Comparison of Thermal Characteristics of Sensible and Latent Heat Storage Materials Encapsulated in Different Capsule Configurations

  • Muthukumar PalanisamyEmail author
  • Hakeem Niyas
Conference paper
Part of the Springer Proceedings in Energy book series (SPE)


This paper presents the thermal modeling and performance comparison of sensible and latent heat based thermal energy storage (TES) systems using concrete and phase change materials (PCMs) encapsulated in containers of different geometrical configurations. The sensible heat storage (SHS) and latent heat storage (LHS) module considered here is a capsule containing concrete or sodium nitrate which exchanges heat with the source material. SHS capsule is modeled using the energy conservation equation. Effective heat capacity method is employed to account the latent heat of the PCM. Boussinesq approximation and Darcy law’s source term are added in the momentum equation to incorporate the natural convection of molten PCM and nullify the velocities of solid PCM. The equations of the 2D axisymmetric model are solved using COMSOL Multiphysics. Charging time of capsules in four different configurations viz., spherical, cylindrical (H = D, H = 4D) and novel cylindrical configurations are compared. The thermal characteristics are compared using isothermal contour plots and temperature–time curves.


Encapsulation Performance prediction Solar thermal Energy storage 



The authors sincerely thank the Department of Science and Technology (DST), Government of India, for the financial support (Project No: DST/TM/SERI/2K10/53(G)).


  1. 1.
    S.H. Madaeni, R. Sioshansi, P. Denholm, Capacity value of concentrating solar power plants. National Renewable Energy Laboratory Technical Report, NREL/TP-6A20-51253 (2011)Google Scholar
  2. 2.
    C. Prieto, A. Jove, F. Ruiz et al., in Commercial Thermal Storage. Molten Salts vs. Steam Accumulators. Proceedings, SolarPACES. (2012)
  3. 3.
    W.D. Steinmann, M. Eck, Buffer storage for direct steam generation. Sol. Energy 80, 1277–1282 (2006)CrossRefGoogle Scholar
  4. 4.
    I.T. Barney, S. Ganguli, A.K. Roy et al., Improved thermal response in encapsulated phase change materials by nanotube attachment on encapsulating solid. J. Nanotechnol. Eng. Med. 3, 6–0310051 (2012)Google Scholar
  5. 5.
    A. Sari, A. Karaipekli, Thermal conductivity and latent heat thermal energy storage characteristics of paraffin/expanded graphite composite as phase change material. Appl. Therm. Eng. 27, 1271–1277 (2007)CrossRefGoogle Scholar
  6. 6.
    L.C. Chow, J.K. Zhong, J.E. Beam, Thermal conductivity enhancement for phase change storage media. Int. Commun. Heat Mass Transfer 23(1), 91–100 (1996)CrossRefGoogle Scholar
  7. 7.
    L. Liu, W. Saman, F. Bruno, Review on storage materials and thermal performance enhancement techniques for high temperature phase change thermal storage systems. Renew. Sustain. Energy Rev 16, 2118–2132 (2012)CrossRefGoogle Scholar
  8. 8.
    A. Mathur, R. Kasetty, J. Oxley et al., Using encapsulated phase change salts for concentrated solar power plant. Energy Procedia 49, 908–915 (2014)CrossRefGoogle Scholar
  9. 9.
    C.W. Chan, F.L. Tan, Solidification inside a sphere—an experimental study. Int. Commun. Heat Mass Transfer 33, 335–341 (2006)CrossRefGoogle Scholar
  10. 10.
    E. Assis, L. Katsman, G. Ziskind et al., Numerical and experimental study of melting in a spherical shell. Int. J. Heat Mass Transfer 50, 1790–1804 (2007)CrossRefzbMATHGoogle Scholar
  11. 11.
    A.R. Archibold, M.M. Rahman, D.Y. Goswami et al., Analysis of heat transfer and fluid flow during melting inside a spherical container for thermal energy storage. Appl. Therm. Eng. 64, 396–407 (2014)CrossRefGoogle Scholar
  12. 12.
    N. Himeno, K. Hijikata, A. Sekikawa, Latent heat thermal energy storage of a binary mixture-flow and heat transfer characteristics in a horizontal cylinder. Int. J. Heat Mass Transfer 31(2), 359–366 (1988)CrossRefGoogle Scholar
  13. 13.
    W.D. Steinmann, R. Tamme, Latent heat storage for solar steam systems. J. Sol. Energy Eng. 130, 5–0110041 (2008)CrossRefGoogle Scholar
  14. 14.
  15. 15.
    T. Bauer, D. Laing, R. Tamme, Characterization of sodium nitrate as phase change material. Int. J. Thermphys. 33, 91–104 (2012)CrossRefGoogle Scholar
  16. 16.
    G.J. Janz, C.B. Allen, N.P. Bansal et al., Physical Properties Data Compilations Relevant to Energy Storage. II. Molten Salts: Data on Single and Multi-component Salt Systems. NSRDS-NBS-61. (1979)
  17. 17.
    C.W. Lan, S. Kou, Effects of rotation on heat transfer, fluid flow and interfaces in normal gravity floating-zone crystal growth. J. Cryst. Growth 114, 517–535 (1991)CrossRefGoogle Scholar
  18. 18.
    L.R. White, H.T. Davis, Thermal conductivity of molten alkali nitrates. J. Chem. Phys. 47, 5433–5439 (1967)CrossRefGoogle Scholar
  19. 19.
    AZo Network UK Ltd.,

Copyright information

© Springer Nature Singapore Pte Ltd. 2018

Authors and Affiliations

  1. 1.Department of Mechanical EngineeringIndian Institute of Technology GuwahatiGuwahatiIndia

Personalised recommendations