, A. Schmalz, L. Becker, J. Haase, Phys. Rev. B 45(11), 6337 (1992). doi:10.1103/PhysRevB.45.6337

    Article  CAS  Google Scholar 

  66. M.C. Asensio, D.P. Woodruff, A.W. Robinson, K.M. Schindler, P. Gardner, D. Ricken, A.M. Bradshaw, Chem. Phys. Lett. 192(2), 259 (1992). doi:10.1016/0009-2614(92)85462-J

    Article  CAS  Google Scholar 

  67. R. Lindsay, A. Theobald, T. Gießel, O. Schaff, A.M. Bradsaw, N.A. Booth, D.P. Woodruff, Surf. Sci. 405(2–3), L566 (1998). doi:10.1016/S0039-6028(98)00172-1

    Article  CAS  Google Scholar 

  68. K.M. Neyman, N. Rösch, Surf. Sci. 307–309(B), 1193 (1994). doi:10.1016/0039-6028(94)91563-6

  69. J.L. Gland, B.A. Sexton, Surf. Sci. 94(2–3), 355 (1980). doi:10.1016/0039-6028(80)90012-6

    Article  CAS  Google Scholar 

  70. B.E. Hayden, Surf. Sci. 131(2–3), 419 (1983). doi:10.1016/0039-6028(83)90287-X

    Article  CAS  Google Scholar 

  71. M. Matsumoto, K. Fukutani, T. Okano, K. Miyake, H. Shigekawa, H. Kato, H. Okuyama, M. Kawai, Surf. Sci. 454–456, 101 (2000). doi:10.1016/S0039-6028(00)00266-1

    Article  Google Scholar 

  72. M. Matsumoto, N. Tatsumi, K. Fukutani, Surf. Sci. 513(3), 485 (2002). doi:10.1016/S0039-6028(02)01846-0

  73. H. Aizawa, Y. Morikawa, S. Tsuneyuki, K. Fukutani, T. Ohno, Surf. Sci. 514(1–3), 394 (2002). doi:10.1016/S0039-6028(02)01658-8

  74. H. Aizawa, Y. Morikawa, S. Tsuneyuki, K. Fukutani, T. Ohno, e-J. Surf. Sci. Nanotech. 5, 122 (2007). doi:10.1380/ejssnt.2007.122

  75. M.P. Jigato, K. Somasundram, V. Termath, N.C. Handy, D.A. King, Surf. Sci. 380(1), 83 (1997). doi:10.1016/S0039-6028(96)01599-3

    Article  Google Scholar 

  76. I. Nakamura, T. Fujitani, H. Hamada, Surf. Sci. 514(1–3), 409 (2002). doi:10.1016/S0039-6028(02)01660-6

    Article  CAS  Google Scholar 

  77. X.F. Jia, S.Q. Yu, Z.X. Wang, Y. Ma, Surf. Interface Anal. 40(10), 1350 (2008). doi:10.1002/sia.2903

    Article  CAS  Google Scholar 

  78. X. Huang, S.E. Mason, Surf. Sci. 621, 23 (2014). doi:10.1016/j.susc.2013.09.024

    Article  CAS  Google Scholar 

  79. I. Dabo, A. Wieckowski, N. Marzari, J. Am. Chem. Soc. 129(36), 11045 (2007). doi:10.1021/ja067944u

    Article  CAS  Google Scholar 

  80. A. Stroppa, K. Termentzidis, J. Paier, G. Kresse, J. Hafner, Phys. Rev. B 76(19), 195440 (2007). doi:10.1103/PhysRevB.76.195440

