Skip to main content

Green Nanotechnology: Biomimetic Synthesis of Metal Nanoparticles Using Plants and Their Application in Agriculture and Forestry

  • Chapter
  • First Online:
Nanotechnology

Abstract

Biomimetic nanotechnology is an outstanding investigation area at the meeting place of life sciences with physics and engineering. It is an uninterrupted emerging field that deals with knowledge transfer from biology to nanotechnology. Biomimetic nanotechnology is a scope that has the potential to support extensively successful mastering of major global challenges and solve the problems. Metallic nanoparticles are being utilized in every phase of science along with engineering, including agriculture fields, and are still charming the scientists to explore new dimensions for their respective worth, which is generally credited to their corresponding small sizes. The up-and-coming researches have proven their antimicrobial significance. The present chapter is devoted to the possibility of metal nanoparticle synthesis using plant extracts and microorganisms. This approach has been actively pursued in recent years as an alternative, efficient, low-cost, and environmentally safe technique for producing nanoparticles with specified properties. The main attention is on the role of the natural plant biomolecules involved in the bioreduction of metal salts during the nanoparticle synthesis. Moreover, attempts to apply nanotechnology in agriculture began with the growing realization that conventional agriculture technologies would neither be able to grow productivity any further nor restore ecosystems damaged by existing technologies back to their pristine situation, in particular because the long-term effects of farming with “miracle seeds,” in conjunction with pesticides, irrigation, and fertilizers, have been questioned both at the scientific and policy levels and must be steadily phased out. Nanotechnology in agricultural science has gained momentum in the past decade with a plenty of public funding, but the pace of growth is modest, even though many disciplines come under the umbrella of agriculture. This could be credited to a unique nature of farm production, which functions as an open system whereby energy and material are swapped freely; the scale of request of input materials is gigantic in contrast with industrial metal nano-products; an absence of control over the input nanomaterials in contrast with industrial nano-products (e.g., the cell phone) and because their fate has to be conceived on the geosphere (pedosphere), hydrosphere, biosphere, and atmosphere continuum; the time delay of emerging technologies reaching the farmers’ field, specifically given that many emerging economies are reluctant to spend on innovation; and the lack of foresight subsequent from agricultural education not having attracted an enough number of clear minds the world over, whereas personnel from kindred disciplines might absence an understanding of agricultural production methods. If these issues are taken care of, nanotechnological impact in farming has bright views for improving the efficiency of nutrient use through nano-formulations of fertilizers, breaking yield obstacles through bionanotechnology, surveillance, and control of “pests and diseases,” apprehension mechanisms of host-parasite interactions at the cellular and molecular levels, growth of new-generation pesticides and their carriers, packaging and preservation of foodstuff and food additives, strengthening of natural fibers, removal of contaminants from water and soil, improving the shelf life of flowers and vegetables, clay-based nanoresources for reclamation of salt-affected soils, precision water management, and stabilization of erosion-prone surfaces to name a few.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abbasi T, Anuradha J, Ganaie SU, Abbasi SA (2015) Gainful utilization of the highly intransigent weed ipomoea in the synthesis of gold nanoparticles. J King Saud University-Sci 27:15–22. doi:10.1016/j.jksus.2014.04.001

    Article  Google Scholar 

  • Abdel-Aziz MS, Shaheen MS, El-Nekeety AA, Abdel-Wahhab MA (2014) Antioxidant and antibacterial activity of silver nanoparticles biosynthesized using Chenopodium murale leaf extract. J Saudi Chem Soc 18:356–363. doi:10.1016/j.jscs.2013.09.011

    Article  CAS  Google Scholar 

  • Adhikari T, Sarkar D, Mashayekhi H, Xing B (2016) Growth and enzymatic activity of maize (Zea mays L.) plant: solution culture test for copper dioxide nano particles. J Plant Nutr 39:99–115. doi:10.1080/01904167.2015.1044012

    Article  CAS  Google Scholar 

  • Ahmad N, Sharma S, Singh VN, Shamsi SF, Fatma A, Mehta BR (2010) Biosynthesis of silver nanoparticles from Desmodium triflorum: a novel approach towards weed utilization. Biotechnol Res Int 2011:1–8. doi:10.4061/2011/454090

    Article  CAS  Google Scholar 

  • Ajitha B, Reddy YA, Reddy PS (2014) Biosynthesis of silver nanoparticles using Plectranthus amboinicus leaf extract and its antimicrobial activity. Spectrochim Acta Mol Biomol Spectrosc 128:257–262. doi:10.1016/j.saa.2014.02.105

    Article  CAS  Google Scholar 

  • Alharby HF, Metwali EM, Fuller MP, Aldhebiani AY (2016) Impact of application of zinc oxide nanoparticles on callus induction, plant regeneration, element content and antioxidant enzyme activity in tomato (Solanum lycopersicum Mill.) under salt stress. Arch Biol Sci 00:17. doi:10.2298/ABS151105017A

    Google Scholar 

  • Ali ZA, Yahya R, Sekaran SD, Puteh R (2016) Green synthesis of silver nanoparticles using apple extract and its antibacterial properties. Adv Mater Sci Eng:1–6. doi:10.1155/2016/4102196

  • Amin R, Hwang S, Park SH (2011) Nanobiotechnology: an interface between nanotechnology and biotechnology. Nano 6:101–111. doi:10.1142/s1793292011002548

    Article  CAS  Google Scholar 

  • Ankamwar B (2010) Biosynthesis of gold nanoparticles (green-gold) using leaf extract of Terminalia catappa. E-J Chem:71334–71339. doi:10.1155/2010/745120

  • Ankamwar B, Damle C, Ahmad A, Sastry M (2005) Biosynthesis of gold and silver nanoparticles using Emblica officinalis fruit extract, their phase transfer and transmetallation in an organic solution. J Nanosci Nanotechnol 5(10):1665–1671

    Article  CAS  PubMed  Google Scholar 

  • Armendariz V, Herrera I, Jose-yacaman M, Troiani H, Santiago P, Gardea-Torresdey JL (2004) Size controlled gold nanoparticle formation by Avena sativa biomass: use of plants in nanobiotechnology. J Nanopart Res 6:377–382. doi:10.1007/s11051-004-0741-4

    Article  CAS  Google Scholar 

  • Aromal SA, Philip D (2012) Green synthesis of gold nanoparticles using Trigonella foenum-graecum and its size-dependent catalytic activity. Spectrochim Acta Mol Biomol Spectrosc 97:1–5. doi:10.1016/j.saa.2012.05.083

    Article  CAS  Google Scholar 

  • Arunachalam KD, Annamalai SK, Hari S (2013) One-step green synthesis and characterization of leaf extract-mediated biocompatible silver and gold nanoparticles from Memecylon umbellatum. Int J Nanomedicine 8:1307–1315. doi:10.2147/IJN.S36670

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Asavegowda N, Sobczak-Kupiec A, Malina D, Yathirajan HS, Keerthi VR, Chandrashekar N, Liny P (2013) Plant mediated synthesis of gold nanoparticles using fruit extracts of Ananas comosus (L.) (pineapple) and evaluation of biological activities. Adv Mater Lett 4:332–337

    Article  CAS  Google Scholar 

  • Ashokkumar S, Ravi S, Kathiravan V, Velmurugan S (2014) Synthesis, characterization and catalytic activity of silver nanoparticles using Tribulus terrestris leaf extract. Spectrochim Acta Mol Biomol Spectrosc 121:88–93. doi:10.1016/j.saa.2013.10.073

    Article  CAS  Google Scholar 

  • Asli S, Neumann PM (2009) Colloidal suspensions of clay or titanium dioxide nanoparticles can inhibit leaf growth and transpiration via physical effects on root water transport. Plant Cell Environ 32:577–584. doi:10.1111/j.1365-3040.2009.01952.x

    Article  CAS  PubMed  Google Scholar 

  • Augustine R, Kalarikkal N, Thomas S (2014) A facile and rapid method for the black pepper leaf mediated green synthesis of silver nanoparticles and the antimicrobial study. Appl Nanosci 4:809–818. doi:10.1007/s13204-013-0260-7

    Article  CAS  Google Scholar 

  • Awwad AM, Salem NM (2012) Green synthesis of silver nanoparticles by mulberry leaves extract. Nanosci Nanotechnol 2:125–128. doi:10.5923/j.nn.20120204.06

    Article  CAS  Google Scholar 

  • Awwad AM, Salem NM, Abdeen AO (2013) Green synthesis of silver nanoparticles using carob leaf extract and its antibacterial activity. Int J Ind chem 4:1–6. doi:10.1186/2228-5547-4-29

    Article  Google Scholar 

  • Aziz N, Faraz M, Pandey R, Sakir M, Fatma T, Varma A, Barman I, Prasad R (2015) Facile algae-derived route to biogenic silver nanoparticles: synthesis, antibacterial and photocatalytic properties. Langmuir 31:11605–11612

    Article  CAS  PubMed  Google Scholar 

  • Aziz N, Pandey R, Barman I, Prasad R (2016) Leveraging the attributes of Mucor hiemalis-derived silver nanoparticles for a synergistic broad-spectrum antimicrobial platform. Front Microbiol 7:1984. doi:10.3389/fmicb.2016.01984

  • Baharara J, Namvar F, Ramezani T, Hosseini N, Mohamad R (2014) Green synthesis of silver nanoparticles using Achillea Biebersteinii flower extract and its anti-angiogenic properties in the rat aortic ring model. Molecules 19:4624–4634. doi:10.3390/molecules19044624

    Article  CAS  PubMed  Google Scholar 

  • Baharara J, Namvar F, Ramezani T, Mousavi M, Mohamad R (2015) Silver nanoparticles biosynthesized using Achillea Biebersteinii flower extract: apoptosis induction in MCF-7 cells via caspase activation and regulation of Bax and Bcl-2 gene expression. Molecules 20:2693–2706. doi:10.3390/molecules20022693

    Article  PubMed  CAS  Google Scholar 

  • Baishya D, Sharma N, Bora R (2012) Green synthesis of silver nanoparticle using Bryophyllum pinnatum (Lam.) and monitoring their antibacterial activities. Arch Appl Sci Res 4:2098–2104

    CAS  Google Scholar 

  • Bandi S, Vasundhara K (2012) Green synthesis of silver nanoparticles using Adhatoda vasica methanolic extract and its biological activities. J Atom Mol 2:282

    CAS  Google Scholar 

  • Bar H, Bhui DK, Sahoo GP, Sarkar P, De SP, Misra A (2009a) Green synthesis of silver nanoparticles using latex of Jatropha Curcas. Colloids Surf A Physicochem Eng Aspect 339:134–139. doi:10.1016/j.colsurfa.2009.02.008

    Article  CAS  Google Scholar 

  • Bar H, Bhui DK, Sahoo GP, Sarkar P, Pyne S, Misra A (2009b) Green synthesis of silver nanoparticles using seed extract of Jatropha curcas. Colloids Surf A Physicochem Eng Asp 348:212–216. doi:10.1016/j.colsurfa.2009.07.021

    Article  CAS  Google Scholar 

  • Basavegowda N, Idhayadhulla A, Lee YR (2014) Phyto-synthesis of gold nanoparticles using fruit extract of Hovenia dulcis and their biological activities. Ind Crop Prod 52:745–751. doi:10.1016/j.indcrop.2013.12.006

    Article  CAS  Google Scholar 

  • Begum NA, Mondal S, Basu S, Laskar RA, Mandal D (2009) Biogenic synthesis of Au and Ag nanoparticles using aqueous solutions of black tea leaf extracts. Colloids Surf B: Biointerfaces 71:113–118. doi:10.1016/j.colsurfb.2009.01.012

    Article  CAS  PubMed  Google Scholar 

  • Bhattacharyya A, Prasad R, Buhroo AA, Duraisamy P, Yousuf I, Umadevi M, Bindhu MR, Govindarajan M, Khanday AL (2016) One-pot fabrication and characterization of silver nanoparticles using Solanum lycopersicum: an eco-friendly and potent control tool against Rose Aphid, Macrosiphum rosae. J Nanosci:4679410. 7 p. http://dx.doi.org/10.1155/2016/4679410

  • Bhumi G, Rao ML, Savithramma N (2015) Green synthesis of silver nanoparticles from the leaf extract of Adhatoda vasica nees. and assessment of its antibacterial activity. Asian J Pharm Clin Res 8:62–67

    CAS  Google Scholar 

  • Bhuyan T, Mishra K, Khanuja M, Prasad R, Varma A (2015) Biosynthesis of zinc oxide nanoparticles from Azadirachta indica for antibacterial and photocatalytic applications. Mater Sci Semicond Process 32:55–61

    Article  CAS  Google Scholar 

  • Bindhu MR, Umadevi M (2013) Synthesis of monodispersed silver nanoparticles using Hibiscus Cannabinus leaf extract and its antimicrobial activity. Spectrochim Acta A Mol Biomol Spectrosc 101:184–190. doi:10.1016/j.saa.2012.09.031

    Article  CAS  PubMed  Google Scholar 

  • Boruah SK, Boruah PK, Sarma P, Medhi C, Medhi OK (2012) Green synthesis of gold nanoparticles using Camellia Sinensis and kinetics of the reaction. Adv Mater Lett 3:481

    Article  CAS  Google Scholar 

  • Brumbaugh AD, Cohen KA, St. Angelo SK (2014) Ultra small copper nanoparticles synthesized with a plant tea reducing agent. ACS Sus Chem Engin 2:1933–1939. doi:10.1021/sc500393t

    Article  CAS  Google Scholar 

  • Cañas JE, Long M, Nations S, Vadan R, Dai L, Luo M, Ambikapathi R, Lee EH, Olszyk D (2008) Effects of functionalized and nonfunctionalized single-walled carbon nanotubes on root elongation of select crop species. Environ Toxicol Chem 27:1922–1931

    Article  PubMed  Google Scholar 

  • Chandran SP, Chaudhary M, Pasricha R, Ahmad A, Sastry M (2006) Synthesis of gold nanotriangles and silver nanoparticles using Aloe vera plant extract. Biotechnol Prog 22:577–583. doi:10.1021/bp0501423

    Article  CAS  PubMed  Google Scholar 

  • Chomoucká J, Drbohlavová J, Hubálek J, Babula P, Adam V, Kizek R (2010) Toxicity of nanoparticles for plants. List Cukrova Repa. 2010 126:400

    Google Scholar 

  • Cos P, Vlietinck AJ, Berghe DV, Maes L (2006) Anti-infective potential of natural products: how to develop a stronger in vitro ‘proof-of-concept’. J Ethnopharmacol 106:290–302. doi:10.1016/j.jep.2006.04.003

    Article  CAS  PubMed  Google Scholar 

  • Das J, Das MP, Velusamy P (2013) Sesbania grandiflora leaf extract mediated green synthesis of antibacterial silver nanoparticles against selected human pathogens. Spectrochim Acta Mol Biomol Spectrosc 104:265–270. doi:10.1016/j.saa.2012.11.075

    Article  CAS  Google Scholar 

  • Dash SS, Bag BG (2014) Synthesis of gold nanoparticles using renewable Punica granatum juice and study of its catalytic activity. Appl Nanosci 4:55–59. doi:10.1007/s13204-012-0179-4

    Article  CAS  Google Scholar 

  • Dash SS, Majumdar R, Sikder AK, Bag BG, Patra BK (2014) Saraca indica bark extract mediated green synthesis of polyshaped gold nanoparticles and its application in catalytic reduction. Appl Nanosci 4:485–490. doi:10.1007/s13204-013-0223-z

    Article  CAS  Google Scholar 

  • De La Torre-Roche R, Hawthorne J, Deng Y, Xing B, Cai W, Newman LA, Wang Q, Ma X, Hamdi H, White JC (2013) Multiwalled carbon nanotubes and C60 fullerenes differentially impact the accumulation of weathered pesticides in four agricultural plants. Environ Sci Technol 47:12539–12547. doi:10.1021/es4034809

    Article  CAS  Google Scholar 

  • Devi GD, Murugan K, Selvam CP (2014) Green synthesis of silver nanoparticles using Euphorbia hirta (Euphorbiaceae) leaf extract against crop pest of cotton bollworm, Helicoverpa armigera (Lepidoptera: Noctuidae). J Biopest 7:54

    CAS  Google Scholar 

  • Dey PM (2012) Methods in plant biochemistry, vol 1 APL. Academic, London. ISBN:978-0-12-461020-0

    Google Scholar 

  • Dipankar C, Murugan S (2012) The green synthesis, characterization and evaluation of the biological activities of silver nanoparticles synthesized from Iresine Herbstii leaf aqueous extracts. Colloids Surf B Biointerfaces 98:112–119. doi:10.1016/j.colsurfb.2012.04.006

    Article  CAS  PubMed  Google Scholar 

  • Dubey M, Bhadauria S, Kushwah BS (2009) Green synthesis of nanosilver particles from extract of Eucalyptus Hybrida (safeda) leaf. Dig J Nanomater Biostruct 4:537–543

    Google Scholar 

  • Dubey SP, Lahtinen M, Särkkä H, Sillanpää M (2010a) Bioprospective of Sorbus aucuparia leaf extract in development of silver and gold nanocolloids. Colloids Surf B: Biointerfaces 80:26–33. doi:10.1016/j.colsurfb.2010.05.024

    Article  CAS  PubMed  Google Scholar 

  • Dubey SP, Lahtinen M, Sillanpää M (2010b) Tansy fruit mediated greener synthesis of silver and gold nanoparticles. Process Biochem 45:1065–1071. doi:10.1016/j.procbio.2010.03.024

    Article  CAS  Google Scholar 

  • Duca M (2015) Plant cell physiology. In: Plant physiology. Springer, Cham, pp 13–37. ISBN-13: 978-3319179087

    Google Scholar 

  • Dwivedi AD, Gopal K (2010) Biosynthesis of silver and gold nanoparticles using Chenopodium Album leaf extract. Colloid Surf A: Physicochem Engin Asp 369:27–33. doi:10.1016/j.colsurfa.2010.07.020

    Article  CAS  Google Scholar 

  • Feizi H, Moghaddam PR, Shahtahmassebi N, Fotovat A (2012) Impact of bulk and nanosized titanium dioxide (TiO2) on wheat seed germination and seedling growth. Biol Trace Elem Res 146:101–106. doi:10.1007/s12011-011-9222-7

    Article  CAS  PubMed  Google Scholar 

  • Gade A, Ingle A, Whiteley C, Rai M (2010) Mycogenic metal nanoparticles: progress and applications. Biotechnol Lett 32:593–600. doi:10.1007/s10529-009-0197-9

    Article  CAS  PubMed  Google Scholar 

  • Ganaie SU, Abbasi T, Anuradha J, Abbasi SA (2014) Biomimetic synthesis of silver nanoparticles using the amphibious weed ipomoea and their application in pollution control. J King Saud University-Sci 26:222–229. doi:10.1016/j.jksus.2014.02.004

    Article  Google Scholar 

  • Geethalakshmi R, Sarada DV (2012) Gold and silver nanoparticles from Trianthema decandra: synthesis, characterization, and antimicrobial properties. Int J Nanomedicine 7:5375–5384. doi:10.2147/ijn.s36516

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ghaffari-Moghaddam M, Hadi-Dabanlou R (2014) Plant mediated green synthesis and antibacterial activity of silver nanoparticles using Crataegus douglasii fruit extract. J Ind Eng Chem 20:739–744. doi:10.1016/j.jiec.2013.09.005

    Article  CAS  Google Scholar 

  • Ghodake GS, Deshpande NG, Lee YP, Jin ES (2010) Pear fruit extract-assisted room-temperature biosynthesis of gold nanoplates. Colloids Surf B: Biointerfaces 75:584–589. doi:10.1016/j.colsurfb.2009.09.040

    Article  CAS  PubMed  Google Scholar 

  • Gholami-Shabani MH, Akbarzadeh A, Mortazavi M, Emadzadeh MK (2013) Evaluation of the antibacterial properties of silver nanoparticles synthesized with Fusarium oxysporum and Escherichia coli. Int J Lifesc Bt Pharm Res 2:342–348

    Google Scholar 

  • Gholami-Shabani M, Akbarzadeh A, Norouzian D, Amini A, Gholami-Shabani Z, Imani A, Chiani M, Riazi G, Shams-Ghahfarokhi M, Razzaghi-Abyaneh M (2014) Antimicrobial activity and physical characterization of silver nanoparticles green synthesized using nitrate reductase from Fusarium oxysporum. Appl Biochem Biotechnol 172:4084–4098. doi:10.1007/s12010-014-0809-2

    Article  CAS  PubMed  Google Scholar 

  • Gholami-Shabani M, Shams-Ghahfarokhi M, Gholami-Shabani Z, Akbarzadeh A, Riazi G, Ajdari S, Amani A, Razzaghi-Abyaneh M (2015) Enzymatic synthesis of gold nanoparticles using sulfite reductase purified from Escherichia coli: a green eco-friendly approach. Process Biochem 50:1076–1085. doi:10.1016/j.procbio.2015.04.004

    Article  CAS  Google Scholar 

  • Gholami-Shabani M, Imani A, Shams-Ghahfarokhi M, Gholami-Shabani Z, Pazooki A, Akbarzadeh A, Riazi G, Razzaghi-Abyaneh M (2016) Bioinspired synthesis, characterization and antifungal activity of enzyme-mediated gold nanoparticles using a fungal oxidoreductase. J Iran Chem Soc 9:1–10. doi:10.1007/s13738-016-0923-x

    Google Scholar 

  • Ghosh M, Bandyopadhyay M, Mukherjee A (2010) Genotoxicity of titanium dioxide (TiO2) nanoparticles at two trophic level: plant and human lymphocytes. Chemosphere 81:1253–1262. doi:10.1016/j.chemosphere.2010.09.022

    Article  CAS  PubMed  Google Scholar 

  • Ghosh S, Patil S, Ahire M, Kitture R, Kale S, Pardesi K, Cameotra SS, Bellare J, Dhavale DD, Jabgunde A, Chopade BA (2012) Synthesis of silver nanoparticles using Dioscorea bulbifera tuber extract and evaluation of its synergistic potential in combination with antimicrobial agents. Int J Nanomedicine 7:483–496

    CAS  PubMed  PubMed Central  Google Scholar 

  • Golmoraj VE, Reza Khoshayand M, Amini M, Mollazadeh Moghadamd K, Amin G, Reza Shahverdi A (2011) The surface chemistry and stability of gold nanoparticles prepared using methanol extract of Eucalyptus camaldulensis. J Exp Nanosci 6:200–208. doi:10.1080/17458080.2010.489581

    Article  CAS  Google Scholar 

  • González-Melendi P, Fernández-Pacheco R, Coronado MJ, Corredor E, Testillano PS, Risueño MC, Marquina C, Ibarra MR, Rubiales D, Pérez-de-Luque A (2008) Nanoparticles as smart treatment-delivery systems in plants: assessment of different techniques of microscopy for their visualization in plant tissues. Ann Bot 101:187–195. doi:10.1093/aob/mcm283

    Article  PubMed  Google Scholar 

  • Gupta A, Bonde SR, Gaikwad S, Ingle A, Gade AK, Rai M (2014) Lawsonia inermis-mediated synthesis of silver nanoparticles: activity against human pathogenic fungi and bacteria with special reference to formulation of an antimicrobial nanogel. IET Nanobiotechnol 8:172–178. doi:10.1049/iet-nbt.2013.0015

    Article  CAS  PubMed  Google Scholar 

  • Handy RD, Owen R, Valsami-Jones E (2008) The ecotoxicology of nanoparticles and nanomaterials: current status, knowledge gaps, challenges, and future needs. Ecotoxicology 17:315–325. doi:10.1007/s10646-008-0206-0

    Article  CAS  PubMed  Google Scholar 

  • Harris AT, Bali R (2008) On the formation and extent of uptake of silver nanoparticles by live plants. J Nanopart Res 10:691–695. doi:10.1007/s11051-007-9288-5

    Article  CAS  Google Scholar 

  • Hassan LA, Elijah AT, Ojiefoh OC, Joseph O, Sunday BO, Olugbenga DE, Anuoluwapo AA (2016) Biosynthesis of silver nanoparticles using Garcinia kola and its antimicrobial potential. Afr J Pure Appl Chem 10:1–7. doi:10.5897/ajpac2015.0650

    Article  Google Scholar 

  • Heinemeyer J, Eubel H, Wehmhöner D, Jänsch L, Braun HP (2004) Proteomic approach to characterize the supramolecular organization of photosystems in higher plants. Phytochemistry 65:1683–1692. doi:10.1016/j.phytochem.2004.04.022

    Article  CAS  PubMed  Google Scholar 

  • Huang J, Li Q, Sun D, Lu Y, Su Y, Yang X, Wang H, Wang Y, Shao W, He N, Hong J, Chen C (2007) Biosynthesis of silver and gold nanoparticles by novel sundried Cinnamomum camphora leaf. Nanotechnology 18:105104

    Article  CAS  Google Scholar 

  • Huang J, Lin L, Sun D, Chen H, Yang D, Li Q (2015) Bio-inspired synthesis of metal nanoparticles and application. Chem Soc Rev 44:6330–6374. doi:10.1039/C5CS00133A

    Article  CAS  PubMed  Google Scholar 

  • Ibrahim HM (2015) Green synthesis and characterization of silver nanoparticles using banana peel extract and their antimicrobial activity against representative microorganisms. J Radiat Res Appl Sci 8:265–275. doi:10.1016/j.jrras.2015.01.007

    Article  Google Scholar 

  • Iravani S (2011) Green synthesis of metal nanoparticles using plants. Green Chem 13:2638–2650. doi:10.1039/C1GC15386B

    Article  CAS  Google Scholar 

  • Iravani S, Zolfaghari B (2013) Green synthesis of silver nanoparticles using Pinus eldarica bark extract. Bio Med Res Int 2013:639725. doi:10.1155/2013/639725

    Google Scholar 

  • Jacob SJ, Finub JS, Narayanan A (2012) Synthesis of silver nanoparticles using Piper longum leaf extracts and its cytotoxic activity against Hep-2 cell line. Colloids Surf B: Biointerfaces 91:212–214. doi:10.1016/j.colsurfb.2011.11.001

    Article  PubMed  CAS  Google Scholar 

  • Jagtap UB, Bapat VA (2013) Green synthesis of silver nanoparticles using Artocarpus heterophyllus Lam. seed extract and its antibacterial activity. Ind Crop Prod 46:132–137

    Article  CAS  Google Scholar 

  • Jain D, Daima HK, Kachhwaha S, Kothari SL (2009) Synthesis of plant-mediated silver nanoparticles using papaya fruit extract and evaluation of their antimicrobial activities. Dig J Nanomater Biostruct 4:557–563

    Google Scholar 

  • Jayaseelan C, Ramkumar R, Rahuman AA, Perumal P (2013) Green synthesis of gold nanoparticles using seed aqueous extract of Abelmoschus esculentus and its antifungal activity. Ind Crop Prod 45:423–429. doi:10.1016/j.indcrop.2012.12.019

    Article  CAS  Google Scholar 

  • Jha AK, Prasad K (2010) Green synthesis of silver nanoparticles using Cycas leaf. Int J Green Nanotechnol: Phys Chem 1:110–117. doi:10.1080/19430871003684572

    Article  Google Scholar 

  • Jia L, Zhang Q, Li Q, Song H (2009) The biosynthesis of palladium nanoparticles by antioxidants in Gardenia jasminoides Ellis: long lifetime nanocatalysts for p-nitrotoluene hydrogenation. Nanotechnology 20:385601. doi:10.1088/0957-4484/20/38/385601

    Article  PubMed  CAS  Google Scholar 

  • Karthick V, Ganesh-Kumar V, Maiyalagan T, Deepa R, Govindaraju K, Rajeswari A, Stalin-Dhas T (2012) Green synthesis of well dispersed nanoparticles using leaf extract of medicinally useful Adhatoda vasica nees. Micro Nanosys 4:192–198

    Article  CAS  Google Scholar 

  • Kasthuri J, Veerapandian S, Rajendiran N (2009) Biological synthesis of silver and gold nanoparticles using apiin as reducing agent. Colloids Surf B: Biointerfaces 68:55–60

    Article  CAS  PubMed  Google Scholar 

  • Kathiravan V, Ravi S, Ashokkumar S (2014) Synthesis of silver nanoparticles from Melia dubia leaf extract and their in vitro anticancer activity. Spectrochim Acta Part A: Mol Biomol Spectrosc 130:116–121

    Article  CAS  Google Scholar 

  • Kaviya S, Santhanalakshmi J, Viswanathan B, Muthumary J, Srinivasan K (2011) Biosynthesis of silver nanoparticles using Citrus sinensis peel extract and its antibacterial activity. Spectrochim Acta Mol Biomol Spectrosc 79:594–598. doi:10.1016/j.saa.2011.03.040

    Article  CAS  Google Scholar 

  • Keegstra K, Talmadge KW, Bauer WD, Albersheim P (1973) The structure of plant cell walls III. A model of the walls of suspension-cultured sycamore cells based on the interconnections of the macromolecular components. Plant Physiol 51:188–197

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Khodakovskaya M, Dervishi E, Mahmood M, Xu Y, Li Z, Watanabe F, Biris AS (2009) Carbon nanotubes are able to penetrate plant seed coat and dramatically affect seed germination and plant growth. ACS Nano 3:3221–3227. doi:10.1021/nn900887m

    Article  CAS  PubMed  Google Scholar 

  • Khodakovskaya MV, de Silva K, Biris AS, Dervishi E, Villagarcia H (2012) Carbon nanotubes induce growth enhancement of tobacco cells. ACS Nano 6:2128–2135. doi:10.1021/nn204643g

    Article  CAS  PubMed  Google Scholar 

  • Klaine SJ, Alvarez PJ, Batley GE, Fernandes TF, Handy RD, Lyon DY, Mahendra S, McLaughlin MJ, Lead JR (2008) Nanomaterials in the environment: behavior, fate, bioavailability, and effects. Environ Toxicol Chem 27:1825–1851. doi:10.1897/08-090.1

    Article  CAS  PubMed  Google Scholar 

  • Knauer K, Bucheli T (2009) Nano-materials-the need for research in agriculture. Agrarforschung 16:390–395

    Google Scholar 

  • Kora AJ, Sashidhar RB, Arunachalam J (2010) Gum kondagogu (Cochlospermum gossypium): a template for the green synthesis and stabilization of silver nanoparticles with antibacterial application. Carbohydr Polym 82:670–679. doi:10.1016/j.carbpol.2010.05.034

    Article  CAS  Google Scholar 

  • Kotakadi VS, Rao YS, Gaddam SA, Prasad TNVKV, Reddy AV, Gopal DS (2013) Simple and rapid biosynthesis of stable silver nanoparticles using dried leaves of Catharanthus roseus. Linn. G. Donn and its antimicrobial activity. Colloids Surf B: Biointerfaces 105:194–198. doi:10.1016/j.colsurfb.2013.01.003

    Article  CAS  PubMed  Google Scholar 

  • Kouvaris P, Delimitis A, Zaspalis V, Papadopoulos D, Tsipas SA, Michailidis N (2012) Green synthesis and characterization of silver nanoparticles produced using Arbutus Unedo leaf extract. Mater Lett 76:18–20. doi:10.1016/j.matlet.2012.02.025

    Article  CAS  Google Scholar 

  • Krishnaraj C, Jagan EG, Rajasekar S, Selvakumar P, Kalaichelvan PT, Mohan N (2010) Synthesis of silver nanoparticles using Acalypha indica leaf extracts and its antibacterial activity against water borne pathogens. Colloids Surf B: Biointerfaces 76:50–56. doi:10.1016/j.colsurfb.2009.10.008

    Article  CAS  PubMed  Google Scholar 

  • Krishnaraj C, Jagan EG, Ramachandran R, Abirami SM, Mohan N, Kalaichelvan PT (2012) Effect of biologically synthesized silver nanoparticles on Bacopa monnieri (Linn.) Wettst. plant growth metabolism. Process Biochem 47:651–658. doi:10.1016/j.procbio.2012.01.006

    Article  CAS  Google Scholar 

  • Kumar KM, Sinha M, Mandal BK, Ghosh AR, Kumar KS, Reddy PS (2012) Green synthesis of silver nanoparticles using Terminalia chebula extract at room temperature and their antimicrobial studies. Spectrochim Acta Part A: Mol Biomol Spectrosc 91:228–233

    Article  CAS  Google Scholar 

  • Kumar B, Smita K, Cumbal L, Debut A (2014a) Synthesis of silver nanoparticles using Sacha inchi (Plukenetia volubilis L.) leaf extracts. Saudi J Biol Sci 21:605–609. doi:10.1016/j.sjbs.2014.07.004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kumar DA, Palanichamy V, Roopan SM (2014b) Green synthesis of silver nanoparticles using Alternanthera dentata leaf extract at room temperature and their antimicrobial activity. Spectrochim Acta Part A: Mol Biomol Spectrosc 127:168–171. doi:10.1016/j.saa.2014.02.058

    Article  CAS  Google Scholar 

  • Kumar HA, Mandal BK, Kumar KM, Babu Maddinedi S, Kumar TS, Madhiyazhagan P, Ghosh AR (2014c) Antimicrobial and antioxidant activities of Mimusops elengi seed extract mediated isotropic silver nanoparticles. Spectrochimica Acta Part A: Molecul Biomolecul Spectroscopy 130:13–18. doi:10.1016/j.saa.2014.03.024

    Article  CAS  Google Scholar 

  • Kumar PV, Pammi SVN, Kollu P, Satyanarayana KVV, Shameem U (2014d) Green synthesis and characterization of silver nanoparticles using Boerhaavia diffusa plant extract and their antibacterial activity. Ind Crop Prod 52:562–566. doi:10.1016/j.indcrop.2013.10.050

    Article  CAS  Google Scholar 

  • Kumari M, Khan SS, Pakrashi S, Mukherjee A, Chandrasekaran N (2011) Cytogenetic and genotoxic effects of zinc oxide nanoparticles on root cells of Allium cepa. J Hazard Mater 190:613–621

    Article  CAS  PubMed  Google Scholar 

  • Kuppusamy P, Yusoff MM, Maniam GP, Govindan N (2016) Biosynthesis of metallic nanoparticles using plant derivatives and their new avenues in pharmacological applications–an updated report. Saudi Pharm J 24:473–484. doi:10.1016/j.jsps.2014.11.013

    Article  PubMed  Google Scholar 

  • Lee WM, An YJ, Yoon H, Kweon HS (2008) Toxicity and bioavailability of copper nanoparticles to the terrestrial plants mung bean (Phaseolus radiatus) and wheat (Triticum aestivum): plant agar test for water-insoluble nanoparticles. Environ Toxicol Chem 27:1915–1921. doi:10.1897/07-481.1

    Article  CAS  PubMed  Google Scholar 

  • Lee HJ, Song JY, Kim BS (2013) Biological synthesis of copper nanoparticles using Magnolia kobus leaf extract and their antibacterial activity. J Chem Technol Biotechnol 88:1971–1977. doi:10.1002/jctb.4052

    CAS  Google Scholar 

  • Li M, Zhu L, Lin D (2011) Toxicity of ZnO nanoparticles to Escherichia coli: mechanism and the influence of medium components. Environ Sci Technol 45:1977–1983. doi:10.1021/es102624t

    Article  CAS  PubMed  Google Scholar 

  • Lin D, Xing B (2007) Phytotoxicity of nanoparticles: inhibition of seed germination and root growth. Environ Pollut 150:243–250. doi:10.1016/j.envpol.2007.01.016

    Article  CAS  PubMed  Google Scholar 

  • Ma X, Geiser-Lee J, Deng Y, Kolmakov A (2010) Interactions between engineered nanoparticles (ENPs) and plants: phytotoxicity, uptake and accumulation. Sci Total Environ 408:3053–3061. doi:10.1016/j.scitotenv.2010.03.031

    Article  CAS  PubMed  Google Scholar 

  • Maensiri S, Laokul P, Klinkaewnarong J, Phokha S, Promarak V, Seraphin S (2008) Indium oxide (In2O3) nanoparticles using Aloe vera plant extract: synthesis and optical properties. J Optoelectron Adv Mater 10:161–165

    Google Scholar 

  • Mahmoodzadeh H, Nabavi M, Kashefi H (2013) Effect of nanoscale titanium dioxide particles on the germination and growth of canola (Brassica napus). J Ornamental Hortic Plants 3:25–32

    Google Scholar 

  • Makarov VV, Makarova SS, Love AJ, Sinitsyna OV, Dudnik AO, Yaminsky IV, Taliansky ME, Kalinina NO (2014) Biosynthesis of stable iron oxide nanoparticles in aqueous extracts of Hordeum vulgare and Rumex acetosa plants. Langmuir 30:5982–5988. doi:10.1021/la5011924

    Article  CAS  PubMed  Google Scholar 

  • Mariselvam R, Ranjitsingh AJA, Nanthini AUR, Kalirajan K, Padmalatha C, Selvakumar PM (2014) Green synthesis of silver nanoparticles from the extract of the inflorescence of Cocos nucifera (family: Arecaceae) for enhanced antibacterial activity. Spectrochim Acta A Mol Biomol Spectrosc 129:537–541. doi:10.1016/j.saa.2014.03.066

    Article  CAS  PubMed  Google Scholar 

  • Moon RJ, Frihart CR, Wegner T (2006) Nanotechnology applications in the forest products industry. Forest Prod J 56:4

    CAS  Google Scholar 

  • Muniyappan N, Nagarajan NS (2014) Green synthesis of silver nanoparticles with Dalbergia spinosa leaves and their applications in biological and catalytic activities. Process Biochem 49:1054–1061. doi:10.1016/j.procbio.2014.03.015

    Article  CAS  Google Scholar 

  • Murugan K, Dinesh D, Kumar PJ, Panneerselvam C, Subramaniam J, Madhiyazhagan P, Suresh U, Nicoletti M, Alarfaj AA, Munusamy MA, Higuchi A (2015) Datura metel-synthesized silver nanoparticles magnify predation of dragonfly nymphs against the malaria vector Anopheles stephensi. Parasitol Res 114:4645–4654. doi:10.1007/s00436-015-4710-x

    Article  PubMed  Google Scholar 

  • Nadagouda MN, Iyanna N, Lalley J, Han C, Dionysiou DD, Varma RS (2014) Synthesis of silver and gold nanoparticles using antioxidants from blackberry, blueberry, pomegranate, and turmeric extracts. ACS Sus Chem Engin 2:1717–1723. doi:10.1021/sc500237k

    Article  CAS  Google Scholar 

  • Naika HR, Lingaraju K, Manjunath K, Kumar D, Nagaraju G, Suresh D, Nagabhushana H (2015) Green synthesis of CuO nanoparticles using Gloriosa superba L. extract and their antibacterial activity. J Taibah University Sci 9:7–12. doi:10.1016/j.jtusci.2014.04.006

    Article  Google Scholar 

  • Nair R, Varghese SH, Nair BG, Maekawa T, Yoshida Y, Kumar DS (2010) Nanoparticulate material delivery to plants. Plant Sci 179:154–163. doi:10.1016/j.plantsci.2010.04.012

    Article  CAS  Google Scholar 

  • Nalawade P, Mukherjee P, Kapoor S (2014) Biosynthesis, characterization and antibacterial studies of silver nanoparticles using pods extract of Acacia auriculiformis. Spectrochim Acta A Mol Biomol Spectrosc 129:121–124. doi:10.1016/j.saa.2014.03.032

    Article  CAS  PubMed  Google Scholar 

  • Nasrollahzadeh M, Sajadi SM, Rostami-Vartooni A, Khalaj M (2014) Journey on greener pathways: use of Euphorbia condylocarpa M. bieb as reductant and stabilizer for green synthesis of Au/Pd bimetallic nanoparticles as reusable catalysts in the Suzuki and Heck coupling reactions in water. RSC Adv 4:43477–43484. doi:10.1039/c4ra07173e

    Article  CAS  Google Scholar 

  • Nasrollahzadeh M, Sajadi SM, Rostami-Vartooni A, Khalaj M (2015a) Green synthesis of Pd/Fe3O4 nanoparticles using Euphorbia condylocarpa M. bieb root extract and their catalytic applications as magnetically recoverable and stable recyclable catalysts for the phosphine-free Sonogashira and Suzuki coupling reactions. J Molecul Catal A: Chem 396:31–39. doi:10.1016/j.molcata.2014.09.029

    Article  CAS  Google Scholar 

  • Nasrollahzadeh M, Sajadi SM, Maham M (2015b) Green synthesis of palladium nanoparticles using Hippophae rhamnoides Linn leaf extract and their catalytic activity for the Suzuki–Miyaura coupling in water. J Molecul Catal A: Chem 396:297–303. doi:10.1016/j.molcata.2014.10.019

    Article  CAS  Google Scholar 

  • Navarro E, Baun A, Behra R, Hartmann NB, Filser J, Miao AJ, Quigg A, Santschi PH, Sigg L (2008) Environmental behavior and ecotoxicity of engineered nanoparticles to algae, plants, and fungi. Ecotoxicology 17:372–386. doi:10.1007/s10646-008-0214-0

    Article  CAS  PubMed  Google Scholar 

  • Nel A, Xia T, Mädler L, Li N (2006) Toxic potential of materials at the nanolevel. Science 311:622–627. doi:10.1126/science.1114397

    Article  CAS  PubMed  Google Scholar 

  • Netala VR, Kotakadi VS, Nagam V, Bobbu P, Ghosh SB, Tartte V (2015) First report of biomimetic synthesis of silver nanoparticles using aqueous callus extract of Centella asiatica and their antimicrobial activity. Appl Nanosci 5:801–807. doi:10.1007/s13204-014-0374-6

    Article  CAS  Google Scholar 

  • Nisha SN, Aysha OS, Rahaman JS, Kumar PV, Valli S, Nirmala P, Reena A (2014) Lemon peels mediated synthesis of silver nanoparticles and its antidermatophytic activity. Spectrochim Acta A Mol Biomol Spectrosc 124:194–198. doi:10.1016/j.saa.2013.12.019

    Article  CAS  Google Scholar 

  • Noruzi M, Zare D, Davoodi D (2012) A rapid biosynthesis route for the preparation of gold nanoparticles by aqueous extract of cypress leaves at room temperature. Spectrochim Acta A Mol Biomol Spectrosc 94:84–88. doi:10.1016/j.saa.2012.03.041

    Article  CAS  PubMed  Google Scholar 

  • Panda KK, Achary VM, Krishnaveni R, Padhi BK, Sarangi SN, Sahu SN, Panda BB (2011) In vitro biosynthesis and genotoxicity bioassay of silver nanoparticles using plants. Toxicol in Vitro 25:1097–1105. doi:10.1016/j.tiv.2011.03.008

    Article  CAS  PubMed  Google Scholar 

  • Patil CD, Patil SV, Borase HP, Salunke BK, Salunkhe RB (2012) Larvicidal activity of silver nanoparticles synthesized using Plumeria rubra plant latex against Aedes aegypti and Anopheles stephensi. Parasitol Res 110:1815–1822. doi:10.1007/s00436-011-2704-x

    Article  PubMed  Google Scholar 

  • Peters RJ, Bouwmeester H, Gottardo S, Amenta V, Arena M, Brandhoff P, Marvin HJ, Mech A, Moniz FB, Pesudo LQ, Rauscher H (2016) Nanomaterials for products and application in agriculture, feed and food. Trends Food Sci Technol 54:155–164. doi:10.1016/j.tifs.2016.06.008

    Article  CAS  Google Scholar 

  • Philip D (2010) Green synthesis of gold and silver nanoparticles using Hibiscus rosa sinensis. Phys E Low-Dimensional Syst Nanostruct 42:1417–1424. doi:10.1016/j.physe.2009.11.081

    Article  CAS  Google Scholar 

  • Philip D, Unni C, Aromal SA, Vidhu VK (2011) Murraya koenigii leaf-assisted rapid green synthesis of silver and gold nanoparticles. Spectrochim Acta A Mol Biomol Spectrosc 78:899–904. doi:10.1016/j.saa.2010.12.060

    Article  PubMed  CAS  Google Scholar 

  • Prabhu D, Arulvasu C, Babu G, Manikandan R, Srinivasan P (2013) Biologically synthesized green silver nanoparticles from leaf extract of Vitex negundo L. induce growth-inhibitory effect on human colon cancer cell line HCT15. Process Biochem 48:317–324. doi:10.1016/j.procbio.2012.12.013

    Article  CAS  Google Scholar 

  • Prasad R (2014) Synthesis of silver nanoparticles in photosynthetic plants. J Nanoparticle:963961. http://dx.doi.org/10.1155/2014/963961

  • Prasad R, Swamy VS (2013) Antibacterial activity of silver nanoparticles synthesized by bark extract of Syzygium cumini. J Nanopart 2013:1–6. doi:10.1155/2013/431218

    Article  CAS  Google Scholar 

  • Prasad R, Swamy VS, Prasad KS, Varma A (2012) Biogenic synthesis of silver nanoparticles from the leaf extract of Syzygium cumini (L.) and its antibacterial activity. Int J Pharm Bio Sci 3(4):745–752

    CAS  Google Scholar 

  • Prasad R, Kumar V, Prasad KS (2014) Nanotechnology in sustainable agriculture: present concerns and future aspects. Afr J Biotechnol 13(6):705–713

    Article  CAS  Google Scholar 

  • Prasad R, Pandey R, Barman I (2016) Engineering tailored nanoparticles with microbes: quo vadis. WIREs Nanomed Nanobiotechnol 8:316–330. doi:10.1002/wnan.1363

    Article  Google Scholar 

  • Prasad R, Bhattacharyya A, Nguyen QD (2017) Nanotechnology in sustainable agriculture: recent developments, challenges, and perspectives. Front Microbiol 8:1014. doi:10.3389/fmicb.2017.01014

  • Prathna TC, Chandrasekaran N, Raichur AM, Mukherjee A (2011) Biomimetic synthesis of silver nanoparticles by Citrus limon (lemon) aqueous extract and theoretical prediction of particle size. Colloids Surf B: Biointerfaces 82(1):152–159. doi:10.1016/j.colsurfb.2010.08.036

    Article  CAS  PubMed  Google Scholar 

  • Premanand G, Shanmugam N, Kannadasan N, Sathishkumar K, Viruthagiri G (2016) Nelumbo nucifera leaf extract mediated synthesis of silver nanoparticles and their antimicrobial properties against some human pathogens. Appl Nanosci 6:409–415. doi:10.1007/s13204-015-0442-6

    Article  CAS  Google Scholar 

  • Puišo J, Jonkuvienė D, Mačionienė I, Šalomskienė J, Jasutienė I, Kondrotas R (2014) Biosynthesis of silver nanoparticles using lingonberry and cranberry juices and their antimicrobial activity. Colloids Surf B: Biointerfaces 121:214–221. doi:10.1016/j.colsurfb.2014.05.001

    Article  PubMed  CAS  Google Scholar 

  • Qu J, Yuan X, Wang X, Shao P (2011a) Zinc accumulation and synthesis of ZnO nanoparticles using Physalis alkekengi L. Environ Pollut 159:1783–1788. doi:10.1016/j.envpol.2011.04.016

    Article  CAS  PubMed  Google Scholar 

  • Qu J, Luo C, Hou J (2011b) Synthesis of ZnO nanoparticles from Zn-hyperaccumulator (Sedum alfredii Hance) plants. IET Micro Nano Lett 6:174–176. doi:10.1049/mnl.2011.0004

    Article  CAS  Google Scholar 

  • Raghunandan D, Basavaraja S, Mahesh B, Balaji S, Manjunath SY, Venkataraman A (2009) Biosynthesis of stable polyshaped gold nanoparticles from microwave-exposed aqueous extracellular anti-malignant guava (Psidium guajava) leaf extract. NanoBiotechnology 5:34–41. doi:10.1007/s12030-009-9030-8

    Article  CAS  Google Scholar 

  • Raghunandan D, Bedre MD, Basavaraja S, Sawle B, Manjunath SY, Venkataraman A (2010) Rapid biosynthesis of irregular shaped gold nanoparticles from macerated aqueous extracellular dried clove buds (Syzygium aromaticum) solution. Colloids Surf B: Biointerfaces 79:235–240

    Article  CAS  PubMed  Google Scholar 

  • Rahimi-Nasrabadi M, Pourmortazavi SM, Shandiz SA, Ahmadi F, Batooli H (2014) Green synthesis of silver nanoparticles using Eucalyptus leucoxylon leaves extract and evaluating the antioxidant activities of extract. Nat Prod Res 28:1964–1969

    Article  CAS  PubMed  Google Scholar 

  • Ramar M, Manikandan B, Marimuthu PN, Raman T, Mahalingam A, Subramanian P, Karthick S, Munusamy A (2015) Synthesis of silver nanoparticles using Solanum trilobatum fruits extract and its antibacterial, cytotoxic activity against human breast cancer cell line MCF 7. Spectrochim Acta Mol Biomol Spectrosc 140:223–228

    Article  CAS  Google Scholar 

  • Rao SV (2011) Picosecond nonlinear optical studies of gold nanoparticles synthesised using coriander leaves (Coriandrum sativum). J Mod Opt 58:1024–1029

    Article  CAS  Google Scholar 

  • Rashidipour M, Heydari R (2014) Biosynthesis of silver nanoparticles using extract of olive leaf: synthesis and in vitro cytotoxic effect on MCF-7 cells. J Nanostruct Chem 4:1–6

    Article  Google Scholar 

  • Raut RW, Mendhulkar VD, Kashid SB (2014) Photosensitized synthesis of silver nanoparticles using Withania somnifera leaf powder and silver nitrate. J Photochem Photobiol B Biol 132:45–55

    Article  CAS  Google Scholar 

  • Raut-Rajesh W, Lakkakula Jaya R, Kolekar Niranjan S, Mendhulkar Vijay D, Kashid Sahebrao B (2009) Phytosynthesis of silver nanoparticle using Gliricidia sepium (Jacq.) Curr Nanosci 5:117–122

    Article  Google Scholar 

  • Reddy NJ, Vali DN, Rani M, Rani SS (2014) Evaluation of antioxidant, antibacterial and cytotoxic effects of green synthesized silver nanoparticles by Piper longum fruit. Mat Sci Engin: C 34:115–122. doi:10.1016/j.msec.2013.08.039

    Article  CAS  Google Scholar 

  • Roduner E (2006) Size matters: why nanomaterials are different. Chem Soc Rev 35:583–592

    Article  CAS  PubMed  Google Scholar 

  • Roopan SM, Bharathi A, Kumar R, Khanna VG, Prabhakarn A (2012) Acaricidal, insecticidal, and larvicidal efficacy of aqueous extract of Annona squamosa L peel as biomaterial for the reduction of palladium salts into nanoparticles. Colloids Surf B: Biointerfaces 92:209–212

    Article  CAS  PubMed  Google Scholar 

  • Roopan SM, Madhumitha G, Rahuman AA, Kamaraj C, Bharathi A, Surendra TV (2013) Low-cost and eco-friendly phyto-synthesis of silver nanoparticles using Cocos nucifera coir extract and its larvicidal activity. Ind Crop Prod 43:631–635. doi:10.1016/j.indcrop.2012.08.013

    Article  CAS  Google Scholar 

  • Rupiasih NN, Aher A, Gosavi S, Vidyasagar PB (2015) Green synthesis of silver nanoparticles using latex extract of Thevetia peruviana: a novel approach towards poisonous plant utilization. In Recent Trend Physic Mat Sci Technol 204:1–10. doi:10.1007/978-981-287-128-2_1

    CAS  Google Scholar 

  • Sable NE, Gaikwad SW, Bonde SH, Gade AN, Rai M (2012) Phytofabrication of silver nanoparticles by using aquatic plant Hydrilla verticilata. Nusantara Bio sci 4:45–49

    Google Scholar 

  • Sadeghi B, Gholamhoseinpoor F (2015) A study on the stability and green synthesis of silver nanoparticles using Ziziphora tenuior (Zt) extract at room temperature. Spectrochim Acta Mol Biomol Spectrosc 134:310–315. doi:10.1016/j.saa.2014.06.046

    Article  CAS  Google Scholar 

  • Salam HA, Sivaraj R, Venckatesh R (2014) Green synthesis and characterization of zinc oxide nanoparticles from Ocimum basilicum L. var. purpurascens Benth.-Lamiaceae leaf extract. Mater Lett 131:16–18. doi:10.1016/j.matlet.2014.05.033

    Article  CAS  Google Scholar 

  • Salunke BK, Sawant SS, Kim BS (2014a) Potential of Kalopanax septemlobus leaf extract in synthesis of silver nanoparticles for selective inhibition of specific bacterial strain in mixed culture. Appl Biochem Biotechnol 174:587–601. doi:10.1007/s12010-014-1077-x

    Article  CAS  PubMed  Google Scholar 

  • Salunke BK, Shin J, Sawant SS, Alkotaini B, Lee S, Kim BS (2014b) Rapid biological synthesis of silver nanoparticles using Kalopanax pictus plant extract and their antimicrobial activity. Korean J Chem Eng 31:2035–2040. doi:10.1007/s11814-014-0149-5

    Article  CAS  Google Scholar 

  • Saminathan K (2015) Herbal synthesis of silver nanoparticles using Eclipta alba and its antimicrobial activity. Int J Curr Microbiol App Sci 4(3):1092–1097

    Google Scholar 

  • Sasidharan S, Chen Y, Saravanan D, Sundram KM, Latha LY (2011) Extraction, isolation and characterization of bioactive compounds from plants’ extracts. African J Tradition Complement Alt Med 8:1–10

    CAS  Google Scholar 

  • Sathishkumar M, Sneha K, Kwak IS, Mao J, Tripathy SJ, Yun YS (2009a) Phyto-crystallization of palladium through reduction process using Cinnamom zeylanicum bark extract. J Hazard Mater 171:400–404. doi:10.1016/j.jhazmat.2009.06.014

    Article  CAS  PubMed  Google Scholar 

  • Sathishkumar M, Sneha K, Won SW, Cho CW, Kim S, Yun YS (2009b) Cinnamon zeylanicum bark extract and powder mediated green synthesis of nano-crystalline silver particles and its bactericidal activity. Colloids Surf B: Biointerfaces 73:332–338. doi:10.1016/j.colsurfb.2009.06.005

    Article  CAS  PubMed  Google Scholar 

  • Sathishkumar G, Gobinath C, Wilson A, Sivaramakrishnan S (2014) Dendrophthoe falcata (Lf) Ettingsh (Neem mistletoe): a potent bioresource to fabricate silver nanoparticles for anticancer effect against human breast cancer cells (MCF-7). Spectrochim Acta A Mol Biomol Spectrosc 128:285–290. doi:10.1016/j.saa.2014.02.096

    Article  CAS  PubMed  Google Scholar 

  • Saware K, Sawle B, Salimath B, Jayanthi K, Abbaraju V (2014) Biosynthesis and characterization of silver nanoparticles using Ficus benghalensis leaf extract. Int J Res Eng Technol 3:867–874. doi:10.1007/s10876-014-0697-1

    Google Scholar 

  • Saxena A, Tripathi RM, Zafar F, Singh P (2012) Green synthesis of silver nanoparticles using aqueous solution of Ficus benghalensis leaf extract and characterization of their antibacterial activity. Mater Lett 67:91–94

    Article  CAS  Google Scholar 

  • Shankar SS, Rai A, Ahmad A, Sastry M (2004a) Rapid synthesis of Au, Ag, and bimetallic Au core–Ag shell nanoparticles using Neem (Azadirachta indica) leaf broth. J Colloid Interface Sci 275:496–502. doi:10.1016/j.jcis.2004.03.003

    Article  CAS  PubMed  Google Scholar 

  • Shankar SS, Rai A, Ankamwar B, Singh A, Ahmad A, Sastry M (2004b) Biological synthesis of triangular gold nanoprisms. Nature Mat 3:482–488. doi:10.1038/nmat1152

    Article  CAS  Google Scholar 

  • Sharma NC, Sahi SV, Nath S, Parsons JG, Gardea-Torresde JL, Pal T (2007) Synthesis of plant-mediated gold nanoparticles and catalytic role of biomatrix-embedded nanomaterials. Environ Sci Technol 41:5137–5142

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shekhawat GS, Arya V (2009) Biological synthesis of Ag nanoparticles through in vitro cultures of Brassica juncea C. zern. In Adv Mat Res 67:295–299

    Article  CAS  Google Scholar 

  • Showalter AM (1993) Structure and function of plant cell wall proteins. Plant Cell 5:9. doi:10.1105/tpc.5.1.9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Singhal G, Bhavesh R, Kasariya K, Sharma AR, Singh RP (2011) Biosynthesis of silver nanoparticles using Ocimum sanctum (Tulsi) leaf extract and screening its antimicrobial activity. J Nanopart Res 13:2981–2988. doi:10.1007/s11051-010-0193-y

    Article  CAS  Google Scholar 

  • Siva S, Sameem SM, Sudharsan S, Kannan RS (2014) Green, effective biological route for the synthesis of silver nanoparticles using Cyperus rotundus grass extracts. Int J Curr Res 6:4532–4538

    Google Scholar 

  • Sivaraj R, Rahman PK, Rajiv P, Salam HA, Venckatesh R (2014) Biogenic copper oxide nanoparticles synthesis using Tabernaemontana divaricate leaf extract and its antibacterial activity against urinary tract pathogen. Spectrochim Acta Mol Biomol Spectrosc 133:178–181. doi:10.1016/j.saa.2014.05.048

    Article  CAS  Google Scholar 

  • Sivaraman D, Panneerselvam P, Muralidharan P, Prabhu TP, Kumar RV (2013) Green synthesis, characterization and anti-microbial activity of silver nanoparticles produced using Ipomoea aquatica forsk leaf extract. Int J Pharm Sci Res 4:2280

    CAS  Google Scholar 

  • Sosan A, Svistunenko D, Straltsova D, Tsiurkina K, Smolich I, Lawson T, Subramaniam S, Golovko V, Anderson D, Sokolik A, Colbeck I (2016) Engineered silver nanoparticles are sensed at the plasma membrane and dramatically modify the physiology of Arabidopsis thaliana plants. Plant J 85:245–257. doi:10.1111/tpj.13105

    Article  CAS  PubMed  Google Scholar 

  • Stampoulis D, Sinha SK, White JC (2009) Assay-dependent phytotoxicity of nanoparticles to plants. Environ Sci Technol 43:9473–9479. doi:10.1021/es901695c

    Article  CAS  PubMed  Google Scholar 

  • Steinmetz NF, Evans DJ (2007) Utilisation of plant viruses in bionanotechnology. Org Biomol Chem 5:2891–2902. doi:10.1039/b708175h

    Article  CAS  PubMed  Google Scholar 

  • Sujitha MV, Kannan S (2013) Green synthesis of gold nanoparticles using Citrus fruits (Citrus limon, Citrus reticulata and Citrus sinensis) aqueous extract and its characterization. Spectrochim Acta A Mol Biomol Spectrosc 102:15–23. doi:10.1016/j.saa.2012.09.042

    Article  CAS  PubMed  Google Scholar 

  • Suman TY, Rajasree SR, Kanchana A, Elizabeth SB (2013) Biosynthesis, characterization and cytotoxic effect of plant mediated silver nanoparticles using Morinda citrifolia root extract. Colloids Surf B: Biointerfaces 106:74–78. doi:10.1016/j.colsurfb.2013.01.037

    Article  CAS  PubMed  Google Scholar 

  • Suman TY, Rajasree SR, Ramkumar R, Rajthilak C, Perumal P (2014) The green synthesis of gold nanoparticles using an aqueous root extract of Morinda citrifolia L. Spectrochim Acta Mol Biomol Spectrosc 118:11–16. doi:10.1016/j.saa.2013.08.066

    Article  CAS  Google Scholar 

  • Suresh G, Gunasekar PH, Kokila D, Prabhu D, Dinesh D, Ravichandran N, Ramesh B, Koodalingam A, Siva GV (2014) Green synthesis of silver nanoparticles using Delphinium denudatum root extract exhibits antibacterial and mosquito larvicidal activities. Spectrochim Acta Mol Biomol Spectrosc 127:61–66. doi:10.1016/j.saa.2014.02.030

    Article  CAS  Google Scholar 

  • Suresh D, Nethravathi PC, Rajanaika H, Nagabhushana H, Sharma SC (2015) Green synthesis of multifunctional zinc oxide (ZnO) nanoparticles using Cassia fistula plant extract and their photodegradative, antioxidant and antibacterial activities. Mat Sci Semicond Proc 31:446–454. doi:10.1016/j.mssp.2014.12.023

    Article  CAS  Google Scholar 

  • Swamy VS, Prasad R (2012) Green synthesis of silver nanoparticles from the leaf extract of Santalum album and its antimicrobial activity. J Optoelectron Biomed Mater 4(3):53–59

    Google Scholar 

  • Swamy MK, Sudipta KM, Jayanta K, Balasubramanya S (2015) The green synthesis, characterization, and evaluation of the biological activities of silver nanoparticles synthesized from Leptadenia reticulata leaf extract. Appl Nanosci 5:73–81. doi:10.1007/s13204-014-0293-6

    Article  CAS  Google Scholar 

  • Tan XM, Lin C, Fugetsu B (2009) Studies on toxicity of multi-walled carbon nanotubes on suspension rice cells. Carbon 47:3479–3487. doi:10.1016/j.carbon.2009.08.018

    Article  CAS  Google Scholar 

  • Torney F, Trewyn BG, Lin VS, Wang K (2007) Mesoporous silica nanoparticles deliver DNA and chemicals into plants. Nat Nanotechnol 2:295–300. doi:10.1038/nnano.2007.108

    Article  CAS  PubMed  Google Scholar 

  • Tripathy A, Raichur AM, Chandrasekaran N, Prathna TC, Mukherjee A (2010) Process variables in biomimetic synthesis of silver nanoparticles by aqueous extract of Azadirachta indica (Neem) leaves. J Nanopart Res 12:237–246. doi:10.1007/s11051-009-9602-5

    Article  CAS  Google Scholar 

  • Vanaja M, Annadurai G (2013) Coleus aromaticus leaf extract mediated synthesis of silver nanoparticles and its bactericidal activity. Appl Nanosci 3:217–223. doi:10.1007/s13204-012-0121-9

    Article  CAS  Google Scholar 

  • Vankar PS, Shukla D (2012) Biosynthesis of silver nanoparticles using lemon leaves extract and its application for antimicrobial finish on fabric. Appl Nanosci 2:163–168. doi:10.1007/s13204-011-0051-y

    Article  CAS  Google Scholar 

  • Vasanth K, Ilango K, MohanKumar R, Agrawal A, Dubey GP (2014) Anticancer activity of Moringa oleifera mediated silver nanoparticles on human cervical carcinoma cells by apoptosis induction. Colloid Surfaces B: Biointer 117:354–359. doi:10.1016/j.colsurfb.2014.02.052

    Article  CAS  Google Scholar 

  • Veerakumar K, Govindarajan M (2014) Adulticidal properties of synthesized silver nanoparticles using leaf extracts of Feronia elephantum (Rutaceae) against filariasis, malaria, and dengue vector mosquitoes. Parasitol Res 113:4085–4096. doi:10.1007/s00436-014-4077-4

    Article  PubMed  Google Scholar 

  • Veerasamy R, Xin TZ, Gunasagaran S, Xiang TF, Yang EF, Jeyakumar N, Dhanaraj SA (2011) Biosynthesis of silver nanoparticles using mangosteen leaf extract and evaluation of their antimicrobial activities. J S Chem Soc 15:113–120. doi:10.1016/j.jscs.2010.06.004

    CAS  Google Scholar 

  • Velmurugan P, Anbalagan K, Manosathyadevan M, Lee KJ, Cho M, Lee SM, Park JH, Oh SG, Bang KS, Oh BT (2014) Green synthesis of silver and gold nanoparticles using Zingiber officinale root extract and antibacterial activity of silver nanoparticles against food pathogens. Bioproc Biosys Engin 37:1935–1943. doi:10.1007/s00449-014-1169-6

    Article  CAS  Google Scholar 

  • Vijayakumar M, Priya K, Nancy FT, Noorlidah A, Ahmed ABA (2013) Biosynthesis, characterisation and anti-bacterial effect of plant-mediated silver nanoparticles using Artemisia nilagirica. Ind Crop Prod 41:235–240. doi:10.1016/j.indcrop.2012.04.017

    Article  CAS  Google Scholar 

  • Vinod VTP, Saravanan P, Sreedhar B, Devi DK, Sashidhar RB (2011) A facile synthesis and characterization of Ag, Au and Pt nanoparticles using a natural hydrocolloid gum kondagogu (Cochlospermum gossypium). Colloids Surf B: Biointerfaces 83:291–298. doi:10.1016/j.colsurfb.2010.11.035

    Article  CAS  PubMed  Google Scholar 

  • Vivero-Escoto JL, Rieter WJ, Lau H, Huxford-Phillips RC, Lin W (2013) Biodegradable polysilsesquioxane nanoparticles as efficient contrast agents for magnetic resonance imaging. Small 9:3523–3531. doi:10.1002/smll.201300198

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang Y, He X, Wang K, Zhang X, Tan W (2009) Barbated Skullcup herb extract-mediated biosynthesis of gold nanoparticles and its primary application in electrochemistry. Colloids Surf B: Biointerfaces 73:75–79. doi:10.1016/j.colsurfb.2009.04.027

    Article  CAS  PubMed  Google Scholar 

  • Wang H, Kou X, Pei Z, Xiao JQ, Shan X, Xing B (2011) Physiological effects of magnetite (Fe3O4) nanoparticles on perennial ryegrass (Lolium perenne L.) and pumpkin (Cucurbita mixta) plants. Nanotoxicology 5:30–42. doi:10.3109/17435390.2010.489206

    Article  PubMed  CAS  Google Scholar 

  • Wegner T, Jones P (2007) Nanotechnology for the forest products industry. Wood Fiber Sci 37:549–551

    Google Scholar 

  • Yang L, Watts DJ (2005) Particle surface characteristics may play an important role in phytotoxicity of alumina nanoparticles. Toxicol Lett 158:122–132

    Article  CAS  PubMed  Google Scholar 

  • Yang X, Li Q, Wang H, Huang J, Lin L, Wang W, Jia L (2010) Green synthesis of palladium nanoparticles using broth of Cinnamomum camphora leaf. J Nanopart Res 12:1589–1598. doi:10.1007/s11051-009-9675-1

    Article  CAS  Google Scholar 

  • Yasmeen F, Raja NI, Mustafa G, Sakata K, Komatsu S (2016) Quantitative proteomic analysis of post-flooding recovery in soybean root exposed to aluminum oxide nanoparticles. J Proteome 30:136–150. doi:10.1016/j.jprot.2016.03.014

    Article  CAS  Google Scholar 

  • Zayed MF, Eisa WH (2014) Phoenix dactylifera L. leaf extract phytosynthesized gold nanoparticles; controlled synthesis and catalytic activity. Spectrochimica Acta Part A: Molecul Biomolecul Spectroscopy 121:238–244. doi:10.1016/j.saa.2013.10.092

    Article  CAS  Google Scholar 

  • Zhu H, Han J, Xiao JQ, Jin Y (2008) Uptake, translocation, and accumulation of manufactured iron oxide nanoparticles by pumpkin plants. J Environ Monit 10:713–717. doi:10.1039/b805998e

    Article  CAS  PubMed  Google Scholar 

  • Zuas O, Hamim N, Sampora Y (2014) Bio-synthesis of silver nanoparticles using water extract of Myrmecodia pendan (Sarang Semut plant). Mat Lett May 123:156–159. doi:10.1016/j.matlet.2014.03.026

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mehdi Razzaghi-Abyaneh .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Nature Singapore Pte Ltd.

About this chapter

Cite this chapter

Gholami-Shabani, M., Gholami-Shabani, Z., Shams-Ghahfarokhi, M., Jamzivar, F., Razzaghi-Abyaneh, M. (2017). Green Nanotechnology: Biomimetic Synthesis of Metal Nanoparticles Using Plants and Their Application in Agriculture and Forestry. In: Prasad, R., Kumar, M., Kumar, V. (eds) Nanotechnology. Springer, Singapore. https://doi.org/10.1007/978-981-10-4573-8_8

Download citation

Publish with us

Policies and ethics