Advertisement

Introduction

  • Akitoshi ShiotariEmail author
Chapter
  • 228 Downloads
Part of the Springer Theses book series (Springer Theses)

Abstract

Nitric oxide (NO or nitrogen monoxide) is a diatomic molecule consisting of a nitrogen atom and an oxygen atom. It is a free radical, i.e., a relatively stable molecule with an unpaired electron. Owing to its radical reactivity, NO is of considerable importance not only in chemical engineering and industry but also in medicine and physiology.

Keywords

Scan Tunneling Microscopy Density Functional Theory Calculation Selective Catalytic Reduction Bridge Site Hollow Site 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    E. Culotta, D.E. Koshland Jr., Science 258(5090), 1862 (1992). doi: 10.1126/science.1361684 CrossRefGoogle Scholar
  2. 2.
    D. Möller, Chemistry of the Climate System (Walter de Gruyter GmbH & Co KG, Berlin, 2014), https://www.degruyter.com/view/product/210698
  3. 3.
    J.H. Enemark, R.D. Feltham, Coord. Chem. Rev. 13(4), 339 (1974). doi: 10.1016/S0010-8545(00)80259-3 CrossRefGoogle Scholar
  4. 4.
    T.W. Hayton, P. Legzdins, W.B. Sharp, Chem. Rev. 102(2), 935 (2002). doi: 10.1021/cr000074t CrossRefGoogle Scholar
  5. 5.
    J.W. Godden, S. Turley, D.C. Teller, E.T. Adman, M.Y. Liu, W.J. Payne, J. LeGall, Science 253(5018), 438 (1991). doi: 10.1126/science.1862344 CrossRefGoogle Scholar
  6. 6.
    I.M. Wasser, S. de Vries, P. Moënne-Loccoz, I. Schröder, K.D. Karlin, Chem. Rev. 102(4), 1201 (2002). doi: 10.1021/cr0006627 CrossRefGoogle Scholar
  7. 7.
    S. Zhang, M.M. Meizer, S.N. Sen, N. Çelebi-Ölçüm, T.H. Warren, Nat. Chem. 8(7), 663 (2016). doi: 10.1038/nchem.2502 CrossRefGoogle Scholar
  8. 8.
    J. Hochmuth, K. Wassermann, R.J. Farrauto, in Comprehensive Inorganic Chemistry II, ed. by J. Reedijk, K. Poeppelmeier (Elsevier, Amsterdam, 2013), Chap. 7.19, pp. 505–523. doi: 10.1016/B978-0-08-097774-4.00724-5
  9. 9.
    P.D. Johnson, S.L. Hulbert, Phys. Rev. B 35(18), 9427 (1987). doi: 10.1103/PhysRevB.35.9427 CrossRefGoogle Scholar
  10. 10.
    R. Imbihl, G. Ertl, Chem. Rev. 95(3), 697 (1995). doi: 10.1021/cr00035a012 CrossRefGoogle Scholar
  11. 11.
    H. Over, Prog. Surf. Sci. 58(4), 249 (1998). doi: 10.1016/S0079-6816(98)00029-X CrossRefGoogle Scholar
  12. 12.
    W.A. Brown, D.A. King, J. Phys. Chem. B 104(12), 2578 (2000). doi: 10.1021/jp9930907 CrossRefGoogle Scholar
  13. 13.
    M. Gajdoš, J. Hafner, A. Eichler, J. Phys.: Condens. Matter 18(1), 13 (2006). doi: 10.1088/0953-8984/18/1/002
  14. 14.
    M. Gajdoš, J. Hafner, A. Eichler, J. Phys.: Condens. Matter 18(1), 41 (2006). doi: 10.1088/0953-8984/18/1/003
  15. 15.
    F. Garin, Appl. Catal. A 222(1–2), 183 (2001). doi: 10.1016/S0926-860X(01)00827-4 CrossRefGoogle Scholar
  16. 16.
    Y. Hu, K. Griffiths, P.R. Norton, Surf. Sci. 603(10–12), 1740 (2009). doi: 10.1016/j.susc.2008.09.051 CrossRefGoogle Scholar
  17. 17.
    N. Sheppard, C. De La Cruz, Phys. Chem. Chem. Phys. 12(10), 2275 (2010). doi: 10.1039/b914016f CrossRefGoogle Scholar
  18. 18.
    J.T. Yates Jr., Surf. Sci. 299/300, 731 (1994). doi: 10.1016/0039-6028(94)90693-9
  19. 19.
    G. Ertl, Chem. Rec. 1(1), 33 (2001). doi: 10.1016/S1381-1169(01)00460-5 CrossRefGoogle Scholar
  20. 20.
    P.J. Feibelman, B. Hammer, J.K. Nørskov, F. Wagner, M. Scheffler, R. Stumpf, R. Watwe, J. Dumesic, J. Phys. Chem. B 105(18), 4018 (2001). doi: 10.1021/jp002302t CrossRefGoogle Scholar
  21. 21.
    A. Nilsson, L.G.M. Pettersson, Surf. Sci. Rep. 55(2–5), 49 (2004). doi: 10.1016/j.surfrep.2004.06.002 CrossRefGoogle Scholar
  22. 22.
