Skip to main content

Performance Evaluation of Solar–Biogas Hybrid Cold Storage System for Transient Storage of Horticultural Produce

  • Conference paper
  • First Online:
Concentrated Solar Thermal Energy Technologies

Part of the book series: Springer Proceedings in Energy ((SPE))

Abstract

Cold storage systems are predominantly used in production catchment area to minimize post harvesting losses for horticulture produce. Commercially available cold storage systems use huge amount of electricity and therefore are expensive. Renewable energy-based cold storage systems could be a clean, efficient, and cost-effective choice that can benefit farmers in rural areas, where electricity is scarce. We have developed a solar–biogas hybrid cold storage system that comprises of a vapour absorption machine (VAM), solar-evacuated tube collector (ETC) water heater, and solar photovoltaic module to meet the auxiliary power requirements. The system is integrated with all-brick masonry biogas plant of 50 m3/day capacity to supplement the energy requirement during non-sunshine hours. Three cold chambers, each of 2–3 MT storage capacities have been set up. A comprehensive performance evaluation of the VAM and ETC with heat pipe was carried out. The maximum coefficient of performance (COP) of hot water driven VAM was found to be 0.71 and maximum efficiency of the ETC with heat pipe system was calculated to be 46%. This system has the potential to store 6–8 ton of horticultural produce for a period of 2–3 weeks at the desired temperatures range of 12–16 °C.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. S.K. Maheshkumar, Non-conventional energy scenario and vision 2020 in India. ASM’s Int. E-J. Ongoing Res. Manag. IT E-ISSN-2320-0065 (2015)

    Google Scholar 

  2. K.R. Ullah, R. Saidur, H.W. Ping, R.K. Akikur, N.H. Shuvo, A review of solar thermal refrigeration and cooling methods. Renew. Sustain. Energy Rev. Elsevier 24, 499–513 (2013)

    Google Scholar 

  3. S. Rosiek, F.J. Batlles, Integration of the solar thermal energy in the construction: analysis of the solar-assisted air-conditioning system installed in CIESOL building. Renew. Energy Elsevier 34(6), 1423–1431 (2009)

    Google Scholar 

  4. M. Ortiz, H. Barsun, H. He, P. Vorobieff, A. Mammoli, Modeling of a solar-assisted HVAC system with thermal storage. Energy Build. Elsevier 42(4), 500–509 (2010)

    Google Scholar 

  5. M. Hidalgo, P.R. Aumente, M.I. Millán, A.L. Neumann, R.S. Mangual, Energy and carbon emission savings in Spanish housing air-conditioning using solar driven absorption system. Appl. Therm. Eng. Elsevier 28(14–15), 1734–44 (2008)

    Google Scholar 

  6. V. Siva Reddy, K. Sampath, A. Gokul Raj, C. Tilak, Solar refrigeration technology for on-farm transient storage. Res. Article Cooling India 10(7), 54–56 (2015)

    Google Scholar 

Download references

Acknowledgements

The present work was funded by “National Agricultural Science Fund (ICAR), Government of India”. The authors are also thankful to Dr. B.S. Pathak (Ex-Director, SPRERI) for his valuable advice in carrying out this work. The authors are also thankful to Dr. V. Siva Reddy (Ex-Head, solar energy division, SPRERI), Tilak Chavda (Ex-Senior Scientist, SPRERI) for their valuable guidance for this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sampath Kumar Gundu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Singapore Pte Ltd.

About this paper

Cite this paper

Gundu, S.K., Joshi, A., Raj, G., Vahora, S., Dubey, M., Shyam, M. (2018). Performance Evaluation of Solar–Biogas Hybrid Cold Storage System for Transient Storage of Horticultural Produce. In: Chandra, L., Dixit, A. (eds) Concentrated Solar Thermal Energy Technologies. Springer Proceedings in Energy. Springer, Singapore. https://doi.org/10.1007/978-981-10-4576-9_19

Download citation

  • DOI: https://doi.org/10.1007/978-981-10-4576-9_19

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-10-4575-2

  • Online ISBN: 978-981-10-4576-9

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics