Advertisement

Nanotechnology pp 133-175 | Cite as

Green Nanotechnology: Biomimetic Synthesis of Metal Nanoparticles Using Plants and Their Application in Agriculture and Forestry

  • Mohammadhassan Gholami-Shabani
  • Zeynab Gholami-Shabani
  • Masoomeh Shams-Ghahfarokhi
  • Fatemehsadat Jamzivar
  • Mehdi Razzaghi-Abyaneh
Chapter

Abstract

Biomimetic nanotechnology is an outstanding investigation area at the meeting place of life sciences with physics and engineering. It is an uninterrupted emerging field that deals with knowledge transfer from biology to nanotechnology. Biomimetic nanotechnology is a scope that has the potential to support extensively successful mastering of major global challenges and solve the problems. Metallic nanoparticles are being utilized in every phase of science along with engineering, including agriculture fields, and are still charming the scientists to explore new dimensions for their respective worth, which is generally credited to their corresponding small sizes. The up-and-coming researches have proven their antimicrobial significance. The present chapter is devoted to the possibility of metal nanoparticle synthesis using plant extracts and microorganisms. This approach has been actively pursued in recent years as an alternative, efficient, low-cost, and environmentally safe technique for producing nanoparticles with specified properties. The main attention is on the role of the natural plant biomolecules involved in the bioreduction of metal salts during the nanoparticle synthesis. Moreover, attempts to apply nanotechnology in agriculture began with the growing realization that conventional agriculture technologies would neither be able to grow productivity any further nor restore ecosystems damaged by existing technologies back to their pristine situation, in particular because the long-term effects of farming with “miracle seeds,” in conjunction with pesticides, irrigation, and fertilizers, have been questioned both at the scientific and policy levels and must be steadily phased out. Nanotechnology in agricultural science has gained momentum in the past decade with a plenty of public funding, but the pace of growth is modest, even though many disciplines come under the umbrella of agriculture. This could be credited to a unique nature of farm production, which functions as an open system whereby energy and material are swapped freely; the scale of request of input materials is gigantic in contrast with industrial metal nano-products; an absence of control over the input nanomaterials in contrast with industrial nano-products (e.g., the cell phone) and because their fate has to be conceived on the geosphere (pedosphere), hydrosphere, biosphere, and atmosphere continuum; the time delay of emerging technologies reaching the farmers’ field, specifically given that many emerging economies are reluctant to spend on innovation; and the lack of foresight subsequent from agricultural education not having attracted an enough number of clear minds the world over, whereas personnel from kindred disciplines might absence an understanding of agricultural production methods. If these issues are taken care of, nanotechnological impact in farming has bright views for improving the efficiency of nutrient use through nano-formulations of fertilizers, breaking yield obstacles through bionanotechnology, surveillance, and control of “pests and diseases,” apprehension mechanisms of host-parasite interactions at the cellular and molecular levels, growth of new-generation pesticides and their carriers, packaging and preservation of foodstuff and food additives, strengthening of natural fibers, removal of contaminants from water and soil, improving the shelf life of flowers and vegetables, clay-based nanoresources for reclamation of salt-affected soils, precision water management, and stabilization of erosion-prone surfaces to name a few.

Keywords

Biomimetics Nanobiotechnology Nanoparticles Agriculture Natural products Plant extracts 

References

  1. Abbasi T, Anuradha J, Ganaie SU, Abbasi SA (2015) Gainful utilization of the highly intransigent weed ipomoea in the synthesis of gold nanoparticles. J King Saud University-Sci 27:15–22. doi: 10.1016/j.jksus.2014.04.001 CrossRefGoogle Scholar
  2. Abdel-Aziz MS, Shaheen MS, El-Nekeety AA, Abdel-Wahhab MA (2014) Antioxidant and antibacterial activity of silver nanoparticles biosynthesized using Chenopodium murale leaf extract. J Saudi Chem Soc 18:356–363. doi: 10.1016/j.jscs.2013.09.011 CrossRefGoogle Scholar
  3. Adhikari T, Sarkar D, Mashayekhi H, Xing B (2016) Growth and enzymatic activity of maize (Zea mays L.) plant: solution culture test for copper dioxide nano particles. J Plant Nutr 39:99–115. doi: 10.1080/01904167.2015.1044012 CrossRefGoogle Scholar
  4. Ahmad N, Sharma S, Singh VN, Shamsi SF, Fatma A, Mehta BR (2010) Biosynthesis of silver nanoparticles from Desmodium triflorum: a novel approach towards weed utilization. Biotechnol Res Int 2011:1–8. doi: 10.4061/2011/454090 CrossRefGoogle Scholar
  5. Ajitha B, Reddy YA, Reddy PS (2014) Biosynthesis of silver nanoparticles using Plectranthus amboinicus leaf extract and its antimicrobial activity. Spectrochim Acta Mol Biomol Spectrosc 128:257–262. doi: 10.1016/j.saa.2014.02.105 CrossRefGoogle Scholar
  6. Alharby HF, Metwali EM, Fuller MP, Aldhebiani AY (2016) Impact of application of zinc oxide nanoparticles on callus induction, plant regeneration, element content and antioxidant enzyme activity in tomato (Solanum lycopersicum Mill.) under salt stress. Arch Biol Sci 00:17. doi: 10.2298/ABS151105017A Google Scholar
  7. Ali ZA, Yahya R, Sekaran SD, Puteh R (2016) Green synthesis of silver nanoparticles using apple extract and its antibacterial properties. Adv Mater Sci Eng:1–6. doi: 10.1155/2016/4102196
  8. Amin R, Hwang S, Park SH (2011) Nanobiotechnology: an interface between nanotechnology and biotechnology. Nano 6:101–111. doi: 10.1142/s1793292011002548 CrossRefGoogle Scholar
  9. Ankamwar B (2010) Biosynthesis of gold nanoparticles (green-gold) using leaf extract of Terminalia catappa. E-J Chem:71334–71339. doi: 10.1155/2010/745120
  10. Ankamwar B, Damle C, Ahmad A, Sastry M (2005) Biosynthesis of gold and silver nanoparticles using Emblica officinalis fruit extract, their phase transfer and transmetallation in an organic solution. J Nanosci Nanotechnol 5(10):1665–1671PubMedCrossRefGoogle Scholar
  11. Armendariz V, Herrera I, Jose-yacaman M, Troiani H, Santiago P, Gardea-Torresdey JL (2004) Size controlled gold nanoparticle formation by Avena sativa biomass: use of plants in nanobiotechnology. J Nanopart Res 6:377–382. doi: 10.1007/s11051-004-0741-4 CrossRefGoogle Scholar
  12. Aromal SA, Philip D (2012) Green synthesis of gold nanoparticles using Trigonella foenum-graecum and its size-dependent catalytic activity. Spectrochim Acta Mol Biomol Spectrosc 97:1–5. doi: 10.1016/j.saa.2012.05.083 CrossRefGoogle Scholar
  13. Arunachalam KD, Annamalai SK, Hari S (2013) One-step green synthesis and characterization of leaf extract-mediated biocompatible silver and gold nanoparticles from Memecylon umbellatum. Int J Nanomedicine 8:1307–1315. doi: 10.2147/IJN.S36670 PubMedPubMedCentralCrossRefGoogle Scholar