    Article  CAS  Google Scholar 

  81. J.S. Villarrubia, L.J. Richter, B.A. Gurney, W. Ho, J. Vac. Sci. Technol. A 4(3), 1487 (1986). doi:10.1116/1.573549

    Article  CAS  Google Scholar 

  82. J.S. Villarrubia, W. Ho, J. Chem. Phys. 87(1), 750 (1987). doi:10.1063/1.453573

    Article  CAS  Google Scholar 

  83. F.M. Hoffmann, R.A. de Paola, Phys. Rev. Lett. 52(19), 1697 (1984). doi:10.1103/PhysRevLett.52.1697

    Article  CAS  Google Scholar 

  84. N.D. Shinn, T.E. Madey, Phys. Rev. Lett. 53(26), 2481 (1984). doi:10.1103/PhysRevLett.53.2481

    Article  CAS  Google Scholar 

  85. D.W. Moon, S.L. Bernasek, D.J. Dwyer, J.L. Gland, J. Am. Chem. Soc. 107(4), 4363 (1985). doi:10.1021/ja00300a064

    Article  CAS  Google Scholar 

  86. C. Benndorf, B. Krüger, F. Thieme, Surf. Sci. 163(1985), 675 (1985). doi:10.1016/0039-6028(85)90842-8

    Google Scholar 

  87. D. Loffreda, F. Delbecq, D. Simon, P. Sautet, J. Chem. Phys. 115(17), 8101 (2001). doi:10.1063/1.1379578

    Article  CAS  Google Scholar 

  88. F. Bondino, G. Comelli, A. Baraldi, E. Vesselli, R. Rosei, A. Goldoni, S. Lizzit, C. Bungaro, S. de Gironcoli, S. Baroni, J. Chem. Phys. 119(23), 12525 (2003). doi:10.1063/1.1627756

    Article  CAS  Google Scholar 

  89. K. Tian, X.Y. Tu, S.S. Dai, Surf. Sci. 601(15), 3186 (2007). doi:10.1016/j.susc.2007.05.053

    Article  CAS  Google Scholar 

  90. C. Popa, A.P. van Bavel, R.A. van Santen, C.F.J. Flipse, A.P.J. Jansen, Surf. Sci. 602(13), 2189 (2008). doi:10.1016/j.susc.2008.04.035