    M. Gajdoš, A. Eichler, J. Hafner, J. Phys.: Condens. Matter 16(8), 1141 (2004). doi: 10.1088/0953-8984/16/8/001
  23. 23.
    A. Fielicke, P. Gruene, G. Meijer, D.M. Rayner, Surf. Sci. 603(10–12), 1427 (2009). doi: 10.1016/j.susc.2008.09.064 CrossRefGoogle Scholar
  24. 24.
    G. Binnig, H. Rohrer, Rev. Mod. Phys. 59(3), 615 (1987). doi: 10.1103/RevModPhys.59.615 CrossRefGoogle Scholar
  25. 25.
    C.J. Chen, Introduction to Scanning Tunneling Microscopy, 2nd edn. (Oxford University Press Inc., New York, 2008), http://www.oupcanada.com/catalog/9780195071504.html
  26. 26.
    M. Matsumoto, N. Tatsumi, K. Fukutani, T. Okano, T. Yamada, K. Miyake, K. Hate, H. Shigekawa, J. Vac. Sci. Technol. A 17(4), 1577 (1999). doi: 10.1116/1.581853 CrossRefGoogle Scholar
  27. 27.
    N. Tsukahara, K. Mukai, Y. Yamashita, J. Yoshinobu, H. Aizawa, Surf. Sci. 600(17), 3477 (2006). doi: 10.1016/j.susc.2006.06.040 CrossRefGoogle Scholar
  28. 28.
    M. Matsumoto, S. Ogura, K. Fukutani, T. Okano, Surf. Sci. 603(19), 2928 (2009). doi: 10.1016/j.susc.2009.07.022 CrossRefGoogle Scholar
  29. 29.
    C.I. Carlisle, D.A. King, J. Phys. Chem. B 105(18), 3886 (2001). doi: 10.1021/jp0033871 CrossRefGoogle Scholar
  30. 30.
    R. Requist, S. Modesti, P.P. Baruselli, A. Smogunov, M. Fabrizio, E. Tosatti, Proc. Natl. Acad. Sci. U.S.A. 111(1), 69 (2014). doi: 10.1073/pnas.1322239111 CrossRefGoogle Scholar
  31. 31.
    W. Ho, J. Chem. Phys. 117(24), 11033 (2002). doi: 10.1063/1.1521153 CrossRefGoogle Scholar
  32. 32.
    S.W. Hla, K.H. Rieder, Annu. Rev. Phys. Chem. 54(4), 307 (2003). doi: 10.1146/annurev.physchem.54.011002.103852 CrossRefGoogle Scholar
  33. 33.
    T. Komeda, Prog. Surf. Sci. 78(2), 41 (2005). doi: 10.1016/j.progsurf.2005.05.001 CrossRefGoogle Scholar
  34. 34.
    J.G. Hou, A. Zhao, NANO: Brief Rep. Rev. 1(1), 15 (2006). doi: 10.1142/S1793292006000082
  35. 35.
    I. Swart, L. Gross, P. Liljeroth, Chem. Commun. 47(32), 9011 (2011). doi: 10.1039/c1cc11404b CrossRefGoogle Scholar
  36. 36.
    D.A. Bonnell, D.N. Basov, M. Bode, U. Diebold, S.V. Kalinin, V. Madhavan, L. Novotny, M. Salmeron, U.D. Schwarz, P.S. Weiss, Rev. Mod. Phys. 84(3), 1343 (2012). doi: 10.1103/RevModPhys.84.1343 CrossRefGoogle Scholar
  37. 37.
    K. Morgenstern, N. Lorente, K.H. Rieder, Phys. Status Solidi B 250(9), 1671 (2013). doi: 10.1002/pssb.201248392 CrossRefGoogle Scholar
  38. 38.
    S.W. Hla, Rep. Prog. Phys. 77(5), 056502 (2014). doi: 10.1021/j100792a006 CrossRefGoogle Scholar
  39. 39.
    Y. Kim, K. Motobayashi, T. Frederiksen, H. Ueba, M. Kawai, Prog. Surf. Sci. 90(2), 85 (2015). doi: 10.1016/j.progsurf.2014.12.001 CrossRefGoogle Scholar
  40. 40.
    T. Kumagai, Prog. Surf. Sci. 90(3), 239 (2015). doi: 10.1016/j.progsurf.2015.04.001 CrossRefGoogle Scholar
  41. 41.
    J. Guo, K. Bian, Z. Lin, Y. Jiang, J. Chem. Phys. 145(16), 1609101 (2016). doi: 10.1063/1.4964668 CrossRefGoogle Scholar
  42. 42.
    G. Blyholder, J. Phys. Chem. 68(10), 2772 (1964). doi: 10.1088/0034-4885/77/5/056502 CrossRefGoogle Scholar
  43. 43.
    B. Hammer, O.H. Nielsen, J.K. Nørskov, Catal. Lett. 46(1), 31 (1997). doi: 10.1023/A:1019073208575 CrossRefGoogle Scholar
  44. 44.
    M.T.M. Koper, R.A. van Santen, S.A. Wasileski, M.J. Weaver, J. Chem. Phys. 113(10), 4392 (2000). doi: 10.1063/1.1288592 CrossRefGoogle Scholar
  45. 45.
    D. Peebles, E. Hardegree, J.D. White, Surf. Sci. 148(2–3), 635 (1984). doi: 10.1016/0039-6028(84)90602-2 CrossRefGoogle Scholar
  46. 46.
    H. Conrad, G. Ertl, J. Küppers, E.E. Latta, Surf. Sci. 65(1), 235 (1977). doi: 10.1016/0039-6028(77)90304-1 CrossRefGoogle Scholar
  47. 47.
    K.C. Hass, M.H. Tsai, R.V. Kasowski, Phys. Rev. B 53(1), 44 (1996). doi: 10.1103/PhysRevB.53.44 CrossRefGoogle Scholar
  48. 48.
    Q. Ge, D.A. King, Chem. Phys. Lett. 285(1–2), 15 (1998). doi: 10.1016/S0009-2614(97)01467-X CrossRefGoogle Scholar
  49. 49.
    B. Hammer, Phys. Rev. Lett. 83(18), 3681 (1999). doi: 10.1103/PhysRevLett.83.3681 CrossRefGoogle Scholar
  50. 50.
    A. Bogicevic, K.C. Hass, Surf. Sci. 506(1–2), L237 (2002). doi: 10.1016/S0039-6028(02)01491-7 CrossRefGoogle Scholar
  51. 51.
    A. Nilsson, M. Weinelt, T. Wiell, P. Bennich, O. Karis, N. Wassdahl, J. Stöhr, M.G. Samant, Phys. Rev. Lett. 78(14), 2847 (1997). doi: 10.1103/PhysRevLett.78.2847 CrossRefGoogle Scholar
  52. 52.
    A. Föhlisch, M. Nyberg, P. Bennich, L. Triguero, J. Hasselström, O. Karis, L.G.M. Pettersson, A. Nilsson, J. Phys. Chem. 112(4), 1946 (2000). doi: 10.1063/1.480773 CrossRefGoogle Scholar
  53. 53.
    A. Nilsson, L.G.M. Pettersson, in Chemical Bonding at Surfaces and Interfaces, ed. by A. Nilsson, L.G.M. Pettersson, J.K. Nørskov (Elsevier, Amsterdam, 2007), Chap. 2, pp. 57–142. doi: 10.1016/B978-044452837-7.50003-4
  54. 54.
    M. Staufer, U. Birkenheuer, T. Belling, F. Nörtemann, N. Rösch, M. Stichler, C. Keller, W. Wurth, D. Menzel, L.G.M. Pettersson, A. Föhlisch, A. Nilsson, J. Chem. Phys. 111(10), 4704 (1999). doi: 10.1063/1.479232 CrossRefGoogle Scholar
  55. 55.
    M. Stichler, C. Keller, C. Heske, M. Staufer, Surf. Sci. 448(2–3), 164 (2000). doi: 10.1016/S0039-6028(99)01232-7 CrossRefGoogle Scholar
  56. 56.
    T.A. Albright, J.K. Burdett, M.H. Whangbo, Orbital Interactions in Chemistry, 2nd edn. (Willey, New Jersey, 2013), http://as.wiley.com/WileyCDA/WileyTitle/productCd-047108039X.html
  57. 57.
    G. Brodén, T.N. Rhodin, C. Brucker, R. Benbow, Z. Hurych, Surf. Sci. 59(2), 593 (1976). doi: 10.1016/0039-6028(76)90038-8 CrossRefGoogle Scholar
  58. 58.
    B. Hammer, Top. Catal. 37(1), 3 (2006). doi: 10.1007/s11244-006-0004-y CrossRefGoogle Scholar
  59. 59.
    T. Zambelli, J. Wintterlin, J. Trost, G. Ertl, Science 273(5282), 1688 (1996). doi: 10.1126/science.273.5282.1688 CrossRefGoogle Scholar
  60. 60.
    B. Hammer, Farad. Discuss. 110, 323 (1998). doi: 10.1039/A801126E CrossRefGoogle Scholar
  61. 61.
    E.H.G. Backus, A. Eichler, M.L. Grecea, A.W. Kleyn, M. Bonn, J. Chem. Phys. 121(16), 7946 (2004). doi: 10.1063/1.1799956 CrossRefGoogle Scholar
  62. 62.
    G. Pirug, H.P. Bonzel, H. Hopster, H. Ibach, J. Chem. Phys. 71(2), 593 (1979). doi: 10.1063/1.438410 CrossRefGoogle Scholar
  63. 63.
    R. Raval, M.A. Harrison, S. Haq, D.A. King, Surf. Sci. 294(1–2), 10 (1993). doi: 10.1016/0039-6028(93)90154-C CrossRefGoogle Scholar
  64. 64.
    W. Erley, Surf. Sci. 205(1–2), L771 (1988). doi: 10.1016/0039-6028(88)90158-6 CrossRefGoogle Scholar
  65. 65.
    S. Aminpirooz, A. Schmalz, L. Becker, J. Haase, Phys. Rev. B 45(11), 6337 (1992). doi: 10.1103/PhysRevB.45.6337 CrossRefGoogle Scholar
  66. 66.
    M.C. Asensio, D.P. Woodruff, A.W. Robinson, K.M. Schindler, P. Gardner, D. Ricken, A.M. Bradshaw, Chem. Phys. Lett. 192(2), 259 (1992). doi: 10.1016/0009-2614(92)85462-J CrossRefGoogle Scholar
  67. 67.
    R. Lindsay, A. Theobald, T. Gießel, O. Schaff, A.M. Bradsaw, N.A. Booth, D.P. Woodruff, Surf. Sci. 405(2–3), L566 (1998). doi: 10.1016/S0039-6028(98)00172-1 CrossRefGoogle Scholar
  68. 68.
    K.M. Neyman, N. Rösch, Surf. Sci. 307–309(B), 1193 (1994). doi: 10.1016/0039-6028(94)91563-6
  69. 69.
    J.L. Gland, B.A. Sexton, Surf. Sci. 94(2–3), 355 (1980). doi: 10.1016/0039-6028(80)90012-6 CrossRefGoogle Scholar
  70. 70.
    B.E. Hayden, Surf. Sci. 131(2–3), 419 (1983). doi: 10.1016/0039-6028(83)90287-X CrossRefGoogle Scholar
  71. 71.
    M. Matsumoto, K. Fukutani, T. Okano, K. Miyake, H. Shigekawa, H. Kato, H. Okuyama, M. Kawai, Surf. Sci. 454–456, 101 (2000). doi: 10.1016/S0039-6028(00)00266-1 CrossRefGoogle Scholar
  72. 72.
    M. Matsumoto, N. Tatsumi, K. Fukutani, Surf. Sci. 513(3), 485 (2002). doi: 10.1016/S0039-6028(02)01846-0
  73. 73.
    H. Aizawa, Y. Morikawa, S. Tsuneyuki, K. Fukutani, T. Ohno, Surf. Sci. 514(1–3), 394 (2002). doi: 10.1016/S0039-6028(02)01658-8
  74. 74.
    H. Aizawa, Y. Morikawa, S. Tsuneyuki, K. Fukutani, T. Ohno, e-J. Surf. Sci. Nanotech. 5, 122 (2007). doi: 10.1380/ejssnt.2007.122
  75. 75.
    M.P. Jigato, K. Somasundram, V. Termath, N.C. Handy, D.A. King, Surf. Sci. 380(1), 83 (1997). doi: 10.1016/S0039-6028(96)01599-3 CrossRefGoogle Scholar
  76. 76.
    I. Nakamura, T. Fujitani, H. Hamada, Surf. Sci. 514(1–3), 409 (2002). doi: 10.1016/S0039-6028(02)01660-6 CrossRefGoogle Scholar
  77. 77.
    X.F. Jia, S.Q. Yu, Z.X. Wang, Y. Ma, Surf. Interface Anal. 40(10), 1350 (2008). doi: 10.1002/sia.2903 CrossRefGoogle Scholar
  78. 78.
    X. Huang, S.E. Mason, Surf. Sci. 621, 23 (2014). doi: 10.1016/j.susc.2013.09.024 CrossRefGoogle Scholar
  79. 79.
    I. Dabo, A. Wieckowski, N. Marzari, J. Am. Chem. Soc. 129(36), 11045 (2007). doi: 10.1021/ja067944u CrossRefGoogle Scholar
  80. 80.
    A. Stroppa, K. Termentzidis, J. Paier, G. Kresse, J. Hafner, Phys. Rev. B 76(19), 195440 (2007). doi: 10.1103/PhysRevB.76.195440 CrossRefGoogle Scholar
  81. 81.
    J.S. Villarrubia, L.J. Richter, B.A. Gurney, W. Ho, J. Vac. Sci. Technol. A 4(3), 1487 (1986). doi: 10.1116/1.573549 CrossRefGoogle Scholar
  82. 82.
    J.S. Villarrubia, W. Ho, J. Chem. Phys. 87(1), 750 (1987). doi: 10.1063/1.453573 CrossRefGoogle Scholar
  83. 83.
    F.M. Hoffmann, R.A. de Paola, Phys. Rev. Lett. 52(19), 1697 (1984). doi: 10.1103/PhysRevLett.52.1697 CrossRefGoogle Scholar
  84. 84.
    N.D. Shinn, T.E. Madey, Phys. Rev. Lett. 53(26), 2481 (1984). doi: 10.1103/PhysRevLett.53.2481 CrossRefGoogle Scholar
  85. 85.
    D.W. Moon, S.L. Bernasek, D.J. Dwyer, J.L. Gland, J. Am. Chem. Soc. 107(4), 4363 (1985). doi: 10.1021/ja00300a064 CrossRefGoogle Scholar
  86. 86.
    C. Benndorf, B. Krüger, F. Thieme, Surf. Sci. 163(1985), 675 (1985). doi: 10.1016/0039-6028(85)90842-8 Google Scholar
  87. 87.
