Skip to main content

Performance Investigation of Lab-Scale Sensible Heat Storage System

  • Conference paper
  • First Online:
Concentrated Solar Thermal Energy Technologies

Abstract

This paper presents the theoretical investigation of heat storage characteristics and transient behaviour of a sensible heat storage (SHS) module of 10 MJ storage capacity designed for discharging the heat in the temperature range of 523–623 K for solar power plant applications. Thermal model of heat storage module in cylindrical configuration has been developed considering the heat transfer enhancement technique in the storage module by incorporating the axial fins on the discharging tube surfaces. High thermal conductivity (cast iron and cast steel) and low thermal conductivity (concrete) materials have been chosen as the SHS materials for the present analysis. Number of discharging tubes with axial fins over the tube periphery has been optimized based on the charging time.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

a :

Centre distance between adjacent tubes, (m)

b :

Thickness of fins on the HTF tubes, (m)

C ps :

Specific heat of SHS material, (J/kg K)

C pf :

Specific heat of heat transfer fluid, (J/kg K)

d :

Internal diameter of the HTF tubes, (m)

D :

Diameter of storage module, (m)

h :

Height of fins on the charging tubes, (m)

k s :

Thermal conductivity of SHS material, (W/m K)

L :

Length of SHS module, (m)

m :

Mass of SHS material, (kg)

n :

Number of HTF tubes

n fin :

Number of fins on a HTF tube

Q :

Heat storage capacity, (J)

t :

Discharging time, (s)

t eff :

Effective discharging time, (s)

T ini :

Initial temperature of storage system, (K)

T inlet :

HTF inlet temperature, (K)

T outlet :

HTF outlet Temperature, (K)

V :

Volume of storage material, (m3)

V min :

Minimum volume of storage material required to store 10 MJ, (m3)

ρ s :

Density of solid-state SHS material, (kg/m3)

ρ f :

Density of HTF, (kg/m3)

µ :

Dynamic viscosity of HTF, (Ns/m2)

η disch :

Discharging energy efficiency

\(\vec{v}\) :

Velocity of HTF, (m/s)

References

  1. Z. Yang, S.V. Garimella, Thermal analysis of solar thermal energy storage in a molten salt thermocline. Sol. Energy 84, 974–985 (2010)

    Article  Google Scholar 

  2. S. Khare, C. Knight, S. McGarry, Selection of materials for high temperature sensible energy storage. Sol. Energy Mater. Sol. Cells 115, 114–122 (2013)

    Article  Google Scholar 

  3. A. Fernandez, M. Martinez, M. Segarra, I. Martorel, F. Cabeza, Selection of materials with potential in sensible thermal energy storage. Sol. Energy Mater. Sol. Cells 94, 1723–1729 (2010)

    Article  Google Scholar 

  4. A. Gil, M. Medrano, F. Cabeza, State of the art on high temperature thermal energy storage for power generation, Part 1—concepts, materials and modellization. Renew. Sustain. Energy Rev. 14, 31–55 (2010)

    Article  Google Scholar 

  5. R. Tamme, D. Laing, W.D. Steinmann, Advanced thermal energy storage technology for parabolic trough. J. Sol. Energy Eng. 126, 794–800 (2004)

    Article  Google Scholar 

  6. D. Laing, W.D. Steinmann, R. Tamme, C. Richter, Solid media thermal storage for parabolic trough power plants. Sol. Energy 80, 1283–1289 (2006)

    Article  Google Scholar 

  7. D. Laing, C. Bahl, T. Bauer, D. Lehmann, Thermal energy storage for direct steam generation. Sol. Energy 85, 627–633 (2011)

    Article  Google Scholar 

  8. E. John, W.M. Hale, R.P. Selvam, Development of a high-performance concrete to store thermal energy for concentrating solar power plants, in Proceedings of the ASME 5th ICES Washington, DC, USA (2011)

    Google Scholar 

  9. F. Agyenim, P. Eames, M. Smyth, Heat transfer enhancement in medium temperature thermal energy storage system using a multi tube heat transfer array. Renew. Energy 35, 198–207 (2012)

    Article  Google Scholar 

  10. B.R. Nandi, S. Bandyopadhyay, R. Banerjee, Analysis of high temperature thermal energy storage for solar power plant, in IEEE Third International Conference on Sustainable Energy Technologies, Nepal (2012)

    Google Scholar 

  11. D. Sragovich, Transient analysis for designing and predicting operational performance of a high temperature sensible thermal energy storage system. Sol. Energy 43, 7–16 (1989)

    Article  Google Scholar 

  12. L. Miro, M.E. Navarro, P. Suresh, A. Gil, A.I. Fernandez, L.F. Cabeza, Experimental characterization of a solid industrial by product as material for high temperature sensible thermal energy storage (TES). Appl. Energy 113, 1261–1268 (2014)

    Article  Google Scholar 

  13. R. Anderson, S. Shiri, H. Bindra, J.F. Morris, Experimental results and modelling of energy storage and recovery in a packed bed of alumina particles. Appl. Energy 119, 521–529 (2014)

    Article  Google Scholar 

  14. L. Prasad, P. Muthukumar, Design and optimization of lab-scale sensible heat storage prototype for solar thermal power plant application. Sol. Energy 97, 217–229 (2013)

    Article  Google Scholar 

  15. H. Niyas, L. Prasad, P. Muthukumar, Performance investigation of high-temperature sensible heat thermal energy storage system during charging and discharging cycles. Clean Technol. Environ. Policy 17, 501–513 (2015)

    Article  Google Scholar 

  16. M.Y. Haller, C. Cruickshank, W. Streicher, S.J. Harrison, E. Anderson, S. Furbo, Methods to determine stratification efficiency of thermal storage processes—review and theoretical comparison. Sol. Energy 83, 1847–1860 (2009)

    Article  Google Scholar 

  17. Y. Tian, C.Y. Zhao, A review of solar collectors and thermal energy storage in solar thermal applications. Appl. Energy 104, 538–553 (2013)

    Article  Google Scholar 

Download references

Acknowledgements

The authors sincerely thank the Department of Science and Technology (DST), Government of India, for the financial support (Project No: DST/TM/SERI/2K10/53(G)).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Muthukumar Palanisamy .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Singapore Pte Ltd.

About this paper

Cite this paper

Rao, C.R.C., Niyas, H., Prasad, L., Palanisamy, M. (2018). Performance Investigation of Lab-Scale Sensible Heat Storage System. In: Chandra, L., Dixit, A. (eds) Concentrated Solar Thermal Energy Technologies. Springer Proceedings in Energy. Springer, Singapore. https://doi.org/10.1007/978-981-10-4576-9_16

Download citation

  • DOI: https://doi.org/10.1007/978-981-10-4576-9_16

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-10-4575-2

  • Online ISBN: 978-981-10-4576-9

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics