Advertisement

Nanotechnology pp 177-226 | Cite as

Nanomaterials for Delivery of Nutrients and Growth-Promoting Compounds to Plants

  • Josef Jampílek
  • Katarína Kráľová
Chapter

Abstract

Nanotechnology is a rapidly expanding field that affords the development of materials in nanoscale dimensions that have unique properties and a wide spectrum of applications. Nanomaterials can be found more frequently in agriculture and the food sector. The application of nanomaterials for delivery of nutrients and growth-promoting compounds to plants has become more and more popular, and their utilization at the proper place, at the proper time, in the proper amount and of the proper composition emends the efficacy of fertilizers. This contribution reviews the potential application of various nanocarriers used for delivery of N, P and K macronutrients and plant growth-stimulating nanoscale essential metals nutrients (Fe, Zn, Cu, Mn, Co) as well as carbon-based (single- and multiwalled carbon nanotubes) and non-essential metal (Ti, Ag, Au, Ce, Al)- and metalloid (Si, Se)-based nanomaterials showing beneficial effects on plant growth that could be used in agricultural practice.

Keywords

Carbon nanomaterials Clays Fertilizers Metalloids Metals Nanoparticles Nutrients 

References

  1. Abdel-Aziz HMM, Hasaneen MNA, Omer AM (2016) Nano chitosan-NPK fertilizer enhances the growth and productivity of wheat plants grown in sandy soil. Span J Agric Res 14:e0902CrossRefGoogle Scholar
  2. Adhikari T, Kundu S, Biswas AK, Tarafdar JC, Rao AS (2012) Effect of copper oxide nano particle on seed germination of selected crops. J Agric Sci Technol A 2:815–823Google Scholar
  3. Adhikari T, Kundu S, Rao AS (2013) Impact of SiO2 and Mo nano particles on seed germination of rice (Oryza sativa L.). Int J Agric Food Sci Technol 4:809–816Google Scholar
  4. Adhikari T, Kundu S, Rao AS (2016a) Zinc delivery to plants through seed coating with nano-zinc oxide particles. J Plant Nutr 39:139–149Google Scholar
  5. Adhikari T, Sarkar D, Mashayekhi H, Xing BS (2016b) Growth and enzymatic activity of maize (Zea mays L.) plant: solution culture test for copper dioxide nano particles. J Plant Nutr 39:102–118Google Scholar
  6. Alidoust D, Isoda A (2013) Effect of gamma Fe2O3 nanoparticles on photosynthetic characteristic of soybean (Glycine max (L.) Merr.): foliar spray versus soil amendment. Acta Physiol Plant 35:3365–3375CrossRefGoogle Scholar
  7. Alipour ZT (2016) The effect of phosphorus and sulfur nanofertilizers on the growth and nutrition of Ocimum basilicum in response to salt stress. J Chem Health Risks 6:125–131Google Scholar
  8. Almeelbi T, Bezbaruah A (2014) Nanoparticle-sorbed phosphate: iron and phosphate bioavailability studies with Spinacia oleracea and Selenastrum capricornutum. ACS Sustain Chem Eng 2:1625–1632CrossRefGoogle Scholar
  9. Almutairi ZM (2016a) Influence of silver nano-particles on the salt resistance of tomato (Solanum lycopersicum) during germination. Int J Agric Biol 18:449–457CrossRefGoogle Scholar
  10. Almutairi ZM (2016b) Effect of nano-silicon application on the expression of salt tolerance genes in germinating tomato (Solanum lycopersicum L.) seedlings under salt stress. Plant Omics J 9:106–114Google Scholar
  11. Antisari LV, Carbone S, Gatti A, Vianello G, Nannipieri P (2015) Uptake and translocation of metals and nutrients in tomato grown in soil polluted with metal oxide (CeO2, Fe3O4, SnO2, TiO2) or metallic (Ag, Co, Ni) engineered nanoparticles. Environ Sci Pollut Res 22:1841–1853CrossRefGoogle Scholar
  12. Arora S, Sharma P, Kumar S, Nayan R, Khanna PK, Zaidi MGH (2012) Gold-nanoparticle induced enhancement in growth and seed yield of Brassica juncea. Plant Growth Regul 66:303–310CrossRefGoogle Scholar
  13. Auffan M, Rose J, Bottero JY, Lowry GV, Jolivet JP, Wiesner MR (2009) Towards a definition of inorganic nanoparticles from an environmental, health and safety perspective. Nat Nanotechnol 4:634–641PubMedCrossRefGoogle Scholar
  14. Aydinalp C, Marinova S (2009) The effects of heavy metals on seed germination and plant growth on alfalfa plant (Medicago sativa). Bulg J Agric Sci 15:347–350Google Scholar
  15. Azimi R, Borzelabad MJ, Feizi H, Azimi A (2014) Interaction of SiO2 nanoparticles with seed prechilling on germination and early seedling growth of tall wheatgrass (Agropyron elongatum L.). Pol J Chem Technol 16:25–29CrossRefGoogle Scholar
  16. Aziz N, Faraz M, Pandey R, Sakir M, Fatma T, Varma A, Barman I, Prasad R (2015) Facile algae-derived route to biogenic silver nanoparticles: synthesis, antibacterial and photocatalytic properties. Langmuir 31:11605–11612PubMedCrossRefGoogle Scholar
  17. Aziz N, Pandey R, Barman I, Prasad R (2016) Leveraging the attributes of Mucor hiemalis-derived silver nanoparticles for a synergistic broad-spectrum antimicrobial platform. Front Microbiol 7:1984. doi: 10.3389/fmicb.2016.01984
  18. Basak BB, Pal S, Datta SC (2012) Use of modified clays for retention and supply of water and nutrients. Curr Sci 102:1272–1278Google Scholar
  19. Bashir K, Takahashi R, Nakanishi H, Nishizawa NK (2013) The road to micronutrient biofortification of rice: progress and prospects. Front Plant Sci 4:15–17PubMedPubMedCentralCrossRefGoogle Scholar
  20. Bashmakov DI, Lukatkin AS, Revin VV, Duchovskis P, Brazaitytë A, Baranauskis K (2005) Growth of maize seedlings affected by different concentrations of heavy metals. Ekologija 3:22–27Google Scholar
  21. Baskar V, Venkatesh J, Park SW (2015) Impact of biologically synthesized silver nanoparticles on the growth and physiological responses in Brassica rapa ssp pekinensis. Environ Sci Pollut Res 22:17672–17682CrossRefGoogle Scholar
  22. Becana M, Moran JF, Iturbe-Ormaetxe I (1998) Iron dependent oxygen free radical generation in plants subjected to environmental stresses: toxicity and antioxidants. Plant Soil 201:137–147CrossRefGoogle Scholar
  23. Begum P, Fugetsu B (2012) Phytotoxicity of multi-walled carbon nanotubes on red spinach (Amaranthus tricolor L) and the role of ascorbic acid as an antioxidant. J Hazard Mater 243:212–222PubMedCrossRefGoogle Scholar
  24. Begum P, Ikhtiari R, Fugetsu B, Matsuoka M, Akasaka T, Watari F (2012) Phytotoxicity of multi-walled carbon nanotubes assessed by selected plant species in the seedling stage. Appl Surf Sci 262:120–124CrossRefGoogle Scholar
  25. Berahmand AA, Panahi AG, Sahabi H, Feizi H, Moghaddam PR, Shahtahmassebi N, Fotovat A, Karimpour H, Gallehgir O (2012) Effects silver nanoparticles and magnetic field on growth of fodder maize (Zea mays L.) Biol Trace Elem Res 149:419–424PubMedCrossRefGoogle Scholar
  26. Berber MR, Hafez IH, Minagawa K, Mori T (2014) A sustained controlled release formulation of soil nitrogen based on nitrate-layered double hydroxide nanoparticle material. J Soils Sediments 14:60–66CrossRefGoogle Scholar
  27. Berkner S, Schwirn K, Voelker D (2016) Nanopharmaceuticals: tiny challenges for the environmental risk assessment of pharmaceuticals. Environ Toxicol Chem 35:780–787PubMedCrossRefGoogle Scholar
  28. Bhardwaj D, Sharma P, Sharma M, Tomar R (2014) Removal and slow release studies of phosphate on surfactant loaded hydrothermally synthesized silicate nanoparticles. J Taiwan Inst Chem E 4:2649–2658CrossRefGoogle Scholar
  29. Bi D, Liu S, Liu Y, Yin X (2010) Preparation of selenium-rich Chinese cabbage using selenium nanoparticle containing nutrient. CN Patent 101734971. 16 June 2010Google Scholar
  30. Biederman LA, Harpole WS (2013) Biochar and its effects on plant productivity and nutrient cycling: a meta-analysis. GCB Bioenergy 5:202–214CrossRefGoogle Scholar
  31. Binder BM, Rodriguez FI, Bleecker AB, Patterson SE (2007) The effects of group 11 transition metals, including gold, on ethylene binding to the ETR1 receptor and growth of Arabidopsis thaliana. FEBS Lett 581:5105–5109PubMedCrossRefGoogle Scholar
  32. Bindraban PS, Dimkpa C, Nagarajan L, Roy A, Rudy Rabbinge R (2015) Revisiting fertilisers and fertilisation strategies for improved nutrient uptake by plants. Biol Fertil Soils 51:897–911CrossRefGoogle Scholar
  33. Borges R, Brunatto SF, Leitao AA, de Carvalho GSG, Wypych F (2015) Solid-state mechanochemical activation of clay minerals and soluble phosphate mixtures to obtain slow-release fertilizers. Clay Miner 50:153–162CrossRefGoogle Scholar
  34. Borm PJA, Robbins D, Haubold S, Kuhlbusch T, Fissan H, Donaldson K, Schins R, Stone V, Kreyling W, Lademann J, Krutmann J, Warheit D, Oberdoster E (2006) The potential risks of nanomaterials: a review carried out for ECETOC. Part. Fibre Toxicol 3:11CrossRefGoogle Scholar
  35. Bortolin A, Aouada FA, Mattoso LHC, Ribeiro C (2013) Nanocomposite PAAm/methyl cellulose/montmorillonite hydrogel: evidence of synergistic effects for the slow release of fertilizers. J Agric Food Chem 61:7431–7439PubMedCrossRefGoogle Scholar
  36. Brackhage C, Schaller J, Bäucker E, Dudel EG (2013) Silicon availability affects the stoichiometry and content of calcium and micro nutrients in the leaves of common reed. Silicon 5:199–204CrossRefGoogle Scholar
  37. Brayner R, Fiévet F, Coradin T (2013) Nanomaterials: a danger or a promise? A chemical and biological perspective. Springer, LondonCrossRefGoogle Scholar