  14. Asavegowda N, Sobczak-Kupiec A, Malina D, Yathirajan HS, Keerthi VR, Chandrashekar N, Liny P (2013) Plant mediated synthesis of gold nanoparticles using fruit extracts of Ananas comosus (L.) (pineapple) and evaluation of biological activities. Adv Mater Lett 4:332–337CrossRefGoogle Scholar
  15. Ashokkumar S, Ravi S, Kathiravan V, Velmurugan S (2014) Synthesis, characterization and catalytic activity of silver nanoparticles using Tribulus terrestris leaf extract. Spectrochim Acta Mol Biomol Spectrosc 121:88–93. doi: 10.1016/j.saa.2013.10.073 CrossRefGoogle Scholar
  16. Asli S, Neumann PM (2009) Colloidal suspensions of clay or titanium dioxide nanoparticles can inhibit leaf growth and transpiration via physical effects on root water transport. Plant Cell Environ 32:577–584. doi: 10.1111/j.1365-3040.2009.01952.x PubMedCrossRefGoogle Scholar
  17. Augustine R, Kalarikkal N, Thomas S (2014) A facile and rapid method for the black pepper leaf mediated green synthesis of silver nanoparticles and the antimicrobial study. Appl Nanosci 4:809–818. doi: 10.1007/s13204-013-0260-7 CrossRefGoogle Scholar
  18. Awwad AM, Salem NM (2012) Green synthesis of silver nanoparticles by mulberry leaves extract. Nanosci Nanotechnol 2:125–128. doi: 10.5923/j.nn.20120204.06 CrossRefGoogle Scholar
  19. Awwad AM, Salem NM, Abdeen AO (2013) Green synthesis of silver nanoparticles using carob leaf extract and its antibacterial activity. Int J Ind chem 4:1–6. doi: 10.1186/2228-5547-4-29 CrossRefGoogle Scholar
  20. Aziz N, Faraz M, Pandey R, Sakir M, Fatma T, Varma A, Barman I, Prasad R (2015) Facile algae-derived route to biogenic silver nanoparticles: synthesis, antibacterial and photocatalytic properties. Langmuir 31:11605–11612PubMedCrossRefGoogle Scholar
  21. Aziz N, Pandey R, Barman I, Prasad R (2016) Leveraging the attributes of Mucor hiemalis-derived silver nanoparticles for a synergistic broad-spectrum antimicrobial platform. Front Microbiol 7:1984. doi: 10.3389/fmicb.2016.01984
  22. Baharara J, Namvar F, Ramezani T, Hosseini N, Mohamad R (2014) Green synthesis of silver nanoparticles using Achillea Biebersteinii flower extract and its anti-angiogenic properties in the rat aortic ring model. Molecules 19:4624–4634. doi: 10.3390/molecules19044624 PubMedCrossRefGoogle Scholar
  23. Baharara J, Namvar F, Ramezani T, Mousavi M, Mohamad R (2015) Silver nanoparticles biosynthesized using Achillea Biebersteinii flower extract: apoptosis induction in MCF-7 cells via caspase activation and regulation of Bax and Bcl-2 gene expression. Molecules 20:2693–2706. doi: 10.3390/molecules20022693 PubMedCrossRefGoogle Scholar
  24. Baishya D, Sharma N, Bora R (2012) Green synthesis of silver nanoparticle using Bryophyllum pinnatum (Lam.) and monitoring their antibacterial activities. Arch Appl Sci Res 4:2098–2104Google Scholar
  25. Bandi S, Vasundhara K (2012) Green synthesis of silver nanoparticles using Adhatoda vasica methanolic extract and its biological activities. J Atom Mol 2:282Google Scholar
  26. Bar H, Bhui DK, Sahoo GP, Sarkar P, De SP, Misra A (2009a) Green synthesis of silver nanoparticles using latex of Jatropha Curcas. Colloids Surf A Physicochem Eng Aspect 339:134–139. doi: 10.1016/j.colsurfa.2009.02.008 CrossRefGoogle Scholar
  27. Bar H, Bhui DK, Sahoo GP, Sarkar P, Pyne S, Misra A (2009b) Green synthesis of silver nanoparticles using seed extract of Jatropha curcas. Colloids Surf A Physicochem Eng Asp 348:212–216. doi: 10.1016/j.colsurfa.2009.07.021 CrossRefGoogle Scholar