    Article  CAS  Google Scholar 

  91. J.F. Wendelken, Appl. Surf. Sci. 11–12, 172 (1982). doi:10.1016/0378-5963(82)90064-2

    Article  Google Scholar 

  92. S.K. So, R. Franchy, W. Ho, J. Chem. Phys. 95(2), 1385 (1991). doi:10.1063/1.461120

    Article  CAS  Google Scholar 

  93. A. Sandell, A. Nilsson, N. Mårtensson, Surf. Sci. 241(1–2), L1 (1991). doi:10.1016/0167-2584(91)91043-V

    CAS  Google Scholar 

  94. I. Rickardsson, L. Jönsson, C. Nyberg, Surf. Sci. 414(3), 389 (1998). doi:10.1016/S0039-6028(98)00519-6

    Article  CAS  Google Scholar 

  95. C.z. He, H. Wang, P. Zhu, J.y. Liu, J. Chem. Phys. 135(20), 204707 (2011). doi:10.1063/1.3663621

  96. Q. Ge, M. Neurock, J. Am. Chem. Soc. 126(5), 1551 (2004). doi:10.1021/ja036575o

    Article  CAS  Google Scholar 

  97. H. Ning, J.Q. Cai, X.M. Tao, M.Q. Tan, Appl. Surf. Sci. 258(10), 4428 (2012). doi:10.1016/j.apsusc.2012.01.001

    Article  CAS  Google Scholar 

  98. H. Ning, J.Q. Cai, X.M. Tao, M.Q. Tan, J. Phys. Soc. Jpn. 81(4), 044606 (2012). doi:10.1143/JPSJ.81.044606

    Article  CAS  Google Scholar 

  99. A.L. Smith, W.E. Keller, H.L. Johnston, J. Chem. Phys. 19(2), 189 (1951). doi:10.1063/1.1748157

    Article  CAS  Google Scholar 

  100. E.M. Nour, L.H. Chen, M.M. Strube, J. Phys. Chem. 88(4), 756 (1984). doi:10.1021/j150648a028

    Article  CAS  Google Scholar 

  101. C.E. Dinerman, J. Chem. Phys. 53(2), 626 (1970). doi:10.1063/1.1674038

    Article  CAS  Google Scholar 

  102. S.G. Kukolich, J. Am. Chem. Soc. 104(17), 4715 (1982). doi:10.1021/ja00381a052

    Article  CAS  Google Scholar 

  103. W.A. Brown, P. Gardner, D.A. King, J. Phys. Chem. 99(18), 7065 (1995). doi:10.1021/j100018a045

    Article  CAS  Google Scholar 

  104. W.A. Brown, P. Gardner, M.P. Jigato, D.A. King, J. Chem. Phys. 102(18), 7277 (1995). doi:10.1063/1.469039

    Article  CAS  Google Scholar 

  105. C. Hess, E. Ozensoy, C.W. Yi, D.W. Goodman, J. Am. Chem. Soc. 128(9), 2988 (2006). doi:10.1021/ja057131q

    Article  CAS  Google Scholar 

  106. N. Tsukahara, K. Mukai, Y. Yamashita, J. Yoshinobu, Surf. Sci. 600(18), 3560 (2006). doi:10.1016/j.susc.2006.01.060

    Article  CAS  Google Scholar 

  107. M. Bertolo, K. Jacobi, Surf. Sci. 226(3), 207 (1990). doi:10.1016/0039-6028(90)90486-R

    Article  CAS  Google Scholar 

  108. W.A. Brown, R.K. Sharma, D.A. King, Phys. Chem. Chem. Phys. 1(8), 1995 (1999). doi:10.1039/A900850K

    Article  CAS  Google Scholar 

  109. I.S. Nandhakumar, Z.Y. Li, R.E. Palmer, R. Amos, Surf. Sci. 329(3), 184 (1995). doi:10.1016/0039-6028(95)00061-5

    Article  CAS  Google Scholar 

  110. K.T. Queeney, C.M. Friend, J. Chem. Phys. 107(16), 6432 (1997). doi:10.1063/1.474303

    Article  CAS  Google Scholar 

  111. K.T. Queeney, S. Pang, C.M. Friend, J. Chem. Phys. 109(18), 8058 (1998). doi:10.1063/1.477452

    Article  CAS  Google Scholar 

  112. A. Beniya, T. Koitaya, H. Kondoh, K. Mukai, S. Yoshimoto, J. Yoshinobu, J. Chem. Phys. 131(8), 084704 (2009). doi:10.1063/1.3212596

    Article  CAS  Google Scholar 

  113. T.Q. Wu, P. Zhu, Z.W. Jiao, X.Y. Wang, H.L. Luo, Appl. Surf. Sci. 263, 502 (2012). doi:10.1016/j.apsusc.2012.09.093

    Article  CAS  Google Scholar 

  114. W.A. Brown, R.K. Sharma, D.A. King, S. Haq, J. Phys. Chem. 100(30), 12559 (1996). doi:10.1021/jp9602888

    Article  CAS  Google Scholar 

  115. P. Dumas, M. Suhren, Y.J. Chabal, C.J. Hirschmugl, G.P. Williams, Surf. Sci. 371(2–3), 200 (1997). doi:10.1016/S0039-6028(96)00987-9

    Article  CAS  Google Scholar 

  116. Y. Kim, T. Komeda, M. Kawai, Phys. Rev. Lett. 89(12), 126104 (2002). doi:10.1103/PhysRevLett.89.126104

    Article  CAS  Google Scholar 

  117. D.W. Johnson, M.H. Matloob, M.W. Roberts, J. Chem. Soc. Chem. Commun. (2), 40 (1978). doi:10.1039/c39780000040

  118. D.W. Johnson, M.H. Matloob, M.W. Roberts, J. Chem. Soc. Faraday Trans. 1(75), 2143 (1979). doi:10.1039/F19797502143

    Article  Google Scholar 

  119. R.J. Behm, C.R. Brundle, J. Vac. Sci. Technol. A 2(2), 1040 (1984). doi:10.1116/1.572671

    Article  Google Scholar 

  120. A. Ludviksson, C. Huang, H.J. Jänsch, R.M. Martin, Surf. Sci. 284(3), 328 (1993). doi:10.1016/0039-6028(93)90503-C

    Article  CAS  Google Scholar 

  121. M.P. Jigato, V. Termath, P. Gardner, N.C. Handy, D.A. King, S. Rassias, M. Surman, Mol. Phys. 85(3), 619 (1995). doi:10.1080/00268979500101341