  38. Burke DJ, Zhu S, Pablico-Lansigan MP, Hewins CR, Samia ACS (2014) Titanium oxide nanoparticle effects on composition of soil microbial communities and plant performance. Biol Fertil Soils 50:1169–1173CrossRefGoogle Scholar
  39. Burklew CE, Ashlock J, Winfrey WB, Zhang B (2012) Effects of aluminum oxide nanoparticles on the growth, development, and microRNA expression of tobacco (Nicotiana tabacum). PLoS One 7:e34783PubMedPubMedCentralCrossRefGoogle Scholar
  40. Burman U, Saini M, Kumar P (2013) Effect of zinc oxide nanoparticles on growth and antioxidant system of chickpea seedlings. Toxicol Environ Chem 95:605–612CrossRefGoogle Scholar
  41. Buzea C, Pacheco I, Robbie K (2007) Nanomaterials and nanoparticles: sources and toxicity. Biointerphases 2:MR17–MR71PubMedCrossRefGoogle Scholar
  42. Canas JE, Long MQ, Nations S, Vadan R, Dai L, Luo MX, Ambikapathi R, Lee EH, Olszyk D (2008) Effects of functionalized and nonfunctionalized single-walled carbon nanotubes on root elongation of select crop species. Environ Toxicol Chem 27:1922–1931PubMedCrossRefGoogle Scholar
  43. Carvajal MF, Martínez-Sánchez F, Alcaraz CF (1994) Effect of Ti on some physiological activity indicators of Capsicum annuum L. plants. J Hortic Sci 69:427–432CrossRefGoogle Scholar
  44. Černíková A, Opatřilová R, Jampílek J (2014) Rapid informative screening of nano-alaptide as potential transdermal permeation enhancer of acetylsalicylic acid and paracetamol. Mil Med Sci Lett 83:34–39Google Scholar
  45. Černíková A, Dohnal J, Jampílek J (2015) Permeation of indomethacin through skin using nanonized alaptide. ADMET DMPK 3:344–350CrossRefGoogle Scholar
  46. Chakravarty D, Erande MB, Late DJ (2015) Graphene quantum dots as enhanced plant growth regulators: effects on coriander and garlic plant. J Sci Food Agric 95:2772–2778PubMedCrossRefGoogle Scholar
  47. Charitidis CA, Georgiou P, Koklioti MA, Trompeta AF, Markakis V (2014) Manufacturing nanomaterials: from research to industry. Manuf Rev 1:11Google Scholar
  48. Chaudhry Q, Castle L (2011) Food applications of nanotechnologies: an overview of opportunities and challenges for developing countries. Trends Food Sci Technol 22:595–603CrossRefGoogle Scholar
  49. Chellaram C, Murugaboopathi G, John AA, Sivakumar R, Ganesan S, Krithika S, Priya G (2014) Significance of nanotechnology in food industry. APCBEE Procedia 8:109–113CrossRefGoogle Scholar
  50. Chen H, Seiber JN, Hotze M (2014) ACS select on nanotechnology in food and agriculture: a perspective on implications and applications. J Agric Food Chem 62:1209–1212PubMedCrossRefGoogle Scholar
  51. Chen GS, Qiu JL, Liu Y, Jiang RF, Cai SY, Liu Y, Zhu F, Zeng F, Luan TG, Ouyang GF (2015) Carbon nanotubes act as contaminant carriers and translocate within plants. Sci Rep 5:15682Google Scholar
  52. Cheng G, Cheng J (2010) Nanosize selenium-rich compound fertilizer for promoting longevity of house flowering plants. CN Patent 101851136. 6 Oct 2010Google Scholar
  53. Clement L, Hurel C, Marmier N (2013) Toxicity of TiO2 nanoparticles to cladocerans, algae, rotifers and plants – effects of size and crystalline structure. Chemosphere 90:1083–1090PubMedCrossRefGoogle Scholar
  54. Coles D, Frewer LJ (2013) Nanotechnology applied to European food production: a review of ethical and regulatory issues. Trends Food Sci Technol 34:32–43CrossRefGoogle Scholar
  55. Corradini E, de Moura MR, Mattoso LHC (2010) A preliminary study of the incorporation of NPK fertilizer into chitosan nanoparticles. Express Polym Lett 4:509–515CrossRefGoogle Scholar
  56. Corral-Diaz B, Peralta-Videa JR, Alvarez-Parrilla E, Rodrigo-García J, Morales MI, Osuna-Avila P, Niu G, Hernandez-Viezcas JA, Gardea-Torresdey JL (2014) Cerium oxide nanoparticles alter the antioxidant capacity but do not impact tuber ionome in Raphanus sativus (L). Plant Physiol Biochem 84:277–285PubMedCrossRefGoogle Scholar
  57. Cui D, Zhang P, Ma YH, He X, Li YY, Zhao YC, Zhang ZY (2014) Phytotoxicity of silver nanoparticles to cucumber (Cucumis sativus) and wheat (Triticum aestivum). J Zhejiang Univ Sci A 15:662–670CrossRefGoogle Scholar
  58. Cui JL, Cui LY, Cheng FP, Liu LJ, Sun HL, Li S, Wen ZS, Sun JC (2015) A green route for preparation of low surface area SiO2 microspheres from wheat straw ash with activated carbon and NPK compound fertilizer as by-products. RSC Adv 5:80238–80244CrossRefGoogle Scholar
  59. Czerpak R, Bajguz A, Chodkowski K, Popow H (1994) Influence of nickel and cobalt on the growth and biochemical changes of Chlorella pyrenoidosa (Chlorophyceae). Pol Arch Hydrobiol 41:161–169Google Scholar
  60. De Jong WH, Borm PJ (2008) Drug delivery and nanoparticles: applications and hazards. Int J Nanomedicine 3:133–149PubMedPubMedCentralCrossRefGoogle Scholar
  61. Dehkourdi EH, Mosavi M (2013) Effect of anatase nanoparticles (TiO2) on parsley seed germination (Petroselinum crispum) in vitro. Biol Trace Elem Res 155:283–286PubMedCrossRefGoogle Scholar
  62. Delfani M, Firouzabadi MB, Farrokhi N, Makarian H (2014) Some physiological responses of black-eyed pea to iron and magnesium nanofertilizers. Commun Soil Sci Plant Anal 45:530–540CrossRefGoogle Scholar
  63. Dhoke SK, Mahajan P, Kamble R, Khanna A (2013) Effect of nanoparticles suspension on the growth of mung (Vigna radiata) seedlings by foliar spray method. Nanotechnol Dev 3:e1CrossRefGoogle Scholar
  64. Diatloff E, Smith FW, Asher CJ (1995a) Rare-earth elements and plant growth. 2. Responses of corn and mungbean to low concentrations of lanthanum in dilute, continuously flowing nutrient solutions. J Plant Nutr 18:1977–1989CrossRefGoogle Scholar
  65. Diatloff E, Smith FW, Asher CJ (1995b) Rare-earth elements and plant growth. 3. Responses of corn and mungbean to low concentrations of cerium in dilute, continuously flowing nutrient solutions. J Plant Nutr 18:1991–2003CrossRefGoogle Scholar
  66. Dolez PI (2015) Nanoengineering: global approaches to health and safety issues. Elsevier, AmsterdamGoogle Scholar
  67. Domokos-Szabolcsy E, Marton L, Sztrik A, Babka B, Prokisch J, Fari M (2012) Accumulation of red elemental selenium nanoparticles and their biological effects in Nicotinia tabacum. Plant Growth Regul 68:525–531CrossRefGoogle Scholar
  68. Ekinci M, Dursun A, Yildirim E, Parlakova F (2014) Effects of nanotechnology liquid fertilizers on the plant growth and yield of cucumber (Cucumis sativus L.) Acta Sci Pol Hortorum Cultus 13:135–141Google Scholar
  69. El-Batal AI, Gharib FA, Ghazi SM, Hegazi AZ, AbdEl Hafz AGM (2016) Physiological responses of two varieties of common bean (Phaseolus vulgaris L.) to foliar application of silver nanoparticles. Nanomater Nanotechnol 6:13CrossRefGoogle Scholar
  70. Elfeky SA, Mohammed MA, Khater MS, Osman YAH, Elsherbini E (2013) Effect of magnetite nano-fertilizer on growth and yield of Ocimum basilicum L. Int J Indig Med Plants 46:1286–1293Google Scholar
  71. El-Kereti MA, El-feky SA, Khater MS, Osman YA, El-Sherbini EA (2013) ZnO nanofertilizer and He Ne laser irradiation for promoting growth and yield of sweet basil plant. Recent Pat Food Nutr Agric 5:169–181PubMedCrossRefGoogle Scholar
  72. El-Ramady H, Domokos-Szabolcsy E, Abdalla NA, Alshaal TA, Shalaby TA, Sztrik A, Prokisch J, Fari M (2014) Selenium and nano-selenium in agroecosystems. Environ Chem Lett 12:495–510CrossRefGoogle Scholar
  73. El-Sheekh MM, El-Naggar AH, Osman MEH, El-Mazaly E (2003) Effects of Co2+ in the algae Monoraphidium minutum and Nitzschia perminuta. Braz J Plant Physiol 15:159–166CrossRefGoogle Scholar
  74. European Commission (2008) Definition of a nanomaterial. http://ec.europa.eu/environment/chemicals/nanotech/faq/definition_en.htm. Accessed 30 May 2016
  75. Fan LL, Wang YH, Shao XW, Geng YQ, Wang ZC, Ma Y, Liu J (2012) Effects of combined nitrogen fertilizer and nano-carbon application on yield and nitrogen use of rice grown on saline-alkali soil. J Food Agric Environ 10:558–562Google Scholar
  76. Feizi H, Moghaddam PR, Shahtahmassebi N, Fotovat A (2012) Impact of bulk and nanosized titanium dioxide (TiO2) on wheat seed germination and seedling growth. Biol Trace Elem Res 146:101–106PubMedCrossRefGoogle Scholar
  77. Feizi H, Kamali M, Jafari L, Rezvani Moghaddam P (2013) Phytotoxicity and stimulatory impacts of nanosized and bulk titanium dioxide on fennel (Foeniculum vulgare Mill). Chemosphere 91:506–511PubMedCrossRefGoogle Scholar
  78. Foy CD (1984) Physiological effects of hydrogen, aluminum, and manganese toxicities in acid soil. In: Adams F (ed) Soil acidity and liming, 2nd edn. American Society of Agronomy, Madison, pp 57–97Google Scholar
  79. Franci GL, Falanga AR, Galdiero S, Palomba L, Rai M, Morelli G, Galdiero M (2015) Silver nanoparticles as potential antibacterial agents. Molecules 20:8856–8874PubMedCrossRefGoogle Scholar
  80. Fröhlich E (2013) Cellular targets and mechanisms in the cytotoxic action of non-biodegradable engineered nanoparticles. Curr Drug Metab 14:976–988PubMedPubMedCentralCrossRefGoogle Scholar
  81. Gao FQ, Liu C, Qu CX, Zheng L, Yang F, Su MG, Hong FH (2008) Was improvement of spinach growth by nano-TiO2 treatment related to the changes of Rubisco activase? Biometals 21:211–221PubMedCrossRefGoogle Scholar
  82. Garcia M, Forbe T, Gonzalez E (2010) Potential applications of nanotechnology in the agro-food sector. Food Sci Technol 30:573–581Google Scholar