  28. Basavegowda N, Idhayadhulla A, Lee YR (2014) Phyto-synthesis of gold nanoparticles using fruit extract of Hovenia dulcis and their biological activities. Ind Crop Prod 52:745–751. doi: 10.1016/j.indcrop.2013.12.006 CrossRefGoogle Scholar
  29. Begum NA, Mondal S, Basu S, Laskar RA, Mandal D (2009) Biogenic synthesis of Au and Ag nanoparticles using aqueous solutions of black tea leaf extracts. Colloids Surf B: Biointerfaces 71:113–118. doi: 10.1016/j.colsurfb.2009.01.012 PubMedCrossRefGoogle Scholar
  30. Bhattacharyya A, Prasad R, Buhroo AA, Duraisamy P, Yousuf I, Umadevi M, Bindhu MR, Govindarajan M, Khanday AL (2016) One-pot fabrication and characterization of silver nanoparticles using Solanum lycopersicum: an eco-friendly and potent control tool against Rose Aphid, Macrosiphum rosae. J Nanosci:4679410. 7 p. http://dx.doi.org/10.1155/2016/4679410
  31. Bhumi G, Rao ML, Savithramma N (2015) Green synthesis of silver nanoparticles from the leaf extract of Adhatoda vasica nees. and assessment of its antibacterial activity. Asian J Pharm Clin Res 8:62–67Google Scholar
  32. Bhuyan T, Mishra K, Khanuja M, Prasad R, Varma A (2015) Biosynthesis of zinc oxide nanoparticles from Azadirachta indica for antibacterial and photocatalytic applications. Mater Sci Semicond Process 32:55–61CrossRefGoogle Scholar
  33. Bindhu MR, Umadevi M (2013) Synthesis of monodispersed silver nanoparticles using Hibiscus Cannabinus leaf extract and its antimicrobial activity. Spectrochim Acta A Mol Biomol Spectrosc 101:184–190. doi: 10.1016/j.saa.2012.09.031 PubMedCrossRefGoogle Scholar
  34. Boruah SK, Boruah PK, Sarma P, Medhi C, Medhi OK (2012) Green synthesis of gold nanoparticles using Camellia Sinensis and kinetics of the reaction. Adv Mater Lett 3:481CrossRefGoogle Scholar
  35. Brumbaugh AD, Cohen KA, St. Angelo SK (2014) Ultra small copper nanoparticles synthesized with a plant tea reducing agent. ACS Sus Chem Engin 2:1933–1939. doi: 10.1021/sc500393t CrossRefGoogle Scholar
  36. Cañas JE, Long M, Nations S, Vadan R, Dai L, Luo M, Ambikapathi R, Lee EH, Olszyk D (2008) Effects of functionalized and nonfunctionalized single-walled carbon nanotubes on root elongation of select crop species. Environ Toxicol Chem 27:1922–1931PubMedCrossRefGoogle Scholar
  37. Chandran SP, Chaudhary M, Pasricha R, Ahmad A, Sastry M (2006) Synthesis of gold nanotriangles and silver nanoparticles using Aloe vera plant extract. Biotechnol Prog 22:577–583. doi: 10.1021/bp0501423 PubMedCrossRefGoogle Scholar
  38. Chomoucká J, Drbohlavová J, Hubálek J, Babula P, Adam V, Kizek R (2010) Toxicity of nanoparticles for plants. List Cukrova Repa. 2010 126:400Google Scholar
  39. Cos P, Vlietinck AJ, Berghe DV, Maes L (2006) Anti-infective potential of natural products: how to develop a stronger in vitro ‘proof-of-concept’. J Ethnopharmacol 106:290–302. doi: 10.1016/j.jep.2006.04.003 PubMedCrossRefGoogle Scholar
  40. Das J, Das MP, Velusamy P (2013) Sesbania grandiflora leaf extract mediated green synthesis of antibacterial silver nanoparticles against selected human pathogens. Spectrochim Acta Mol Biomol Spectrosc 104:265–270. doi: 10.1016/j.saa.2012.11.075 CrossRefGoogle Scholar
  41. Dash SS, Bag BG (2014) Synthesis of gold nanoparticles using renewable Punica granatum juice and study of its catalytic activity. Appl Nanosci 4:55–59. doi: 10.1007/s13204-012-0179-4 CrossRefGoogle Scholar
  42. Dash SS, Majumdar R, Sikder AK, Bag BG, Patra BK (2014) Saraca indica bark extract mediated green synthesis of polyshaped gold nanoparticles and its application in catalytic reduction. Appl Nanosci 4:485–490. doi: 10.1007/s13204-013-0223-z CrossRefGoogle Scholar
  43. De La Torre-Roche R, Hawthorne J, Deng Y, Xing B, Cai W, Newman LA, Wang Q, Ma X, Hamdi H, White JC (2013) Multiwalled carbon nanotubes and C60 fullerenes differentially impact the accumulation of weathered pesticides in four agricultural plants. Environ Sci Technol 47:12539–12547. doi: 10.1021/es4034809 CrossRefGoogle Scholar
  44. Devi GD, Murugan K, Selvam CP (2014) Green synthesis of silver nanoparticles using Euphorbia hirta (Euphorbiaceae) leaf extract against crop pest of cotton bollworm, Helicoverpa armigera (Lepidoptera: Noctuidae). J Biopest 7:54Google Scholar
  45. Dey PM (2012) Methods in plant biochemistry, vol 1 APL. Academic, London. ISBN:978-0-12-461020-0Google Scholar
  46. Dipankar C, Murugan S (2012) The green synthesis, characterization and evaluation of the biological activities of silver nanoparticles synthesized from Iresine Herbstii leaf aqueous extracts. Colloids Surf B Biointerfaces 98:112–119. doi: 10.1016/j.colsurfb.2012.04.006 PubMedCrossRefGoogle Scholar
  47. Dubey M, Bhadauria S, Kushwah BS (2009) Green synthesis of nanosilver particles from extract of Eucalyptus Hybrida (safeda) leaf. Dig J Nanomater Biostruct 4:537–543Google Scholar
  48. Dubey SP, Lahtinen M, Särkkä H, Sillanpää M (2010a) Bioprospective of Sorbus aucuparia leaf extract in development of silver and gold nanocolloids. Colloids Surf B: Biointerfaces 80:26–33. doi: 10.1016/j.colsurfb.2010.05.024 PubMedCrossRefGoogle Scholar
  49. Dubey SP, Lahtinen M, Sillanpää M (2010b) Tansy fruit mediated greener synthesis of silver and gold nanoparticles. Process Biochem 45:1065–1071. doi: 10.1016/j.procbio.2010.03.024 CrossRefGoogle Scholar
  50. Duca M (2015) Plant cell physiology. In: Plant physiology. Springer, Cham, pp 13–37. ISBN-13: 978-3319179087Google Scholar
  51. Dwivedi AD, Gopal K (2010) Biosynthesis of silver and gold nanoparticles using Chenopodium Album leaf extract. Colloid Surf A: Physicochem Engin Asp 369:27–33. doi: 10.1016/j.colsurfa.2010.07.020 CrossRefGoogle Scholar
  52. Feizi H, Moghaddam PR, Shahtahmassebi N, Fotovat A (2012) Impact of bulk and nanosized titanium dioxide (TiO2) on wheat seed germination and seedling growth. Biol Trace Elem Res 146:101–106. doi: 10.1007/s12011-011-9222-7 PubMedCrossRefGoogle Scholar
  53. Gade A, Ingle A, Whiteley C, Rai M (2010) Mycogenic metal nanoparticles: progress and applications. Biotechnol Lett 32:593–600. doi: 10.1007/s10529-009-0197-9 PubMedCrossRefGoogle Scholar
  54. Ganaie SU, Abbasi T, Anuradha J, Abbasi SA (2014) Biomimetic synthesis of silver nanoparticles using the amphibious weed ipomoea and their application in pollution control. J King Saud University-Sci 26:222–229. doi: 10.1016/j.jksus.2014.02.004 CrossRefGoogle Scholar
  55. Geethalakshmi R, Sarada DV (2012) Gold and silver nanoparticles from Trianthema decandra: synthesis, characterization, and antimicrobial properties. Int J Nanomedicine 7:5375–5384. doi: 10.2147/ijn.s36516 PubMedPubMedCentralCrossRefGoogle Scholar
  56. Ghaffari-Moghaddam M, Hadi-Dabanlou R (2014) Plant mediated green synthesis and antibacterial activity of silver nanoparticles using Crataegus douglasii fruit extract. J Ind Eng Chem 20:739–744. doi: 10.1016/j.jiec.2013.09.005 CrossRefGoogle Scholar