    Article  CAS  Google Scholar 

  122. Z.P. Liu, P. Hu, Top. Catal. 28(1), 71 (2004). doi:10.1023/B:TOCA.0000024335.88459.81

    Article  Google Scholar 

  123. B. Chen, Y. Ma, L. Ding, L. Xu, Z. Wu, Q. Yuan, W. Huang, Chin. J. Catal. 34(5), 964 (2013). doi:10.1016/S1872-2067(12)60585-3

    Article  CAS  Google Scholar 

  124. K. Edamoto, S. Maehama, E. Miyazaki, T. Miyahara, H. Kato, Surf. Sci. 204(3), L739 (1988). doi:10.1016/0039-6028(88)90213-0

    Article  CAS  Google Scholar 

  125. M.P. Jigato, D.A. King, A. Yoshimori, Chem. Phys. Lett. 300(5–6), 639 (1999). doi:10.1016/S0009-2614(98)01273-1

    Article  CAS  Google Scholar 

  126. H. Nakamura, K. Yamashita, J. Chem. Phys. 125(8), 084708 (2006). doi:10.1063/1.2338027

    Article  CAS  Google Scholar 

  127. S.K. So, R. Franchy, W. Ho, J. Chem. Phys. 91(9), 5701 (1989). doi:10.1063/1.457524

    Article  CAS  Google Scholar 

  128. R.T. Kidd, S.R. Meech, D. Lennon, Chem. Phys. Lett. 262(1–2), 142 (1996). doi:10.1016/0009-2614(96)01060-3

    Article  CAS  Google Scholar 

  129. R.T. Kidd, D. Lennon, S.R. Meech, J. Phys. Chem. B 103(35), 7480 (1999). doi:10.1021/jp990944e

    Article  CAS  Google Scholar 

  130. K.H. Kim, K. Watanabe, D. Menzel, H.J. Freund, J. Am. Chem. Soc. 131(5), 1660 (2009). doi:10.1021/ja808615m

    Article  CAS  Google Scholar 

  131. K. Shimizu, A. Satsuma, Phys. Chem. Chem. Phys. 8(23), 2677 (2006). doi:10.1039/B601794K

    Article  CAS  Google Scholar 

  132. J. Ma, X. Cao, H. Liu, B. Yina, X. Xing, Phys. Chem. Chem. Phys. 18(18), 12819 (2016). doi:10.1039/C6CP01156J

    Article  CAS  Google Scholar 

  133. D. Mulugeta, K. Kim, K. Watanabe, D. Menzel, H.J. Freund, Phys. Rev. Lett. 101(14), 146103 (2008). doi:10.1103/PhysRevLett.101.146103

    Article  CAS  Google Scholar 

  134. D. Mulugeta, K. Watanabe, D. Menzel, H.J. Freund, J. Chem. Phys. 134(16), 164702 (2011). doi:10.1063/1.3581802

    Article  CAS  Google Scholar 

  135. K. Kim, K. Watanabe, D. Mulugeta, H.J. Freund, D. Menzel, Phys. Rev. Lett. 107(4), 047401 (2011). doi:10.1103/PhysRevLett.107.047401

    Article  CAS  Google Scholar 

  136. K.H. Kim, K. Watanabe, D. Menzel, H.J. Freund, Surf. Sci. 606(15–16), 1142 (2012). doi:10.1016/j.susc.2012.02.005

    Article  CAS  Google Scholar 

  137. M. Haruta, N. Yamada, T. Kobayashi, S. Iijima, J. Catal 115(2), 301 (1989). doi:10.1016/0021-9517(89)90034-1

    Article  CAS  Google Scholar 

  138. M. Datè, M. Okumura, S. Tsubota, M. Haruta, Angew. Chem. Int. Ed. 43(16), 2129 (2004). doi:10.1002/anie.200453796

    Article  CAS  Google Scholar 

  139. A.C. Gluhoi, S.D. Lin, B.E. Nieuwenhuys, Catal. Today. 90(3–4), 175 (2004). doi:10.1016/j.cattod.2004.04.025

    Article  CAS  Google Scholar 

  140. G. Pattrick, E. van der Lingen, C.W. Corti, R.J. Holliday, D.T. Thompson, Top. Catal. 30(1), 273 (2004). doi:10.1023/B:TOCA.0000029762.14168.d8