  83. Ghafariyan MH, Malakouti MJ, Dadpour MR, Stroeve P, Mahmoudi M (2013) Effects of magnetite nanoparticles on soybean chlorophyll. Environ Sci Technol 47:10645–10652PubMedGoogle Scholar
  84. Ghanati F, Morita A, Yokota H (2005) Effects of aluminum on the growth of tea plant and activation of antioxidant system. Plant Soil 276:133–141CrossRefGoogle Scholar
  85. Ghodake G, Seo YD, Park DH, Lee DS (2010) J Nanoelectron Optoelectron 5:157–160CrossRefGoogle Scholar
  86. Ghorbanpour M, Hadian J (2015) Multi-walled carbon nanotubes stimulate callus induction, secondary metabolites biosynthesis and antioxidant capacity in medicinal plant Satureja khuzestanica grown in vitro. Carbon 94:749–759CrossRefGoogle Scholar
  87. Ghormade V, Deshpande MV, Paknikar KM (2011) Perspectives for nano-biotechnology enabled protection and nutrition of plants. Biotechnol Adv 29:792–803PubMedCrossRefGoogle Scholar
  88. Giroto AS, Fidélis SC, Ribeiro C (2015) Controlled release from hydroxyapatite nanoparticles incorporated into biodegradable, soluble host matrixes. RSC Adv 5:104179–104186CrossRefGoogle Scholar
  89. Gomez-Garay A, Pintos B, Antonio MJ, Lobo C, Villalobos N, Martin L (2014) Uptake of CeO2 nanoparticles and its effect on growth of Medicago arborea in vitro plantlets. Biol Trace Elem Res 161:143–150PubMedCrossRefGoogle Scholar
  90. Guan J, Liu GL, Cai K, Gao CZ, Liu RT (2015) Probing the interactions between carboxylated multi-walled carbon nanotubes and copper-zinc superoxide dismutase at a molecular level. Luminiscence 30:693–698CrossRefGoogle Scholar
  91. Guerinot ML, Yi Y (1994) Iron: nutritious, noxious, and not readily available. Plant Physiol 104:815–820PubMedPubMedCentralCrossRefGoogle Scholar
  92. Gui X, Deng Y, Rui Y, Gao B, Luo W, Chen S, Nhan le V, Li X, Liu S, Han Y, Liu L, Xing B (2015) Response difference of transgenic and conventional rice (Oryza sativa) to nanoparticles (gamma Fe2O3). Environ Sci Pollut Res 22:17716–17723CrossRefGoogle Scholar
  93. Gusev AA, Kudrinsky AA, Zakharova OV, Klimov AI, Zherebin PM, Lisichkin GV, Vasyukova IA, Denisov AN, Krutyakov YA (2016) Versatile synthesis of PHMB-stabilized silver nanoparticles and their significant stimulating effect on fodder beet (Beta vulgaris L.) Mater Sci Eng C Mater Biol Appl 62:152–159CrossRefGoogle Scholar
  94. Hafeez A, Razzaq A, Mahmood T, Jhanzab HM (2015) Potential of copper nanoparticles to increase growth and yield of wheat. J Nanosci Adv Technol 1:6–11Google Scholar
  95. Haghighi M, Pessarakli M (2013) Influence of silicon and nano-silicon on salinity tolerance of cherry tomatoes (Solanum lycopersicum L.) at early growth stage. Sci Hortic 161:111–117CrossRefGoogle Scholar
  96. Haghighi M, Heidarian S, da Silva JAT (2012) The effect of titanium amendment in N-withholding nutrient solution on physiological and photosynthesis attributes and micronutrient uptake of tomato. Biol Trace Elem Res 150:381–390PubMedCrossRefGoogle Scholar
  97. Haghighi M, Abolghasemi R, da Silva JAT (2014) Low and high temperature stress affect the growth characteristics of tomato in hydroponic culture with Se and nano-Se amendment. Sci Hortic 178:231–240CrossRefGoogle Scholar
  98. Hanif HU, Arshad M, Ali MA, Ahmed N, Qazi IA (2015) Phyto-availability of phosphorus to Lactuca sativa in response to soil applied TiO2 nanoparticles. Pak J Agric Sci 52:177–182Google Scholar
  99. Hartikainen H, Xue T, Piironen V (2000) Selenium as an antioxidant and pro-oxidant in ryegrass. Plant Soil 225:193–200CrossRefGoogle Scholar
  100. Hassan F, Shahram A, Farzin A, Saeed JP (2013) Comparative effects of nanosized and bulk titanium dioxide concentrations on medicinal plant Salvia officinalis L. Ann Rev Res Biol 3:814–824Google Scholar
  101. Hatami M, Ghorbanpour M (2013) Effect of nanosilver on physiological performance of pelargonium plants exposed to dark storage. J Hortic Res 21:15–20CrossRefGoogle Scholar
  102. Hazeem LJ, Waheed FA, Rashdan S, Bououdina M, Brunet L, Slomianny C, Boukherroub R, Elmeselmani WA (2015) Effect of magnetic iron oxide (Fe3O4) nanoparticles on the growth and photosynthetic pigment content of Picochlorum sp. Environ Sci Pollut Res 22:11728–11739CrossRefGoogle Scholar
  103. Hendry GAF, Brocklebank KJ (1985) Iron-induced oxygen radical metabolism in waterlogged plants. New Phytol 101:199–206CrossRefGoogle Scholar
  104. Hong FH, Zhou J, Liu C, Yang F, Wu C, Zheng L, Yang P (2005) Effect of nano-TiO2 on photochemical reaction of chloroplasts of spinach. Biol Trace Elem Res 105:269–279PubMedCrossRefGoogle Scholar
  105. Hosseini HR, Chehrazi M, Dehkourdi EH, Hosseini M (2013) Application of anatase nanoparticles (TiO2) on strawberry seed germination (Fragaria ananassa L.). Adv Hortic Sci 27:143–146Google Scholar
  106. Hrubý M, Cígler P, Kuzel S (2002) Titanium in plant nutrition: the contribution to understanding the mechanism of titanium action in plants. J Plant Nutr 25:577–598CrossRefGoogle Scholar
  107. Husen A, Siddiqi KS (2014) Carbon and fullerene nanomaterials in plant system. J Nanobiotechnol 12:16CrossRefGoogle Scholar
  108. Hussain HI, Yi ZF, Rookes JE, Kong LXX, Cahill DM (2013) Mesoporous silica nanoparticles as a biomolecule delivery vehicle in plants. J Nanopart Res 15:1676CrossRefGoogle Scholar
  109. Hussien MM, El-Ashry SM, Haggag WM, Mubarak DM (2015) Response of mineral status to nano-fertilizer and moisture stress during different growth stages of cotton plants. Int J ChemTech Res 8:643–650Google Scholar
  110. Iijima S, Yudasaka M, Yamada R, Bandow S, Suenaga K, Kokai F, Takahashi K (1999) Nano-aggregates of single-walled graphitic carbon nano-horns. Chem Phys Lett 309:165–170CrossRefGoogle Scholar
  111. Jain V, Nainawatee HS (2000) Cobalt reduces nitrate inhibition of nodulation in mungbean (Vigna radiata). Biol Fertil Soils 31:522–524CrossRefGoogle Scholar
  112. Jampílek J, Kráľová K (2015) Application of nanotechnology in agriculture and food industry, its prospects and risks. Ecol Chem Eng 22:321–361Google Scholar
  113. Jampílek J, Kráľová K (2017a) Nano-antimicrobials: activity, benefits and weaknesses. In: Grumezescu AM (ed) Nanostructures in therapeutic medicine, Nanostructures for antimicrobial therapy, vol 2. Elsevier, London. Chapter 2, in pressGoogle Scholar
  114. Jampílek J, Kráľová K (2017b) Application of nanobioformulations for controlled release and targeted biodistribution of drugs. In: Keservani RK (ed) Recent advances and applications of nanobiomaterials. CRC Press, Boca Raton. Chapter 5, in pressGoogle Scholar
  115. Jampílek J, Kráľová K (2017c) Impact of nanoparticles on living organisms and human health. In: Nalwa HS (ed) Encyclopedia of nanoscience and nanotechnology. American Scientific Publishers, Valencia. in pressGoogle Scholar
  116. Jampílek J, Kráľová K (2017d) Nanopesticides: preparation, targeting and controlled release. In: Grumezescu AM (ed) Nanotechnology in food industry, New Pesticides and soil sensors, vol 10. Elsevier, London. Chapter 4, pp 81–127Google Scholar
  117. Jampílek J, Opatřilová R, Coufalová L, Černíková A, Dohnal J (2013) Utilization of alaptide as transdermal penetration modifier in pharmaceutical compositions for human and veterinary applications containing anti-inflammatory drugs and/or antimicrobial chemotherapeutics. WO2013020527 A1. 14 Feb 2013Google Scholar
  118. Jampílek J, Opatřilová R, Řezáčová A, Oktábec Z, Dohnal J (2014) Alaptide: methods of effecting its solubility, membrane permeation and pharmaceutical compositions for human and/or veterinary applications. WO2014019556 A1. 6 Feb 2014Google Scholar
  119. Jampílek J, Záruba K, Oravec M, Kuneš M, Babula P, Ulbrich P, Brezaniová I, Opatřilová R, Tříska J, Suchý P (2015) Preparation of silica nanoparticles loaded with nootropics and their in vivo permeation through blood–brain barrier. Biomed Res Int 2015:812673PubMedPubMedCentralGoogle Scholar
  120. Janmohammadi M, Sabaghnia N (2015) Effect of pre-sowing seed treatments with silicon nanoparticles on germinability of sunflower (Helianthus annuus). Bot Lith 21:13–21Google Scholar
  121. Janrao K, Gadhave MV, Banerjee SK, Gaikwad DD (2014) Nanoparticle induced nanotoxicity: an overview. Asian J Biomed Pharm Sci 4:1–7CrossRefGoogle Scholar
  122. Jeyasubramanian K, Thoppey UUG, Hikku GS, Selvakumar N, Subramania A, Krishnamoorthy K (2016) Enhancement in growth rate and productivity of spinach grown in hydroponics with iron oxide nanoparticles. RSC Adv 6:15451–15459CrossRefGoogle Scholar
  123. Jiang W, Liu D, Liu X (2001) Effects of copper on root growth, cell division, and nucleolus of Zea mays. Biol Plant 44:105–109CrossRefGoogle Scholar
  124. Jiao J, Li CZ, Huang GB (2006a) Protective effects and their mechanisms of cobalt on soybean seedling’s leaf under drought stress. Chin J Appl Ecol 17:796–800Google Scholar
  125. Jiao J, Li CZ, Huang GB (2006b) The protective effects of ethylene production inhibitors on Vicia faba seedling leaves under heat stress. J Plant Ecol 30:465–471CrossRefGoogle Scholar
  126. Joseph S, Anawar HM, Storer P, Blackwell P, Chia C, Lin Y, Munroe P, Donne S, Horvat J, Wang JL, Solaiman ZM (2015) Effects of enriched biochars containing magnetic iron nanoparticles on mycorrhizal colonisation, plant growth, nutrient uptake and soil quality improvement. Pedosphere 25:749–760CrossRefGoogle Scholar