    D. Loffreda, F. Delbecq, D. Simon, P. Sautet, J. Chem. Phys. 115(17), 8101 (2001). doi: 10.1063/1.1379578 CrossRefGoogle Scholar
  88. 88.
    F. Bondino, G. Comelli, A. Baraldi, E. Vesselli, R. Rosei, A. Goldoni, S. Lizzit, C. Bungaro, S. de Gironcoli, S. Baroni, J. Chem. Phys. 119(23), 12525 (2003). doi: 10.1063/1.1627756 CrossRefGoogle Scholar
  89. 89.
    K. Tian, X.Y. Tu, S.S. Dai, Surf. Sci. 601(15), 3186 (2007). doi: 10.1016/j.susc.2007.05.053 CrossRefGoogle Scholar
  90. 90.
    C. Popa, A.P. van Bavel, R.A. van Santen, C.F.J. Flipse, A.P.J. Jansen, Surf. Sci. 602(13), 2189 (2008). doi: 10.1016/j.susc.2008.04.035 CrossRefGoogle Scholar
  91. 91.
    J.F. Wendelken, Appl. Surf. Sci. 11–12, 172 (1982). doi: 10.1016/0378-5963(82)90064-2 CrossRefGoogle Scholar
  92. 92.
    S.K. So, R. Franchy, W. Ho, J. Chem. Phys. 95(2), 1385 (1991). doi: 10.1063/1.461120 CrossRefGoogle Scholar
  93. 93.
    A. Sandell, A. Nilsson, N. Mårtensson, Surf. Sci. 241(1–2), L1 (1991). doi: 10.1016/0167-2584(91)91043-V Google Scholar
  94. 94.
    I. Rickardsson, L. Jönsson, C. Nyberg, Surf. Sci. 414(3), 389 (1998). doi: 10.1016/S0039-6028(98)00519-6 CrossRefGoogle Scholar
  95. 95.
    C.z. He, H. Wang, P. Zhu, J.y. Liu, J. Chem. Phys. 135(20), 204707 (2011). doi: 10.1063/1.3663621
  96. 96.
    Q. Ge, M. Neurock, J. Am. Chem. Soc. 126(5), 1551 (2004). doi: 10.1021/ja036575o CrossRefGoogle Scholar
  97. 97.
    H. Ning, J.Q. Cai, X.M. Tao, M.Q. Tan, Appl. Surf. Sci. 258(10), 4428 (2012). doi: 10.1016/j.apsusc.2012.01.001 CrossRefGoogle Scholar
  98. 98.
    H. Ning, J.Q. Cai, X.M. Tao, M.Q. Tan, J. Phys. Soc. Jpn. 81(4), 044606 (2012). doi: 10.1143/JPSJ.81.044606 CrossRefGoogle Scholar
  99. 99.
    A.L. Smith, W.E. Keller, H.L. Johnston, J. Chem. Phys. 19(2), 189 (1951). doi: 10.1063/1.1748157 CrossRefGoogle Scholar
  100. 100.
    E.M. Nour, L.H. Chen, M.M. Strube, J. Phys. Chem. 88(4), 756 (1984). doi: 10.1021/j150648a028 CrossRefGoogle Scholar
  101. 101.
    C.E. Dinerman, J. Chem. Phys. 53(2), 626 (1970). doi: 10.1063/1.1674038 CrossRefGoogle Scholar
  102. 102.
    S.G. Kukolich, J. Am. Chem. Soc. 104(17), 4715 (1982). doi: 10.1021/ja00381a052 CrossRefGoogle Scholar
  103. 103.
    W.A. Brown, P. Gardner, D.A. King, J. Phys. Chem. 99(18), 7065 (1995). doi: 10.1021/j100018a045 CrossRefGoogle Scholar
  104. 104.
    W.A. Brown, P. Gardner, M.P. Jigato, D.A. King, J. Chem. Phys. 102(18), 7277 (1995). doi: 10.1063/1.469039 CrossRefGoogle Scholar
  105. 105.
    C. Hess, E. Ozensoy, C.W. Yi, D.W. Goodman, J. Am. Chem. Soc. 128(9), 2988 (2006). doi: 10.1021/ja057131q CrossRefGoogle Scholar
  106. 106.
    N. Tsukahara, K. Mukai, Y. Yamashita, J. Yoshinobu, Surf. Sci. 600(18), 3560 (2006). doi: 10.1016/j.susc.2006.01.060 CrossRefGoogle Scholar
  107. 107.
    M. Bertolo, K. Jacobi, Surf. Sci. 226(3), 207 (1990). doi: 10.1016/0039-6028(90)90486-R CrossRefGoogle Scholar
  108. 108.
    W.A. Brown, R.K. Sharma, D.A. King, Phys. Chem. Chem. Phys. 1(8), 1995 (1999). doi: 10.1039/A900850K CrossRefGoogle Scholar
  109. 109.
    I.S. Nandhakumar, Z.Y. Li, R.E. Palmer, R. Amos, Surf. Sci. 329(3), 184 (1995). doi: 10.1016/0039-6028(95)00061-5 CrossRefGoogle Scholar
  110. 110.
    K.T. Queeney, C.M. Friend, J. Chem. Phys. 107(16), 6432 (1997). doi: 10.1063/1.474303 CrossRefGoogle Scholar
  111. 111.
    K.T. Queeney, S. Pang, C.M. Friend, J. Chem. Phys. 109(18), 8058 (1998). doi: 10.1063/1.477452 CrossRefGoogle Scholar
  112. 112.
    A. Beniya, T. Koitaya, H. Kondoh, K. Mukai, S. Yoshimoto, J. Yoshinobu, J. Chem. Phys. 131(8), 084704 (2009). doi: 10.1063/1.3212596 CrossRefGoogle Scholar
  113. 113.
    T.Q. Wu, P. Zhu, Z.W. Jiao, X.Y. Wang, H.L. Luo, Appl. Surf. Sci. 263, 502 (2012). doi: 10.1016/j.apsusc.2012.09.093 CrossRefGoogle Scholar
  114. 114.
    W.A. Brown, R.K. Sharma, D.A. King, S. Haq, J. Phys. Chem. 100(30), 12559 (1996). doi: 10.1021/jp9602888 CrossRefGoogle Scholar
  115. 115.
    P. Dumas, M. Suhren, Y.J. Chabal, C.J. Hirschmugl, G.P. Williams, Surf. Sci. 371(2–3), 200 (1997). doi: 10.1016/S0039-6028(96)00987-9 CrossRefGoogle Scholar
  116. 116.
    Y. Kim, T. Komeda, M. Kawai, Phys. Rev. Lett. 89(12), 126104 (2002). doi: 10.1103/PhysRevLett.89.126104 CrossRefGoogle Scholar
  117. 117.
    D.W. Johnson, M.H. Matloob, M.W. Roberts, J. Chem. Soc. Chem. Commun. (2), 40 (1978). doi: 10.1039/c39780000040
  118. 118.
    D.W. Johnson, M.H. Matloob, M.W. Roberts, J. Chem. Soc. Faraday Trans. 1(75), 2143 (1979). doi: 10.1039/F19797502143 CrossRefGoogle Scholar
  119. 119.
    R.J. Behm, C.R. Brundle, J. Vac. Sci. Technol. A 2(2), 1040 (1984). doi: 10.1116/1.572671 CrossRefGoogle Scholar
  120. 120.
    A. Ludviksson, C. Huang, H.J. Jänsch, R.M. Martin, Surf. Sci. 284(3), 328 (1993). doi: 10.1016/0039-6028(93)90503-C CrossRefGoogle Scholar
  121. 121.
    M.P. Jigato, V. Termath, P. Gardner, N.C. Handy, D.A. King, S. Rassias, M. Surman, Mol. Phys. 85(3), 619 (1995). doi: 10.1080/00268979500101341 CrossRefGoogle Scholar
  122. 122.
    Z.P. Liu, P. Hu, Top. Catal. 28(1), 71 (2004). doi: 10.1023/B:TOCA.0000024335.88459.81 CrossRefGoogle Scholar
  123. 123.
    B. Chen, Y. Ma, L. Ding, L. Xu, Z. Wu, Q. Yuan, W. Huang, Chin. J. Catal. 34(5), 964 (2013). doi: 10.1016/S1872-2067(12)60585-3 CrossRefGoogle Scholar
  124. 124.
    K. Edamoto, S. Maehama, E. Miyazaki, T. Miyahara, H. Kato, Surf. Sci. 204(3), L739 (1988). doi: 10.1016/0039-6028(88)90213-0 CrossRefGoogle Scholar
  125. 125.
    M.P. Jigato, D.A. King, A. Yoshimori, Chem. Phys. Lett. 300(5–6), 639 (1999). doi: 10.1016/S0009-2614(98)01273-1 CrossRefGoogle Scholar
  126. 126.
    H. Nakamura, K. Yamashita, J. Chem. Phys. 125(8), 084708 (2006). doi: 10.1063/1.2338027 CrossRefGoogle Scholar
  127. 127.
    S.K. So, R. Franchy, W. Ho, J. Chem. Phys. 91(9), 5701 (1989). doi: 10.1063/1.457524 CrossRefGoogle Scholar
  128. 128.
    R.T. Kidd, S.R. Meech, D. Lennon, Chem. Phys. Lett. 262(1–2), 142 (1996). doi: 10.1016/0009-2614(96)01060-3 CrossRefGoogle Scholar
  129. 129.
    R.T. Kidd, D. Lennon, S.R. Meech, J. Phys. Chem. B 103(35), 7480 (1999). doi: 10.1021/jp990944e CrossRefGoogle Scholar
  130. 130.
    K.H. Kim, K. Watanabe, D. Menzel, H.J. Freund, J. Am. Chem. Soc. 131(5), 1660 (2009). doi: 10.1021/ja808615m CrossRefGoogle Scholar
  131. 131.
    K. Shimizu, A. Satsuma, Phys. Chem. Chem. Phys. 8(23), 2677 (2006). doi: 10.1039/B601794K CrossRefGoogle Scholar
  132. 132.
    J. Ma, X. Cao, H. Liu, B. Yina, X. Xing, Phys. Chem. Chem. Phys. 18(18), 12819 (2016). doi: 10.1039/C6CP01156J CrossRefGoogle Scholar
  133. 133.
    D. Mulugeta, K. Kim, K. Watanabe, D. Menzel, H.J. Freund, Phys. Rev. Lett. 101(14), 146103 (2008). doi: 10.1103/PhysRevLett.101.146103 CrossRefGoogle Scholar
  134. 134.
    D. Mulugeta, K. Watanabe, D. Menzel, H.J. Freund, J. Chem. Phys. 134(16), 164702 (2011). doi: 10.1063/1.3581802 CrossRefGoogle Scholar
  135. 135.
    K. Kim, K. Watanabe, D. Mulugeta, H.J. Freund, D. Menzel, Phys. Rev. Lett. 107(4), 047401 (2011). doi: 10.1103/PhysRevLett.107.047401 CrossRefGoogle Scholar
  136. 136.
    K.H. Kim, K. Watanabe, D. Menzel, H.J. Freund, Surf. Sci. 606(15–16), 1142 (2012). doi: 10.1016/j.susc.2012.02.005 CrossRefGoogle Scholar
  137. 137.
    M. Haruta, N. Yamada, T. Kobayashi, S. Iijima, J. Catal 115(2), 301 (1989). doi: 10.1016/0021-9517(89)90034-1 CrossRefGoogle Scholar
  138. 138.
    M. Datè, M. Okumura, S. Tsubota, M. Haruta, Angew. Chem. Int. Ed. 43(16), 2129 (2004). doi: 10.1002/anie.200453796 CrossRefGoogle Scholar
  139. 139.
    A.C. Gluhoi, S.D. Lin, B.E. Nieuwenhuys, Catal. Today. 90(3–4), 175 (2004). doi: 10.1016/j.cattod.2004.04.025 CrossRefGoogle Scholar
  140. 140.
    G. Pattrick, E. van der Lingen, C.W. Corti, R.J. Holliday, D.T. Thompson, Top. Catal. 30(1), 273 (2004). doi: 10.1023/B:TOCA.0000029762.14168.d8 CrossRefGoogle Scholar
  141. 141.
    A. Yu, Z. Liang, J. Cho, F. Caruso, Nano Lett. 3(9), 1203 (2003). doi: 10.1021/nl034363j CrossRefGoogle Scholar
  142. 142.
    J. Ma, X. Cao, M. Chen, B. Yin, X. Xing, X. Wang, J. Phys. Chem. A 120(46), 9131 (2016). doi: 10.1021/acs.jpca.6b09129 CrossRefGoogle Scholar
  143. 143.
    S.M. McClure, T.S. Kim, J.D. Stiehl, P.L. Tanaka, C.B. Mullins, J. Phys. Chem. B 108(46), 17952 (2004). doi: 10.1021/jp047335d CrossRefGoogle Scholar
  144. 144.
    Z. Wu, L. Xu, W. Zhang, Y. Ma, Q. Yuan, Y. Jin, J. Yang, W. Huang, J. Catal. 304(2), 112 (2013). doi: 10.1016/j.jcat.2013.04.013 CrossRefGoogle Scholar
  145. 145.
    T.D. Chau, T.V. de Bocarmé, N. Kruse, Catal. Lett. 98(2), 85 (2004). doi: 10.1007/s10562-004-7918-4 CrossRefGoogle Scholar
  146. 146.
    Y. Wang, D. Zhang, Z. Yu, C. Liu, J. Phys. Chem. C 114(6), 2711 (2010). doi: 10.1021/jp9103596 CrossRefGoogle Scholar
  147. 147.
    W. Zhang, T. Schmid, B.S. Yeo, R. Zenobi, J. Phys. Chem. C 112(6), 2104 (2008). doi: 10.1021/jp077457g CrossRefGoogle Scholar
  148. 148.
    L.Y. Gan, R.Y. Tian, X.B. Yang, S.L. Peng, Y.J. Zhao, Phys. Chem. Chem. Phys. 13(32), 14466 (2011). doi: 10.1039/c1cp20974d CrossRefGoogle Scholar
  149. 149.
    M. Ternes, A.J. Heinrich, W.D. Schneider, J. Phys.: Condens. Matter 21(5), 053001 (2009). doi: 10.1088/0953-8984/21/5/053001
  150. 150.
    M. Iwamoto, H. Yahiro, N. Mizuno, Y. Mine, S. Kagawa, J. Phys. Chem. 95(9), 3727 (1991). doi: 10.1021/j100162a053 CrossRefGoogle Scholar
  151. 151.
    T. Cheung, S.K. Bhargava, K. Hobday, M. add Foger, J. Catal. 158(1), 301 (1996). doi: 10.1006/jcat.1996.0029 CrossRefGoogle Scholar
  152. 152.
    L. Čapek, K. Novoveská, Z. Sobalík, B. Wichterlová, L. Cider, E. Jobson, Appl. Catal. B 60(3–4), 201 (2005). doi: 10.1016/j.apcatb.2005.02.033 CrossRefGoogle Scholar
  153. 153.
    S. Haq, A. Carew, R. Raval, J. Catal. 221(1), 204 (2004). doi: 10.1016/S0021-9517(03)00311-7 CrossRefGoogle Scholar
  154. 154.
    S. Haq, R. Raval, Phys. Chem. Chem. Phys. 9(27), 3641 (2007). doi: 10.1039/b702595p CrossRefGoogle Scholar
  155. 155.
    S.S. Dhesi, S. Haq, S.D. Barrett, F.M. Leibsle, Surf. Sci. 365(3), 602 (1996). doi: 10.1016/0039-6028(96)00685-1 CrossRefGoogle Scholar
  156. 156.
    N. Takehiro, F. Besenbacher, E. Lægsgaard, K. Tanaka, I. Stensgaard, Surf. Sci. 397(1–3), 145 (1998). doi: 10.1016/S0039-6028(97)00726-7 CrossRefGoogle Scholar
  157. 157.
    A.F. Carley, P.R. Davies, K.R. Harikumar, R.V. Jones, G.U. Kulkarni, M.W. Roberts, Top. Catal. 14(1), 101 (2000). doi: 10.1023/A:1009015318393 CrossRefGoogle Scholar
  158. 158.
    J.F. Wendelken, J. Vac. Sci. Technol. 20(3), 884 (1982). doi: 10.1116/1.571377 CrossRefGoogle Scholar
  159. 159.
    N.G. Rey, H. Arnolds, J. Chem. Phys. 135(22), 224708 (2011). doi: 10.1063/1.3664861 CrossRefGoogle Scholar
  160. 160.
    M.Y. Yen, J.J. Ho, Chem. Phys. 373(3), 300 (2010). doi: 10.1016/j.chemphys.2010.06.005 CrossRefGoogle Scholar
  161. 161.
    A.A.B. Padama, H. Kishi, R.L. Arevalo, J.L.V. Moreno, H. Kasai, M. Taniguchi, M. Uenishi, H. Tanaka, Y. Nishihata, J. Phys.: Condens. Matter 24(17), 175005 (2012). doi: 10.1088/0953-8984/24/17/175005
  162. 162.
    M.H. Matloob, M.W. Roberts, J. Chem. Soc. Faraday Trans. 1(73), 1393 (1977). doi: 10.1039/f19777301393 CrossRefGoogle Scholar
  163. 163.
    T. Munakata, K. Mase, I. Kinoshita, Surf. Sci. 286(1–2), 73 (1993). doi: 10.1016/0039-6028(93)90557-Z CrossRefGoogle Scholar
  164. 164.
    I. Kinoshita, A. Misu, T. Munakata, J. Chem. Phys. 102(7), 2970 (1995). doi: 10.1063/1.468605 CrossRefGoogle Scholar
  165. 165.
    A. Yoshimori, Surf. Sci. 342(1–3), L1101 (1995). doi: 10.1016/0039-6028(95)00820-9 CrossRefGoogle Scholar
  166. 166.
    P.J. Godowski, J. Onsgaard, Vacuum 94, 6 (2013). doi: 10.1016/j.vacuum.2013.01.011 CrossRefGoogle Scholar
  167. 167.
    C.J. Hirschmugl, P. Dumas, Y.J. Chabal, F.M. Hoffmann, M. Suhren, G.P. Williams, J. Electron Spectr. Relat. Phenom. 64–65, 67 (1993). doi: 10.1016/0368-2048(93)80062-Q CrossRefGoogle Scholar
  168. 168.
    T. Sueyoshi, T. Sasaki, Y. Iwasawa, J. Phys. Chem. 100(32), 13646 (1996). doi: 10.1021/jp9606265 CrossRefGoogle Scholar
  169. 169.
    A.R. Balkenende, O.L.J. Gijzeman, J.W. Geus, Appl. Surf. Sci. 37(2), 189 (1989). doi: 10.1016/0169-4332(89)90482-0 CrossRefGoogle Scholar
  170. 170.
    A.R. Balkenende, H. den Daas, M. Huisman, O.L.J. Gijzeman, J.W. Geus, Appl. Surf. Sci. 47(4), 341 (1991). doi: 10.1016/0169-4332(91)90087-Z CrossRefGoogle Scholar
  171. 171.
    C.M. Kim, C.W. Yi, D.W. Goodman, J. Phys. Chem. B 109(5), 1891 (2005). doi: 10.1021/jp045947s CrossRefGoogle Scholar
  172. 172.
    C. De La Cruz, N. Sheppard, Spectrochim. Acta A 78(1), 7 (2011). doi: 10.1016/j.saa.2010.08.001 CrossRefGoogle Scholar
  173. 173.
    W. Sesselmann, B. Woratschek, J. Küppers, G. Doyen, G. Ertl, H. Haberland, H. Morgner, Phys. Rev. Lett. 60(14), 1434 (1988). doi: 10.1103/PhysRevLett.60.1434 CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2017

Authors and Affiliations

  1. 1.The University of TokyoKashiwaJapan

Personalised recommendations