    Article  Google Scholar 

  141. A. Yu, Z. Liang, J. Cho, F. Caruso, Nano Lett. 3(9), 1203 (2003). doi:10.1021/nl034363j

    Article  CAS  Google Scholar 

  142. J. Ma, X. Cao, M. Chen, B. Yin, X. Xing, X. Wang, J. Phys. Chem. A 120(46), 9131 (2016). doi:10.1021/acs.jpca.6b09129

    Article  CAS  Google Scholar 

  143. S.M. McClure, T.S. Kim, J.D. Stiehl, P.L. Tanaka, C.B. Mullins, J. Phys. Chem. B 108(46), 17952 (2004). doi:10.1021/jp047335d

    Article  CAS  Google Scholar 

  144. Z. Wu, L. Xu, W. Zhang, Y. Ma, Q. Yuan, Y. Jin, J. Yang, W. Huang, J. Catal. 304(2), 112 (2013). doi:10.1016/j.jcat.2013.04.013

    Article  CAS  Google Scholar 

  145. T.D. Chau, T.V. de Bocarmé, N. Kruse, Catal. Lett. 98(2), 85 (2004). doi:10.1007/s10562-004-7918-4

    Article  CAS  Google Scholar 

  146. Y. Wang, D. Zhang, Z. Yu, C. Liu, J. Phys. Chem. C 114(6), 2711 (2010). doi:10.1021/jp9103596

    Article  CAS  Google Scholar 

  147. W. Zhang, T. Schmid, B.S. Yeo, R. Zenobi, J. Phys. Chem. C 112(6), 2104 (2008). doi:10.1021/jp077457g

    Article  CAS  Google Scholar 

  148. L.Y. Gan, R.Y. Tian, X.B. Yang, S.L. Peng, Y.J. Zhao, Phys. Chem. Chem. Phys. 13(32), 14466 (2011). doi:10.1039/c1cp20974d

    Article  CAS  Google Scholar 

  149. M. Ternes, A.J. Heinrich, W.D. Schneider, J. Phys.: Condens. Matter 21(5), 053001 (2009). doi:10.1088/0953-8984/21/5/053001

  150. M. Iwamoto, H. Yahiro, N. Mizuno, Y. Mine, S. Kagawa, J. Phys. Chem. 95(9), 3727 (1991). doi:10.1021/j100162a053

    Article  CAS  Google Scholar 

  151. T. Cheung, S.K. Bhargava, K. Hobday, M. add Foger, J. Catal. 158(1), 301 (1996). doi:10.1006/jcat.1996.0029

    Article  CAS  Google Scholar 

  152. L. Čapek, K. Novoveská, Z. Sobalík, B. Wichterlová, L. Cider, E. Jobson, Appl. Catal. B 60(3–4), 201 (2005). doi:10.1016/j.apcatb.2005.02.033

    Article  CAS  Google Scholar 

  153. S. Haq, A. Carew, R. Raval, J. Catal. 221(1), 204 (2004). doi:10.1016/S0021-9517(03)00311-7

    Article  CAS  Google Scholar 

  154. S. Haq, R. Raval, Phys. Chem. Chem. Phys. 9(27), 3641 (2007). doi:10.1039/b702595p

    Article  CAS  Google Scholar 

  155. S.S. Dhesi, S. Haq, S.D. Barrett, F.M. Leibsle, Surf. Sci. 365(3), 602 (1996). doi:10.1016/0039-6028(96)00685-1

    Article  CAS  Google Scholar 

  156. N. Takehiro, F. Besenbacher, E. Lægsgaard, K. Tanaka, I. Stensgaard, Surf. Sci. 397(1–3), 145 (1998). doi:10.1016/S0039-6028(97)00726-7

    Article  CAS  Google Scholar 

  157. A.F. Carley, P.R. Davies, K.R. Harikumar, R.V. Jones, G.U. Kulkarni, M.W. Roberts, Top. Catal. 14(1), 101 (2000). doi:10.1023/A:1009015318393

    Article  CAS  Google Scholar 

  158. J.F. Wendelken, J. Vac. Sci. Technol. 20(3), 884 (1982). doi:10.1116/1.571377

    Article  Google Scholar 

  159. N.G. Rey, H. Arnolds, J. Chem. Phys. 135(22), 224708 (2011). doi:10.1063/1.3664861

    Article  CAS  Google Scholar 

  160. M.Y. Yen, J.J. Ho, Chem. Phys. 373(3), 300 (2010). doi:10.1016/j.chemphys.2010.06.005

    Article  CAS  Google Scholar 

  161. A.A.B. Padama, H. Kishi, R.L. Arevalo, J.L.V. Moreno, H. Kasai, M. Taniguchi, M. Uenishi, H. Tanaka, Y. Nishihata, J. Phys.: Condens. Matter 24(17), 175005 (2012). doi:10.1088/0953-8984/24/17/175005

  162. M.H. Matloob, M.W. Roberts, J. Chem. Soc. Faraday Trans. 1(73), 1393 (1977). doi:10.1039/f19777301393

    Article  Google Scholar 

  163. T. Munakata, K. Mase, I. Kinoshita, Surf. Sci. 286(1–2), 73 (1993). doi:10.1016/0039-6028(93)90557-Z

    Article  CAS  Google Scholar 

  164. I. Kinoshita, A. Misu, T. Munakata, J. Chem. Phys. 102(7), 2970 (1995). doi:10.1063/1.468605

    Article  Google Scholar 

  165. A. Yoshimori, Surf. Sci. 342(1–3), L1101 (1995). doi:10.1016/0039-6028(95)00820-9

    Article  CAS  Google Scholar 

  166. P.J. Godowski, J. Onsgaard, Vacuum 94, 6 (2013). doi:10.1016/j.vacuum.2013.01.011

    Article  CAS  Google Scholar 

  167. C.J. Hirschmugl, P. Dumas, Y.J. Chabal, F.M. Hoffmann, M. Suhren, G.P. Williams, J. Electron Spectr. Relat. Phenom. 64–65, 67 (1993). doi:10.1016/0368-2048(93)80062-Q

    Article  Google Scholar 

  168. T. Sueyoshi, T. Sasaki, Y. Iwasawa, J. Phys. Chem. 100(32), 13646 (1996). doi:10.1021/jp9606265

    Article  CAS  Google Scholar 

  169. A.R. Balkenende, O.L.J. Gijzeman, J.W. Geus, Appl. Surf. Sci. 37(2), 189 (1989). doi:10.1016/0169-4332(89)90482-0

    Article  CAS  Google Scholar 

  170. A.R. Balkenende, H. den Daas, M. Huisman, O.L.J. Gijzeman, J.W. Geus, Appl. Surf. Sci. 47(4), 341 (1991). doi:10.1016/0169-4332(91)90087-Z

    Article  CAS  Google Scholar 

  171. C.M. Kim, C.W. Yi, D.W. Goodman, J. Phys. Chem. B 109(5), 1891 (2005). doi:10.1021/jp045947s

    Article  CAS  Google Scholar 

  172. C. De La Cruz, N. Sheppard, Spectrochim. Acta A 78(1), 7 (2011). doi:10.1016/j.saa.2010.08.001

    Article  CAS  Google Scholar 

  173. W. Sesselmann, B. Woratschek, J. Küppers, G. Doyen, G. Ertl, H. Haberland, H. Morgner, Phys. Rev. Lett. 60(14), 1434 (1988). doi:10.1103/PhysRevLett.60.1434

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Akitoshi Shiotari .

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Nature Singapore Pte Ltd.

About this chapter

Cite this chapter

Shiotari, A. (2017). Introduction. In: Reactivity of Nitric Oxide on Copper Surfaces. Springer Theses. Springer, Singapore. https://doi.org/10.1007/978-981-10-4582-0_1

Download citation

Publish with us

Policies and ethics