  127. Juhel G, Batisse E, Hugues Q, Daly D, van Pelt FN, O'Halloran J, Jansen MA (2011) Alumina nanoparticles enhance growth of Lemna minor. Aquat Toxicol 105:328–336PubMedCrossRefGoogle Scholar
  128. Kalteh M, Alipour ZT, Ashraf S, Aliabadi MM, Nosratabadi AF (2014) Effect of silica nanoparticles on basil (Ocimum basilicum) under salinity stress. J Chem Health Risks 4:49–55Google Scholar
  129. Kalyanaraman SB, Sivagurunathan P (1993) Effect of cadmium, copper, and zinc on the growth of blackgram. J Plant Nutr 16:2029–2042CrossRefGoogle Scholar
  130. Kampeerapappun P, Phanomkate N (2013) Slow release fertilizer from core-shell electrospun fibers. Chiang Mai J Sci 40:775–782Google Scholar
  131. Karimi J, Mohsenzadeh S (2016) Effects of silicon oxide nanoparticles on growth and physiology of wheat seedlings. Russ J Plant Physiol 63:119–123CrossRefGoogle Scholar
  132. Karimi N, Minaei S, Almassi M, Shahverdi AR (2012) Application of silver nano-particles for protection of seeds in different soils. Afr J Agric Res 7:1863–1869CrossRefGoogle Scholar
  133. Karunakaran G, Suriyaprabha R, Manivasakan P, Yuvakkumar R, Rajendran V, Prabu P, Kannan N (2013) Effect of nanosilica and silicon sources on plant growth promoting rhizobacteria, soil nutrients and maize seed germination. IET Nanobiotechnol 7:70–77PubMedCrossRefGoogle Scholar
  134. Kasuya D, Yudasaka M, Takahashi K, Kokai F, Iijima S (2002) Selective production of single-wall carbon nanohorn aggregates and their formation mechanism. J Phys Chem B 106:4947–4951CrossRefGoogle Scholar
  135. Kaur N, Sharma S, Kaur S, Nayyar H (2014) Selenium in agriculture: a nutrient or contaminant for crops? Arch Agron Soil Sci 60:1593–1624CrossRefGoogle Scholar
  136. Kaveh R, Li YS, Ranjbar S, Tehrani R, Brueck CL, Van Aken B (2013) Changes in Arabidopsis thaliana gene expression in response to silver nanoparticles and silver ions. Environ Sci Technol 47:10637–10644PubMedCrossRefGoogle Scholar
  137. Khodakovskaya MV, de Silva K, Biris AS, Dervishi E, Villagarcia H (2012) Carbon nanotubes induce growth enhancement of tobacco cells. ACS Nano 6:2128–2135PubMedCrossRefGoogle Scholar
  138. Khodakovskaya MV, Kim BS, Kim JN, Alimohammadi M, Dervishi E, Mustafa T, Cernigla CE (2013) Carbon nanotubes as plant growth regulators: effects on tomato growth, reproductive system, and soil microbial community. Small 9:115–123PubMedCrossRefGoogle Scholar
  139. Kidd PS, Proctor J (2000) Effects of aluminium on the growth and mineral composition of Betula pendula Roth. J Exp Bot 51:1057–1066PubMedCrossRefGoogle Scholar
  140. Kim HS, Kang HS, Chu GJ, Byun HS (2008) Antifungal effectiveness of nanosilver colloid against rose powdery mildew in greenhouses. Solid State Phenom 135:15–18CrossRefGoogle Scholar
  141. Kim JH, Oh Y, Yoon H, Hwang I, Chang YS (2015) Iron nanoparticle-induced activation of plasma membrane H+-ATPase promotes stomatal opening in Arabidopsis thaliana. Environ Sci Technol 49:1113–1119PubMedCrossRefGoogle Scholar
  142. Kinraide TB (1993) Aluminium enhancement of plant growth in acid rooting media. A case of reciprocal alleviation of toxicity by two toxic cations. Physiol Plant 88:619–625CrossRefGoogle Scholar
  143. Kisan B, Shruthi NK, Sharanagoud AH, Revanappa SB, Ramachandra R, Hosmani AC, Bheemann AN, Pramod (2015) Effect of nano zinc oxide on the leaf physical and nutritional quality of spinach. Bioscan Int Quart J Life Sci 10:1437–1439Google Scholar
  144. Kole C, Kole P, Randunu KM, Choudhary P, Podila R, Ke PC, Rao AM, Marcus RK (2013) Nanobiotechnology can boost crop production and quality: first evidence from increased plant biomass, fruit yield and phytomedicine content in bitter melon (Momordica charantia). BMC Biotechnol 13:37PubMedPubMedCentralCrossRefGoogle Scholar
  145. Konotop YO, Kovalenko MS, Ulynets VZ, Meleshko AO, Batsmanova LM, Taran NY (2014) Phytotoxicity of colloidal solutions of metal-containing nanoparticles. Cytol Genet 48:99–102CrossRefGoogle Scholar
  146. Kottegoda N, Munaweera I, Madusanka N, Karunaratne V (2011) A green slow-release fertilizer composition based on urea-modified hydroxyapatite nanoparticles encapsulated wood. Curr Sci 101:73–78Google Scholar
  147. Kovaľskii VV, Grinkevich NI, Gribovskaya IF, Dinevich LS, Shandova AN (1971) Cobalt in medicinal plants and its effect on the accumulation of biologically active compounds. Rastit Resour 7:503–510Google Scholar
  148. Kráľová K, Šeršeň F, Blahová M (1994) Effects of Cu(II) complexes on photosynthesis in spinach chloroplasts: aqua(aryloxyacetato)copper(II) complexes. Gen Physiol Biophys 13:483–491Google Scholar
  149. Kráľová K, Masarovičová E, Šeršeň F, Ondrejkovičová I (2008) Effect of different Fe(III) compounds on photosynthetic electron transport in spinach chloroplasts and on iron accumulation in maize plants. Chem Pap 62:358–363CrossRefGoogle Scholar
  150. Kumar V, Parvatam G, Ravishankar GA (2009) AgNO3- a potential regulator of ethylene activity and plant growth modulator. Electron J Biotechnol 12:1CrossRefGoogle Scholar
  151. Kumar V, Kumari A, Guleria P, Yadav SK (2012) Evaluating the toxicity of selected types of nanochemicals. Rev Environ Contam Toxicol 215:39–121PubMedGoogle Scholar
  152. Kumar V, Guleria P, Kumar V, Yadav SK (2013) Gold nanoparticle exposure induces growth and yield enhancement in Arabidopsis thaliana. Sci Total Environ 461:462–468PubMedCrossRefGoogle Scholar
  153. Küpper H, Küpper F, Spiller M (1996) Environmental relevance of heavy metal-substituted chlorophylls using the example of water plants. J Exp Bot 295:259–266CrossRefGoogle Scholar
  154. Kuzma J, VerHage P (2006) Nanotechnology in agriculture and food production: anticipated applications. Washington, DC. http://www.nanotechproject.org/process/assets/files/2706/94_pen4_agfood.pdf. Accessed 14 June 2016
  155. Lahiani MH, Dervishi E, Chen JH, Nima Z, Gaume A, Biris AS, Khodakovskaya MV (2013) Impact of carbon nanotube exposure to seeds of valuable crops. ACS Appl Mater Interfaces 5:7965–7973PubMedCrossRefGoogle Scholar
  156. Lahiani MH, Chen JH, Irin F, Puretzky AA, Green MJ, Khodakovskaya MV (2015) Interaction of carbon nanohorns with plants: uptake and biological effects. Carbon 81:607–619CrossRefGoogle Scholar
  157. Larue C, Laurette J, Herlin-Boime N, Khodja H, Fayard B, Flank AM, Brisset F, Carriere M (2012a) Accumulation, translocation and impact of TiO2 nanoparticles in wheat (Triticum aestivum spp.): influence of diameter and crystal phase. Sci Total Environ 431:197–208PubMedCrossRefGoogle Scholar
  158. Larue C, Veronesi G, Flank AM, Surble S, Herlin-Boime N, Carriere M (2012b) Comparative uptake and impact of TiO2 nanoparticles in wheat and rapeseed. J Toxicol Environ Health A 75:722–734PubMedCrossRefGoogle Scholar
  159. Lee J, Mahendra S, Alvarez PJJ (2010a) Nanomaterials in the construction industry: a review of their applications and environmental health and safety considerations. ACS Nano 4:3580–3590PubMedCrossRefGoogle Scholar
  160. Lee CW, Mahendra S, Zodrow K, Li D, Tsai YC, Braam J, Alvarez PJ (2010b) Developmental phytotoxicity of metal oxide nanoparticles to Arabidopsis thaliana. Environ Toxicol Chem 29:669–675PubMedCrossRefGoogle Scholar
  161. Lehmann J, Rillig MC, Thies J, Masiello CA, Hockaday WC, Crowley D (2011) Biochar effects on soil biota – a review. Soil Biol Biochem 43:1812–1836CrossRefGoogle Scholar
  162. Lei Z, Su MY, Chao L, Liang C, Hao H, Xiao W, Liu XQ, Fan Y, Gao FQ, Hong FS (2007) Effects of nanoanatase TiO2 on photosynthesis of spinach chloroplasts under different light illumination. Biol Trace Elem Res 119:68–76PubMedCrossRefGoogle Scholar
  163. Li JL, Chang PR, Huang J, Wang YQ, Yuan H, Ren HX (2013a) Physiological effects of magnetic iron oxide nanoparticles towards watermelon. J Nanosci Nanotechnol 13:5561–5567PubMedCrossRefGoogle Scholar
  164. Li L, Sillanpaa M, Tuominen M, Lounatmaa K, Schultz E (2013b) Behavior of titanium dioxide nanoparticles in Lemna minor growth test conditions. Ecotoxicol Environ Saf 88:89–94PubMedCrossRefGoogle Scholar
  165. Li X, Yang YC, Gao B, Zhang M (2015a) Nanoparticles at low concentrations. PLoS One 10:e0122884PubMedPubMedCentralCrossRefGoogle Scholar
  166. Li J, Naeem MS, Wang X, Liu L, Chen C, Ma N, Zhang C (2015b) Nano-TiO2 is not phytotoxic as revealed by the oilseed rape growth and photosynthetic apparatus ultra-structural response. PLoS One 10:e0143885PubMedPubMedCentralCrossRefGoogle Scholar
  167. Liang Y, Sun W, Zhu YG, Christie P (2007) Mechanisms of silicon-mediated alleviation of abiotic stresses in higher plants: a review. Environ Pollut 147:422–428PubMedCrossRefGoogle Scholar
  168. Libralato G, Devoti AC, Zanella M, Sabbioni E, Micetic I, Manodori L, Pigozzo A, Manenti S, Groppi F, Ghirardini AV (2016) Phytotoxicity of ionic, micro- and nano-sized iron in three plant species. Ecotoxicol Environ Saf 123:81–88PubMedCrossRefGoogle Scholar
  169. Lin DH, Xing BS (2007) Phytotoxicity of nanoparticles: inhibition of seed germination and root growth. Environ Pollut 150:243–250PubMedCrossRefGoogle Scholar
  170. Lin J, Jiang W, Liu D (2003) Accumulation of copper by roots, hypocotyls, cotyledons and leaves of sunflower (Helianthus annuus L). Bioresour Technol 86:151–155PubMedCrossRefGoogle Scholar
  171. Lin BS, Diao SQ, Li CH, Fang LJ, Qiao SC, Yu M (2004) Effect of TMS (nanostructured silicon dioxide) on growth of Changbai larch seedlings. J For Res 15:138–140CrossRefGoogle Scholar
  172. Liu R, Lal R (2014) Synthetic apatite nanoparticles as a phosphorus fertilizer for soybean (Glycine max). Sci Rep 4:5686Google Scholar
  173. Liu RQ, Lal R (2015) Potentials of engineered nanoparticles as fertilizers for increasing agronomic productions. Sci Total Environ 514:131–139PubMedCrossRefGoogle Scholar
  174. Liu RQ, Zhang HY, Lal R (2016) Effects of stabilized nanoparticles of copper, Zinc, manganese, and iron oxides in low concentrations on lettuce (Lactuca sativa) seed germination: nanotoxicants or nanonutrients? Water Air Soil Pollut 227:42CrossRefGoogle Scholar
  175. Loeffler J, Sutter U, Hedderich R, Fiedeler U, Malsch I, Túquerres G, Koskinen J, Linder M, Lojkowski W, Moritz T, Zins M, Bernabeu E, Larena A (2005) Overview on promising nanomaterials for industrial applications. Steinbeis-Europa-Zentrum, KarlsruheGoogle Scholar
  176. Lopez-Moreno ML, de la Rosa G, Hernandez-Viezcas JA, Peralta-Videa JR, Gardea-Torresdey JL (2010a) X-ray absorption spectroscopy (XAS) corroboration of the uptake and storage of CeO2 nanoparticles and assessment of their differential toxicity in four edible plant species. J Agric Food Chem 58:3689–3693PubMedPubMedCentralCrossRefGoogle Scholar
  177. Lopez-Moreno ML, De La Rosa G, Hernandez-Viezcas JA, Castillo-Michel H, Botez CE, Peralta-Videa JR, Gardea-Torresdey JL (2010b) Evidence of the differential biotransformation and genotoxicity of ZnO and CeO2 nanoparticles on soybean (Glycine max) plants. Environ Sci Technol 44:7315–7320PubMedPubMedCentralCrossRefGoogle Scholar
  178. Luther W, Nass R, Campbell R, Dellwo U, Schuster F, Tenegal F, Kallio M, Lintunen P, Oleg Remškar SM, Zumer M, Hoet P, Brüske-Hohlfeld I, Lipscomb S, Malanowski N, Zweck A (2004) Industrial application of nanomaterials – chances and risks. Future Technologies Division, VDI Technologiezentrum GmbH, DüsseldorfGoogle Scholar
  179. Lyons GH, Genc Y, Soole K, Stangoulis JCR, Liu F, Graham RD (2009) Selenium increases seed production in Brassica. Plant Soil 318:73–80CrossRefGoogle Scholar
  180. Ma JF (2004) Role of silicon in enhancing the resistance of plants to biotic and abiotic stresses. Soil Sci Plant Nutr 50:11–18CrossRefGoogle Scholar
  181. Ma JF, Yamaji N (2008) Functions and transport of silicon in plants. Cell Mol Life Sci 65:3049–3057PubMedCrossRefGoogle Scholar
  182. Ma XM, Gurung A, Deng Y (2013a) Phytotoxicity and uptake of nanoscale zero-valent iron (nZVI) by two plant species. Sci Total Environ 443:844–849PubMedCrossRefGoogle Scholar
  183. Ma C, Chhikara S, Xing B, Musante C, White JC, Dhankher OP (2013b) Physiological and molecular response of Arabidopsis thaliana (L.) to nanoparticle cerium and indium oxide exposure. ACS Sustain Chem Eng 1:768–778CrossRefGoogle Scholar
  184. Mahmoodzadeh H, Nabavi M, Kashefi H (2013) Effect of nanoscale titanium dioxide particles on the germination and growth of canola (Brassica napus). J Ornamental Hortic Plants 3:25–32Google Scholar
  185. Majumdar S, Peralta-Videa JR, Bandyopadhyay S, Castillo-Michel H, Hernandez-Viezcas JA, Sahi S, Gardea-Torresdey JL (2014) Exposure of cerium oxide nanoparticles to kidney bean shows disturbance in the plant defense mechanisms. J Hazard Mater 278:279–287PubMedCrossRefGoogle Scholar
  186. Maksymiec W (1997) Effect of copper on cellular processes in higher plants. Photosynthetica 34:321–342CrossRefGoogle Scholar
  187. Malekian R, Abedi-Koupai J, Eslamian SS, Mousavi SF, Abbaspour KC, Afyuni M (2011) Ion-exchange process for ammonium removal and release using natural Iranian zeolite. Appl Clay Sci 51:323–329CrossRefGoogle Scholar
  188. Mandeh M, Omidi M, Rahaie M (2012) In vitro influences of TiO2 nanoparticles on barley (Hordeum vulgare L.) tissue culture. Biol Trace Elem Res 150:376–380PubMedCrossRefGoogle Scholar
  189. Manikandan A, Subramanian KS (2016) Evaluation of zeolite based nitrogen nano-fertilizers on maize growth, yield and quality on inceptisols and alfisols. Int J Plant Soil Sci 9:IJPSS.22103CrossRefGoogle Scholar
  190. Marafon AC, Endres L (2013) Silicon: fertilization and nutrition in higher plants. Rev Cienc Agrar 56:380–388Google Scholar
  191. Marschner H (1995) Mineral nutrition of higher plants, 2nd edn. Academic, LondonGoogle Scholar
  192. Martínez-Fernández D, Vítková M, Pilar Bernal M, Komárek M (2015) Effects of nano-maghemite on trace element accumulation and drought response of Helianthus annuus L. in a contaminated mine soil. Water Air Soil Pollut 226:101CrossRefGoogle Scholar
  193. Masarovičová E, Kráľová K (2013) Metal nanoparticles and plants. Ecol Chem Eng S 20:9–22Google Scholar
  194. Masarovičová E, Kráľová K, Šeršeň F (2011) Plant responses to toxic metal stress. In: Pessarakli M (ed) Handbook of plant and crop stress, 3rd edn. CRC Press, Boca Raton, pp 595–634Google Scholar
  195. Masarovičová E, Kráľová K, Zinjarde SS (2014) Metal nanoparticles in plants. Formation and action. In: Pessarakli M (ed) Handbook of plant and crop physiology, 3rd edn. CRC Press, Boca Raton, pp 683–731Google Scholar
  196. Miralles P, Johnson E, Church TL, Harris AT (2012) Multiwalled carbon nanotubes in alfalfa and wheat: toxicology and uptake. J R Soc Interf 9:3514–3527CrossRefGoogle Scholar
  197. Mirzajani F, Askari H, Hamzelou S, Farzaneh M, Ghassempour A (2013) Effect of silver nanoparticles on Oryza sativa L. and its rhizosphere bacteria. Ecotoxicol Environ Saf 88:48–54PubMedCrossRefGoogle Scholar
  198. Mondal A, Basu R, Das S, Nandy P (2011) Beneficial role of carbon nanotubes on mustard plant growth: an agricultural prospect. J Nanopart Res 13:4519–4528CrossRefGoogle Scholar
  199. Morales MI, Rico CM, Hernandez-Viezcas JA, Nunez JE, Barrios AC, Tafoya A, Flores-Marges JP, Peralta-Videa JR, Gardea-Torresdey JL (2013) Toxicity assessment of cerium oxide nanoparticles in cilantro (Coriandrum sativum L.) plants grown in organic soil. J Agric Food Chem 61:6224–6230PubMedCrossRefGoogle Scholar
  200. Morla S, Ramachandra Rao CSV, Chakrapani R (2011) Factors affecting seed germination and seedling growth of tomato plants cultured in vitro conditions. J Chem Biol Phys Sci B 1:328–334Google Scholar
  201. Morteza E, Moaveni P, Farahani HA, Kiyani M (2013) Study of photosynthetic pigments changes of maize (Zea mays L.) under nano TiO2 spraying at various growth stages. Springer Plus 2:247PubMedPubMedCentralCrossRefGoogle Scholar
  202. Mossor-Pietraszewska T (2001) Effect of aluminium on plant growth and metabolism. Acta Biochim Pol 48:673–686PubMedGoogle Scholar
  203. Mukherjee A, Peralta-Videa JR, Bandyopadhyay S, Rico CM, Zhao LJ, Gardea-Torresdey JL (2014) Physiological effects of nanoparticulate ZnO in green peas (Pisum sativum L.) cultivated in soil. Metallomics 6:132–138PubMedCrossRefGoogle Scholar
  204. Mukherjee A, Majumdar S, Servin AD, Pagano L, Dhankher OP, White JC (2016) Carbon nanomaterials in agriculture: a critical review. Front Plant Sci 7:172PubMedPubMedCentralCrossRefGoogle Scholar
  205. Mustafa G, Sakata K, Hossain Z, Komatsu S (2015) Proteomic study on the effects of silver nanoparticles on soybean under flooding stress. J Proteomics 122:100–118PubMedCrossRefGoogle Scholar
  206. Nair R, Mohamed MS, Gao W, Maekawa T, Yoshida Y, Ajayan PM, Kumar DS (2012) J Nanosci Nanotechnol 12:2212–2220PubMedCrossRefGoogle Scholar
  207. National Nanotechnology Initiative (2008) Nanotechnology: big things from a tiny world. Arlington. https://www.nano.gov/sites/default/files/pub_resource/nanotechnology_bigthingsfromatinyworld-print.pdf. Accessed 30 May 2016
  208. Nejatzadeh-Barandozi F, Darvishzadeh F, Aminkhani A (2014) Effect of nano silver and silver nitrate on seed yield of (Ocimum basilicum L.). Org Med Chem Lett 4:11PubMedPubMedCentralCrossRefGoogle Scholar
  209. Nhan LV, Ma CX, Rui YK, Liu ST, Li XG, Xing BS, Liu LM (2015) Phytotoxic mechanism of nanoparticles: destruction of chloroplasts and vascular bundles and alteration of nutrient absorption. Sci Rep 5:11618PubMedPubMedCentralCrossRefGoogle Scholar
  210. Oloumi H, Mousavi EA, Mohammadinejad R (2014) Multi-walled carbon nanotubes enhance Cd2+ and Pb2+ uptake by canola seedlings. Agrochimica 58:91–102Google Scholar
  211. Onishchenko DV, Reva VP, Kuryavyi VG, Voronov BA (2015) Sprouting of pepper and tomato seeds with the use of multiwalled carbon nanotubes. Russ Agric Sci 41:146–149CrossRefGoogle Scholar
  212. Opatřilová R, Černíková A, Coufalová L, Dohnal J, Jampílek J (2013) In vitro permeation of micronized and nanonized alaptide from semi-solid formulations. Sci World J 2013:787283CrossRefGoogle Scholar
  213. Pais I (1983) The biological importance of titanium. J Plant Nutr 6:3–131CrossRefGoogle Scholar
  214. Palit S, Sharma A, Talukder G (1994) Effects of cobalt on plants. Bot Rev 60:149–181CrossRefGoogle Scholar
  215. Palmqvist NGM, Bejai S, Meijer J, Seisenbaeva GA, Kessler VG (2015) Nano titania aided clustering and adhesion of beneficial bacteria to plant roots to enhance crop growth and stress management. Sci Rep 5:10146PubMedPubMedCentralCrossRefGoogle Scholar
  216. Pandey AC, Sanjay SS, Yadav RS (2010) Application of ZnO nanoparticles in influencing the growth rate of Cicer arietinum. J Exp Nanosci 5:488–497CrossRefGoogle Scholar
  217. Parisi C, Vigani M, Rodríguez-Cerezo E (2015) Agricultural nanotechnologies: what are the current possibilities? NanoToday 10:124–127CrossRefGoogle Scholar
  218. Parveen A, Rao S (2015) Effect of nanosilver on seed germination and seedling growth in Pennisetum glaucum. J Clust Sci 26:693–701CrossRefGoogle Scholar
  219. Peralta JR, Gardea-Torresdey JL, Tiemann KJ, Gomez E, Arteaga S, Rascon E, Parsons JG (2001) Uptake and effects of five heavy metals on seed germination and plant growth in alfalfa (Medicago sativa L.). Bull Environ Contam Toxicol 66:727–734PubMedGoogle Scholar
  220. Pereira EI, Minussi FB, da Cruz CCT, Bernardi ACC, Ribeiro C (2012) Urea-montmorillonite-extruded nanocomposites: a novel slow-release material. J Agric Food Chem 60:5267–5272PubMedCrossRefGoogle Scholar
  221. Pereira EI, da Cruz CCT, Solomon A, Le A, Cavigelli MA, Ribeiro C (2015) Novel slow-release nanocomposite nitrogen fertilizers: the impact of polymers on nanocomposite properties and function. Ind Eng Chem Res 54:3717–3725CrossRefGoogle Scholar
  222. Pérez-de-Luque A, Hermosín MC (2013) Nanotechnology and its use in agriculture. In: Bagchi D, Bagchi M, Moriyama H, Shahidi F (eds) Bio-nanotechnology: a revolution in food, biomedical and health sciences. Wiley-Blackwell, West Sussex, pp 299–405Google Scholar
  223. Peško M, Kráľová K (2013) Physiological response of Brassica napus L. plants to Cu(II) treatment. Proc ECOpole 7:155–161Google Scholar
  224. Pourali S, Roozbahani A (2015) Evaluation of quantitative and qualitative traits of potato (Solanum tuberosum L.) under amino acids and iron application. Crop Res (Hisar) 50:101–106Google Scholar
  225. Pourkhaloee A, Haghighi M, Saharkhiz MJ, Jouzi H, Doroodmand MM (2011) Carbon nanotubes can promote seed germination via seed coat penetration. Seed Technol 33:155–169Google Scholar
  226. Pradhan S, Patra P, Mitra S, Dey KK, Jain S, Sarkar S, Roy S, Palit P, Goswami A (2014) Manganese nanoparticles: impact on non-nodulated plant as a potent enhancer in nitrogen metabolism and toxicity study both in vivo and in vitro. J Agric Food Chem 62:8777–8785PubMedCrossRefGoogle Scholar
  227. Pradhan N, Singh S, Ojha N, Shrivastava A, Barla A, Rai V, Bose S (2015) Facets of nanotechnology as seen in food processing, packaging, and preservation industry. Biomed Res Int 2015:365672PubMedPubMedCentralCrossRefGoogle Scholar
  228. Prasad R (2014) Synthesis of silver nanoparticles in photosynthetic plants. J Nanoparticle. Article ID 963961. http://dx.doi.org/10.1155/2014/963961
  229. Prasad TNVKV, Sudhakar P, Sreenivasulu Y, Latha P, Munaswamy V, Reddy KR, Sreeprasad TS, Sajanlal PR, Pradeep T (2012) Effect of nanoscale zinc oxide particles on the germination, growth and yield of peanut. J Plant Nutr 35:905–927CrossRefGoogle Scholar
  230. Prasad R, Kumar V, Prasad KS (2014) Nanotechnology in sustainable agriculture: present concerns and future aspects. Afr J Biotechnol 13:705–713CrossRefGoogle Scholar
  231. Prasad R, Pandey R, Barman I (2016) Engineering tailored nanoparticles with microbes: quo vadis? WIREs Nanomed Nanobiotechnol 8:316–330CrossRefGoogle Scholar
  232. Qados AMSA, Moftah AE (2015) Influence of silicon and nano-silicon on germination, growth and yield of faba bean (Vicia faba L.) under salt stress conditions. Am J Exp Agric 5:509–524CrossRefGoogle Scholar
  233. Qi MF, Liu YF, Li TL (2013) Nano-TiO2 improve the photosynthesis of tomato leaves under mild heat stress. Biol Trace Elem Res 156:323–328PubMedCrossRefGoogle Scholar
  234. Raliya R, Tarafdar JC, Gulecha K, Choudhary K, Ram R, Mal P, Saran RP (2013) Scope of nanoscience and nanotechnology in agriculture. J Appl Biol Biotechnol 1:41–44Google Scholar
  235. Raliya R, Biswas P, Tarafdar JC (2015) TiO2 nanoparticle biosynthesis and its physiological effect on mung bean (Vigna radiata L.). Biotechnol Rep 5:22–26CrossRefGoogle Scholar
  236. Rani PU, Yasur J, Loke KS, Dutta D (2016) Effect of synthetic and biosynthesized silver nanoparticles on growth, physiology and oxidative stress of water hyacinth: Eichhornia crassipes (Mart) Solms. Acta Physiol Plant 38:UNSP 58CrossRefGoogle Scholar
  237. Rashidi L, Khosravi-Darani K (2011) The applications of nanotechnology in food industry. Crit Rev Food Sci Nutr 51:723–730PubMedCrossRefGoogle Scholar
  238. Rashidzadeh A, Olad A, Salari D, Reyhanitabar A (2014) On the preparation and swelling properties of hydrogel nanocomposite based on sodium alginate-g-poly(acrylic acid-co-acrylamide)/clinoptilolite and its application as slow release fertilizer. J Polym Res 21:1–15CrossRefGoogle Scholar
  239. Raskar SV, Laware SL (2014) Effect of zinc oxide nanoparticles on cytology and seed germination in onion. Int J Curr Microbiol Appl Sci 3:467–473Google Scholar
  240. Razzaq A, Ammara R, Jhanzab HM, Mahmood T, Hafeez A, Hussain S (2016) A novel nanomaterial to enhance growth and yield of wheat. J Nanosci Technol 2:55–58Google Scholar
  241. Riahi-Madvar A, Rezae F, Jalali V (2012) Effects of alumina nanoparticles on morphological properties and antioxidant system of Triticum aestivum. Iran J Plant Physiol 3:595–603Google Scholar
  242. Rico CM, Lee SC, Rubenecia R, Mukherjee A, Hong J, Peralta-Videa JR, Gardea-Torresdey JL (2014) Cerium oxide nanoparticles impact yield and modify nutritional parameters in wheat (Triticum aestivum L.) J Agric Food Chem 62:9669–9675PubMedCrossRefGoogle Scholar
  243. Rico CM, Barrios AC, Tan WJ, Rubenecia R, Lee SC, Varela-Ramirez A, Peralta-Videa JR, Gardea-Torresdey JL (2015) Physiological and biochemical response of soil-grown barley (Hordeum vulgare L.) to cerium oxide nanoparticles. Environ Sci Pollut Res 22:10551–10558CrossRefGoogle Scholar
  244. Rizwan M, Ali S, Qayyum MF, Ibrahim M, Zia-ur-Rehman M, Abbas T, Ok YS (2016) Mechanisms of biochar-mediated alleviation of toxicity of trace elements in plants: a critical review. Environ Sci Pollut Res 23:2230–2248CrossRefGoogle Scholar
  245. Rout GR, Sahoo S (2015) Role of iron in plant growth and metabolism. Rev Agric Sci 3:1–24Google Scholar
  246. Russell AD, Hugo WB (1994) Antibacterial activity and action of silver. Prog Med Chem 31:351–370PubMedCrossRefGoogle Scholar
  247. Sabaghnia N, Janmohammadi M (2014) Effect of nano-silicon particles application on salinity tolerance in early growth of some lentil genotypes. Ann Univ Mariae Curie-Sklodowska C 69:39–55Google Scholar
  248. Salama HMH (2012) Effects of silver nanoparticles in some crop plants, common bean (Phaseolus vulgaris L.) and corn (Zea mays L.) Int Res J Biotechnol 3:190–197Google Scholar
  249. Sarkar S, Datta SC, Biswas DR (2015) Effect of fertilizer loaded nanoclay/superabsorbent polymer composites on nitrogen and phosphorus release in soil. Proc Indian Nat Sci Acad B Biol Sci 85:415–421CrossRefGoogle Scholar
  250. Savithramma N, Ankanna S, Bhumi G (2012) Effect of nanoparticles on seed germination and seedling growth of Boswellia ovalifoliolata an endemic and endangered medicinal tree taxon. Nano Vision 2:61–68Google Scholar
  251. Savvas D, Ntatsi G (2015) Biostimulant activity of silicon in horticulture. Sci Hortic 196:66–81CrossRefGoogle Scholar
  252. Saxena M, Maity S, Sarkar S (2014) Carbon nanoparticles in ‘biochar’ boost wheat (Triticum aestivum) plant growth. RSC Adv 4:39948–39954CrossRefGoogle Scholar
  253. Schaller J, Brackhage C, Paasch S, Brunner E, Bäucker E, Dudel EG (2013) Silica uptake from nanoparticles and silica condensation state in different tissues of Phragmites australis. Sci Total Environ 442:6–9PubMedCrossRefGoogle Scholar
  254. Scrimshaw NS (1991) Iron deficiency. Sci Am 265:46–52PubMedCrossRefGoogle Scholar
  255. Seifsahandi M, Sorooshzadeh A (2013) Comparison between the influences of silver nanoparticles and silver nitrate on the growth and phytochemical properties of borage (Borago officinalis L.) Curr Nanosci 9:241–247CrossRefGoogle Scholar
  256. Sekhon BS (2014) Nanotechnology in agri-food production: an overview. Nanotechnol Sci Appl 7:31–53PubMedPubMedCentralCrossRefGoogle Scholar
  257. Selva Preetha P, Subramanian KS, Sharmila Rahale C (2014) Characterization of slow release of sulphur nutrient – a zeolite based nano-fertilizer. Int J Dev Res 4:229–233Google Scholar
  258. Šeršeň F, Kráľová K, Bumbálová A, Švajlenová O (1997) The effect of Cu(II) ions bound with tridentate Schiff base ligands upon the photosynthetic apparatus. J Plant Physiol 15:299–305CrossRefGoogle Scholar
  259. Servin AD, Castillo-Michel H, Hernandez-Viezcas JA, Diaz BC, Peralta-Videa JR, Gardea-Torresdey JL (2012) Synchrotron micro-XRE and micro-XANES confirmation of the uptake and translocation of TiO2 nanoparticles in cucumber (Cucumis sativus) plants. Environ Sci Technol 46:7637–7643PubMedCrossRefGoogle Scholar
  260. Shahrekizad M, Gholamalizadeh Ahangar A, Mir N (2015) Improving agronomic traits of sunflower (Helianthus annuus). J Nanostruct 5:117–127Google Scholar
  261. Shams G, Ranjbar M, Amiri A (2013) Effect of silver nanoparticles on concentration of silver heavy element and growth indexes in cucumber (Cucumis sativus L. negeen). J Nanopart Res 15:1630CrossRefGoogle Scholar
  262. Sharma P, Bhatt D, Zaidi MGH, Saradhi PP, Khanna PK, Arora S (2012) Silver nanoparticle-mediated enhancement in growth and antioxidant status of Brassica juncea. Appl Biochem Biotechnol 167:2225–2233PubMedCrossRefGoogle Scholar
  263. Sheykhbaglou R, Sedghi M, Tajbakhsh Shishevan M, Sharifi SR (2010) Effects of nano-iron oxide particles on agronomic traits of soybean. Notulae Sci Biol 2:112–113Google Scholar
  264. Siddiqui MH, Al-Whaibi MH (2014) Role of nano-SiO2 in germination of tomato (Lycopersicum esculentum seeds Mill). Saudi J Biol Sci 21:13–17PubMedCrossRefGoogle Scholar
  265. Siddiqui MH, Al-Whaibi MH, Faisal M, Al Sahli AA (2014) Nano-silicon dioxide mitigates the adverse effects of salt stress on Cucurbita pepo L. Environ Toxicol Chem 33:2429–2437PubMedCrossRefGoogle Scholar
  266. Sigua GC, Stone KC, Hunt PG, Cantrell KB, Novak JM (2015) Increasing biomass of winter wheat using sorghum biochars. Agron Sustain Dev 35:739–748CrossRefGoogle Scholar
  267. Silva S (2012) Aluminium toxicity targets in plants. J Bot 2012:219462Google Scholar
  268. Singh D, Kumar S, Singh SC, Lal B, Singh NB (2012) Applications of liquid assisted pulsed laser ablation synthesized TiO2 nanoparticles on germination, growth and biochemical parameters of Brassica oleracea var. capitata. Sci Adv Mater 4:522–531CrossRefGoogle Scholar
  269. Singh NB, Amist N, Yadav K, Singh D, Pandey JK, Singh SC (2013) Zinc oxide nanoparticles as fertilizer for the germination, growth and metabolism of vegetable crops. J Nanoeng Nanomanuf 3:353–364CrossRefGoogle Scholar
  270. Slomberg DL, Schoenfisch MH (2012) Silica nanoparticle phytotoxicity to Arabidopsis thaliana. Environ Sci Technol 46:10247–10254PubMedGoogle Scholar
  271. Smirnova EA, Gusev AA, Zaitseva ON, Lazareva EM, Onishchenko GE, Kuznetsova EV, Tkachev AG, Feofanov AV, Kirpichnikov MP (2011) Multi-walled carbon nanotubes penetrate into plant cells and affect the growth of Onobrychis arenaria seedlings. Acta Nat 3:99–106Google Scholar
  272. Song GL, Gao Y, Wu H, Hou WH, Zhang CY, Ma HQ (2012) Physiological effect of anatase TiO2 nanoparticles on Lemna minor. Environ Toxicol Chem 31:2147–2152PubMedCrossRefGoogle Scholar
  273. Song U, Shin M, Lee G, Roh J, Kim Y, Lee EJ (2013) Functional analysis of TiO2 nanoparticle toxicity in three plant species. Biol Trace Elem Res 155:93–103PubMedCrossRefGoogle Scholar
  274. Sonkar SK, Roy M, Babar DG, Sarkar S (2012) Water soluble carbon nano-onions from wood wool as growth promoters for gram plants. Nanoscale 4:7670–7675PubMedCrossRefGoogle Scholar
  275. Sonkaria S, Ahn SH, Khare V (2012) Nanotechnology and its impact on food and nutrition: a review. Recent Pat Food Nutr Agric 4:8–18PubMedCrossRefGoogle Scholar
  276. Sorooshzadeh A, Hazrati S, Oraki H, Govahi M, Ramazani A (2012) Foliar application of nano-silver influence growth of saffron under flooding stress. In: Proceeding of the 4th international conference “Nanocon-2012”. Oct 2012, Brno, pp 510–512 (PB-19). http://nanocon2012.tanger.cz/files/proceedings/04/reports/1254.pdf
  277. Sperotto RA, Ricachenevsky FK, Waldow VA, Fett JP (2012) Iron biofortification in rice: it’s a long way to the top. Plant Sci 190:24–39PubMedCrossRefGoogle Scholar
  278. Stoltzfus RJ, Dreyfuss ML (1998) Guidelines for the use of iron supplements to prevent and treat iron deficiency anemia. ILSI Press, Washington, DCGoogle Scholar
  279. Strader LC, Beisner ER, Bartel B (2009) Silver ions increase auxin efflux independently of effects on ethylene response. Plant Cell 21:3585–3590PubMedPubMedCentralCrossRefGoogle Scholar
  280. Sun ZM, Zhang K, Liu JT, Si HS, Wang YQ (2012) Effects of nitrogen regulators on fertilizer nitrogen transformation in meadow cinnamon soil and on pakchoi growth. Yingyong Shengtai Xuebao 23:2497–2503PubMedGoogle Scholar
  281. Sun DQ, Hussain HI, Yi ZF, Siegele R, Cresswell T, Kong LX, Cahill DM (2014) Uptake and cellular distribution, in four plant species, of fluorescently labeled mesoporous silica nanoparticles. Plant Cell Rep 33:1389–1402PubMedCrossRefGoogle Scholar
  282. Suriyaprabha R, Karunakaran G, Yuvakkumar R, Rajendran V, Kannan N (2012) Silica nanoparticles for increased silica availability in maize (Zea mays L.) seeds under hydroponic conditions. Curr Nanosci 8:902–908CrossRefGoogle Scholar
  283. Suriyaprabha R, Karunakaran G, Yuvakkumar R, Prabu P, Rajendran V, Kannan N (2013) Application of silica nanoparticles for increased silica availability in maize. In: Chauhan AK, Murli C, Gadkari SC (eds) Proceedings of the 57th Dae solid state physics symposium, Mumbai, Dec 2012. AIP Conf Proc 1512, pp 424–425Google Scholar
  284. Suriyaprabha R, Karunakaran G, Yuvakkumar R, Rajendran V, Kannan N (2014a) Foliar application of silica nanoparticles on the phytochemical responses of maize (Zea mays L.) and its toxicological behavior. Synth React Inorg M 44:1128–1131CrossRefGoogle Scholar
  285. Suriyaprabha R, Karunakaran G, Kavitha K, Yuvakkumar R, Rajendran V, Kannan N (2014b) Application of silica nanoparticles in maize to enhance fungal resistance. IET Nanobiotechnol 8:133–137PubMedCrossRefGoogle Scholar
  286. Syu YY, Hung JH, Chen JC, Chuang HW (2014) Impacts of size and shape of silver nanoparticles on Arabidopsis plant growth and gene expression. Plant Physiol Biochem 83:57–64PubMedCrossRefGoogle Scholar
  287. Tarafdar JC, Raliya R, Mahawar H, Rathore I (2014) Development of zinc nanofertilizer to enhance crop production in pearl millet (Pennisetum americanum). Agric Res 3:257–262CrossRefGoogle Scholar
  288. Thiruvengadam M, Gurunathan S, Chung IM (2015) Physiological, metabolic, and transcriptional effects of biologically-synthesized silver nanoparticles in turnip (Brassica rapa ssp rapa L.). Protoplasma 252:1031–1046PubMedCrossRefGoogle Scholar
  289. Tiwari S, Mohanty P (1993) Cobalt chloride induced stimulation of photosystem II electron transport in Synechocystis PCC 6803 cells. Photosynth Res 38:463–469PubMedCrossRefGoogle Scholar
  290. Tong CY, Xiao SY, Wang B, Xiao XJ, Zheng YQ, Xue CG, Wang QM, Liu XM (2008) Preparation and application of chitooligosaccharides-selenium nanoparticles for plant nutrition regulator. J Hunan Univ (Nat Sci) 35:60–64Google Scholar
  291. Torabian S, Zahedi M, Khoshgoftar AH (2016) Effects of foliar spray of two kinds of zinc oxide on the growth and ion concentration of sunflower cultivars under salt stress. J Plant Nutr 39:172–180CrossRefGoogle Scholar
  292. Tripathi S, Sarkar S (2015) Influence of water soluble carbon dots on the growth of wheat plant. Appl Nanosci 5:609–616CrossRefGoogle Scholar
  293. Tripathi S, Sonkar SK, Sarkar S (2011) Growth stimulation of gram (Cicer arietinum) plant by water soluble carbon nanotubes. Nanoscale 3:1176–1181PubMedCrossRefGoogle Scholar
  294. Tripathi DK, Singh VP, Prasad SM, Chauhan DK, Dubey NK (2015) Silicon nanoparticles (SiNp) alleviate chromium (VI) phytotoxicity in Pisum sativum (L.) seedlings. Plant Physiol Biochem 96:189–198PubMedCrossRefGoogle Scholar
  295. Tripathi S, Kapri S, Datta A, Bhattacharyya S (2016) Influence of the morphology of carbon nanostructures on the stimulated growth of gram plant. RSC Adv 6:43864–43873CrossRefGoogle Scholar
  296. Trujillo-Reyes J, Vilchis-Nestor AR, Majumdar S, Peralta-Videa JR, Gardea-Torresdey JL (2013) Citric acid modifies surface properties of commercial CeO2 nanoparticles reducing their toxicity and cerium uptake in radish (Raphanus sativus) seedlings. J Hazard Mater 263:677–684PubMedCrossRefGoogle Scholar
  297. Tuhy L, Samoraj M, Baśladyńska S, Chojnacka K (2015) New micronutrient fertilizer biocomponents based on seaweed biomass. Pol J Environ Stud 24:2213–2221CrossRefGoogle Scholar
  298. Unsworth JB, Corsi C, Van Emon JM, Farenhorst A, Hamilton DJ, Howard CJ, Hunter R, Jenkins JJ, Kleter GA, Kookana RS, Lalah JO, Leggett M, Miglioranza KS, Miyagawa H, Peranginangin N, Rubin B, Saha B, Shakil NA (2016) Developing global leaders for research, regulation, and stewardship of crop protection chemistry in the 21st century. J Agric Food Chem 64:52–60PubMedCrossRefGoogle Scholar
  299. Vaculíková E, Grünwaldová V, Král V, Dohnal J, Jampílek J (2012a) Primary investigation of the preparation of nanoparticles by precipitation. Molecules 17:11067–11078PubMedCrossRefGoogle Scholar
  300. Vaculíková E, Grünwaldová V, Král V, Dohnal J, Jampílek J (2012b) Preparation of candesartan and atorvastatin nanoparticles by solvent evaporation. Molecules 17:13221–13234PubMedCrossRefGoogle Scholar
  301. Vaculíková E, Plachá D, Pisárčik M, Peikertová P, Dedková K, Devínsky F, Jampílek J (2014) Preparation of risedronate nanoparticles by solvent evaporation technique. Molecules 19:17848–17861PubMedCrossRefGoogle Scholar
  302. Vaculíková E, Černíková A, Plachá D, Pisárčik M, Dedková K, Peikertová P, Devínsky F, Jampílek J (2016) Cimetidine nanoparticles for permeability enhancement. J Nanosci Nanotechnol 16:7840–7843CrossRefGoogle Scholar
  303. Valadkhan M, Mohammadi K, Nezhad MTK (2015) Effect of priming and foliar application of nanoparticles on agronomic traits of chickpea. Biol Forum Int J 7:599–602Google Scholar
  304. Vallee BL, Auld DS (1990) Zinc coordination, function, and structure of zinc enzymes and other proteins. Biochemistry 29:5647–5659PubMedCrossRefGoogle Scholar
  305. Ventola CL (2012a) The nanomedicine revolution: Part 1: Emerging concepts. Pharm Ther 37:512–525Google Scholar
  306. Ventola CL (2012b) The nanomedicine revolution: Part 2: Current and future clinical applications. Pharm Ther 37:582–591Google Scholar
  307. Ventola CL (2012c) The nanomedicine revolution: Part 3: Regulatory and safety challenges. Pharm Ther 37:631–639Google Scholar
  308. Vestel J, Caldwell DJ, Constantine L, D’Aco VJ, Davidson T, Dolan DG, Millard SP, Murray-Smith R, Parke NJ, Ryan JJ, Straub JO, Wilson P (2016) Use of acute and chronic ecotoxicity data in environmental risk assessment of pharmaceuticals. Environ Toxicol Chem 35:1201–1212PubMedCrossRefGoogle Scholar
  309. Vijayarengan P (2012) Growth and biochemical variations in radish under zinc applications. Intern J Res Plant Sci 2:43–49Google Scholar
  310. Vijayarengan P (2013) Changes in growth, biochemical constituents and antioxidant potentials in cluster bean Cyamopsis tetragonoloba L. Taub under zinc stress. Int J Curr Sci 5:37–49Google Scholar
  311. Vijayarengan P, Mahalakshmi G (2013) Zinc toxicity in tomato plants. World Appl Sci J 24:649–653Google Scholar
  312. Wan YJ, Li JL, Ren HX, Huang J, Yuan H (2014) Physiological investigation of gold nanorods toward watermelon. J Nanosci Nanotechnol 14:6089–6094PubMedCrossRefGoogle Scholar
  313. Wang XP, Han HY, Liu XQ, Gu XX, Chen K, Lu DL (2012a) Multi-walled carbon nanotubes can enhance root elongation of wheat (Triticum aestivum) plants. J Nanopart Res 14:841CrossRefGoogle Scholar
  314. Wang Q, Ma X, Zhang W, Pei HC, Chen YS (2012b) The impact of cerium oxide nanoparticles on tomato (Solanum lycopersicum L.) and its implications for food safety. Metallomics 4:1105–1112PubMedCrossRefGoogle Scholar
  315. Wang J, Koo Y, Alexander A, Yang Y, Westerhof S, Zhang QB, Schnoor JL, Colvin VL, Braam J, Alvarez PJJ (2013) Phytostimulation of poplars and Arabidopsis exposed to silver nanoparticles and Ag+ at sublethal concentrations. Environ Sci Technol 47:5442–5449PubMedCrossRefGoogle Scholar
  316. Wang XG, Lu SY, Gao CM, Xu XB, Zhang XJ, Bai X, Liu MZ, Wu L (2014) Highly efficient adsorption of ammonium onto palygorskite nanocomposite and evaluation of its recovery as a multifunctional slow-release fertilizer. Chem Eng J 252:404–414CrossRefGoogle Scholar
  317. Wang S, Wang FY, Gao SC (2015) Foliar application with nano-silicon alleviates Cd toxicity in rice seedlings. Environ Sci Pollut Res 22:2837–2845CrossRefGoogle Scholar
  318. Watanabe Y, Yamada H, Ikoma T, Tanaka J, Stevens GW, Komatsu Y (2014) Preparation of a zeolite NaP1/hydroxyapatite nanocomposite and study of its behavior as inorganic fertilizer. J Chem Technol Biotechnol 89:963–968CrossRefGoogle Scholar
  319. Weissig V, Guzman-Villanueva D (2015) Nanopharmaceuticals (part 2): products in the pipeline. Int J Nanomedicine 10:1245–1257PubMedPubMedCentralCrossRefGoogle Scholar
  320. Weissig V, Pettinger TK, Murdock N (2014) Nanopharmaceuticals (part 1): products on the market. Int J Nanomedicine 9:4357–4373PubMedPubMedCentralCrossRefGoogle Scholar
  321. Wu S, Huang L, Head J, Chen D, Kong I, Tang Y (2012) Phytotoxicity of metal oxide nanoparticles is related to both dissolved metals ions and adsorption of particles on seed surfaces. J Pet Environ Biotechnol 3:126Google Scholar
  322. Wu SG, Huang L, Head J, Ball M, Tang YJ, Chen DR (2014) Electrospray facilitates the germination of plant seeds. Aerosol Air Qual Res 14:632–641Google Scholar
  323. Xiang L, Zhao HM, Li YW, Huang XP, Wu XL, Zhai T, Yuan Y, Cai QY, Mo CH (2015) Effects of the size and morphology of zinc oxide nanoparticles on the germination of Chinese cabbage seeds. Environ Sci Pollut Res 22:10452–10462CrossRefGoogle Scholar
  324. Yamanaka M, Hara K, Kudo J (2005) Bactericidal actions of a silver ion solution on Escherichia coli, studied by energy-filtering transmission electron microscopy and proteomic analysis. Appl Environ Microbiol 71:7589–7593PubMedPubMedCentralCrossRefGoogle Scholar
  325. Yan F, Schubert S, Mengel K (1992) Effect of low root medium pH on net proton release, root respiration and root growth of corn (Zea mays L.) and broad bean (Vicia faba L.) Plant Physiol 99:415–421PubMedPubMedCentralCrossRefGoogle Scholar
  326. Yan SH, Zhao L, Li H, Zhang Q, Tan JJ, Huang M, He SB, Li LJ (2013) Single-walled carbon nanotubes selectively influence maize root tissue development accompanied by the change in the related gene expression. J Hazard Mater 246:110–118PubMedCrossRefGoogle Scholar
  327. Yang F, Hong FS, You WJ, Liu C, Gao FQ, Wu C, Yang P (2006) Influences of nano-anatase TiO2 on the nitrogen metabolism of growing spinach. Biol Trace Elem Res 110:179–190PubMedCrossRefGoogle Scholar
  328. Yao Y, Gao B, Inyang M, Zimmerman AR, Cao X, Pullammanappallil P, Yang L (2011) Removal of phosphate from aqueous solution by biochar derived from anaerobically digested sugar beet tailings. J Hazard Mater 190:501–507PubMedCrossRefGoogle Scholar
  329. Yi ZF, Hussain HI, Feng CF, Sun DQ, She FH, Rookes JE, Cahill DM, Kong LG (2015) Functionalized mesoporous silica nanoparticles with redox-responsive short-chain gatekeepers for agrochemical delivery. ACS Appl Mater Interfaces 7:9937–9946PubMedCrossRefGoogle Scholar
  330. Yin LY, Colman BP, McGill BM, Wright JP, Bernhardt ES (2012) Effects of silver nanoparticle exposure on germination and early growth of eleven wetland plants. PLoS One 7:e47674PubMedPubMedCentralCrossRefGoogle Scholar
  331. Yurela I (2005) Copper in plants. Braz J Plant Physiol 17:145–156CrossRefGoogle Scholar
  332. Yuvaraj M, Subramanian KS (2014) Fabrication of zinc nano fertilizer on growth parameter of rice. Trends Biosci 7:2564–2565Google Scholar
  333. Yuvaraj M, Subramanian KS (2015) Controlled-release fertilizer of zinc encapsulated by a manganese hollow core shell. Soil Sci Plant Nutr 64:319–326CrossRefGoogle Scholar
  334. Zahra Z, Arshad M, Rafique R, Mahmood A, Habib A, Qazi IA, Khan SA (2015) Metallic nanoparticle (TiO2 and Fe3O4) application modifies rhizosphere phosphorus availability and uptake by Lactuca sativa. J Agric Food Chem 63:6876–6882PubMedCrossRefGoogle Scholar
  335. Ze YG, Liu C, Wang L, Hong MM, Hong FS (2011) The regulation of TiO2 nanoparticles on the expression of light-harvesting complex II and photosynthesis of chloroplasts of Arabidopsis thaliana. Biol Trace Elem Res 143:1131–1141PubMedCrossRefGoogle Scholar
  336. Zhai GS, Gutowski SM, Walters KS, Yan B, Schnoor JL (2015) Charge, size, and cellular selectivity for multiwall carbon nanotubes by maize and soybean. Environ Sci Technol 49:7380–7390PubMedCrossRefGoogle Scholar
  337. Zhang B, Zheng LP, Li WY, Wang JW (2013) Stimulation of artemisinin production in Artemisia annua hairy roots by Ag-SiO2 core-shell nanoparticles. Curr Nanosci 9:363–370CrossRefGoogle Scholar
  338. Zhang Y, Liang XY, Yang XG, Liu HY, Yao JM (2014) An eco-friendly slow-release urea fertilizer based on waste mulberry branches for potential agriculture and horticulture applications. ACS Sustain Chem Eng 2:1871–1878CrossRefGoogle Scholar
  339. Zhang M, Gao B, Chen JJ, Li YC (2015) Effects of graphene on seed germination and seedling growth. J Nanopart Res 17:78CrossRefGoogle Scholar
  340. Zhao LJ, Sun YP, Hernandez-Viezcas JA, Servin AD, Hong J, Niu GH, Peralta-Videa JR, Duarte-Gardea M, Gardea-Torresdey JL (2013) Influence of CeO2 and ZnO nanoparticles on cucumber physiological markers and bioaccumulation of Ce and Zn: a life cycle study. J Agric Food Chem 61:11945–11951PubMedCrossRefGoogle Scholar
  341. Zhao LJ, Sun YP, Hernandez-Viezcas JA, Hong J, Majumdar S, Niu GH, Duarte-Gardea M, Peralta-Videa JR, Gardea-Torresdey JL (2015) Monitoring the environmental effects of CeO2 and ZnO nanoparticles through the life cycle of corn (Zea mays) plants and in situ μ-XRF mapping of nutrients in kernels. Environ Sci Technol 49:2921–2928PubMedCrossRefGoogle Scholar
  342. Zheng L, Hong FS, Lu SP, Liu C (2005) Effect of nano-TiO2 on strength of naturally aged seeds and growth of spinach. Biol Trace Elem Res 104:83–91PubMedCrossRefGoogle Scholar
  343. Zheng L, Su MY, Liu C, Chen L, Huang H, Wu X, Liu XQ, Yang F, Gao FQ, Hong FS (2007) Effects of nanoanatase TiO2 on photosynthesis of spinach chloroplasts under different light illumination. Biol Trace Elem Res 119:68–76CrossRefGoogle Scholar
  344. Zhou LL, Cai DQ, He L, Zhong NQ, Yu M, Zhang X, Wu ZY (2015) Fabrication of a high-performance fertilizer to control the loss of water and nutrient using micro/nano networks. ACS Sustain Chem Eng 3:645–653CrossRefGoogle Scholar
  345. Zhu ZQ, Sun HX, Li GX, Liang WD, Bao XM, An J, La PQ, Dai JF, Li A (2013) Preparation of polyacrylamide/graphite oxide superabsorbent nanocomposites with salt tolerance and slow release properties. J Appl Polym Sci 129:2328–2334CrossRefGoogle Scholar
  346. Zou HT, Ling Y, Dang XL, Yu N, Zhang YL, Zhang YL, Dong JH (2015) Solubility characteristics and slow-release mechanism of nitrogen from organic-inorganic compound coated urea. Int J Photoenergy 2015:705471CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2017

Authors and Affiliations

  1. 1.Department of Pharmaceutical Chemistry, Faculty of PharmacyComenius UniversityBratislavaSlovakia
  2. 2.Institute of Chemistry, Faculty of Natural SciencesComenius UniversityBratislavaSlovakia

Personalised recommendations