  57. Ghodake GS, Deshpande NG, Lee YP, Jin ES (2010) Pear fruit extract-assisted room-temperature biosynthesis of gold nanoplates. Colloids Surf B: Biointerfaces 75:584–589. doi: 10.1016/j.colsurfb.2009.09.040 PubMedCrossRefGoogle Scholar
  58. Gholami-Shabani MH, Akbarzadeh A, Mortazavi M, Emadzadeh MK (2013) Evaluation of the antibacterial properties of silver nanoparticles synthesized with Fusarium oxysporum and Escherichia coli. Int J Lifesc Bt Pharm Res 2:342–348Google Scholar
  59. Gholami-Shabani M, Akbarzadeh A, Norouzian D, Amini A, Gholami-Shabani Z, Imani A, Chiani M, Riazi G, Shams-Ghahfarokhi M, Razzaghi-Abyaneh M (2014) Antimicrobial activity and physical characterization of silver nanoparticles green synthesized using nitrate reductase from Fusarium oxysporum. Appl Biochem Biotechnol 172:4084–4098. doi: 10.1007/s12010-014-0809-2 PubMedCrossRefGoogle Scholar
  60. Gholami-Shabani M, Shams-Ghahfarokhi M, Gholami-Shabani Z, Akbarzadeh A, Riazi G, Ajdari S, Amani A, Razzaghi-Abyaneh M (2015) Enzymatic synthesis of gold nanoparticles using sulfite reductase purified from Escherichia coli: a green eco-friendly approach. Process Biochem 50:1076–1085. doi: 10.1016/j.procbio.2015.04.004 CrossRefGoogle Scholar
  61. Gholami-Shabani M, Imani A, Shams-Ghahfarokhi M, Gholami-Shabani Z, Pazooki A, Akbarzadeh A, Riazi G, Razzaghi-Abyaneh M (2016) Bioinspired synthesis, characterization and antifungal activity of enzyme-mediated gold nanoparticles using a fungal oxidoreductase. J Iran Chem Soc 9:1–10. doi: 10.1007/s13738-016-0923-x Google Scholar
  62. Ghosh M, Bandyopadhyay M, Mukherjee A (2010) Genotoxicity of titanium dioxide (TiO2) nanoparticles at two trophic level: plant and human lymphocytes. Chemosphere 81:1253–1262. doi: 10.1016/j.chemosphere.2010.09.022 PubMedCrossRefGoogle Scholar
  63. Ghosh S, Patil S, Ahire M, Kitture R, Kale S, Pardesi K, Cameotra SS, Bellare J, Dhavale DD, Jabgunde A, Chopade BA (2012) Synthesis of silver nanoparticles using Dioscorea bulbifera tuber extract and evaluation of its synergistic potential in combination with antimicrobial agents. Int J Nanomedicine 7:483–496PubMedPubMedCentralGoogle Scholar
  64. Golmoraj VE, Reza Khoshayand M, Amini M, Mollazadeh Moghadamd K, Amin G, Reza Shahverdi A (2011) The surface chemistry and stability of gold nanoparticles prepared using methanol extract of Eucalyptus camaldulensis. J Exp Nanosci 6:200–208. doi: 10.1080/17458080.2010.489581 CrossRefGoogle Scholar
  65. González-Melendi P, Fernández-Pacheco R, Coronado MJ, Corredor E, Testillano PS, Risueño MC, Marquina C, Ibarra MR, Rubiales D, Pérez-de-Luque A (2008) Nanoparticles as smart treatment-delivery systems in plants: assessment of different techniques of microscopy for their visualization in plant tissues. Ann Bot 101:187–195. doi: 10.1093/aob/mcm283 PubMedCrossRefGoogle Scholar
  66. Gupta A, Bonde SR, Gaikwad S, Ingle A, Gade AK, Rai M (2014) Lawsonia inermis-mediated synthesis of silver nanoparticles: activity against human pathogenic fungi and bacteria with special reference to formulation of an antimicrobial nanogel. IET Nanobiotechnol 8:172–178. doi: 10.1049/iet-nbt.2013.0015 PubMedCrossRefGoogle Scholar
  67. Handy RD, Owen R, Valsami-Jones E (2008) The ecotoxicology of nanoparticles and nanomaterials: current status, knowledge gaps, challenges, and future needs. Ecotoxicology 17:315–325. doi: 10.1007/s10646-008-0206-0 PubMedCrossRefGoogle Scholar
  68. Harris AT, Bali R (2008) On the formation and extent of uptake of silver nanoparticles by live plants. J Nanopart Res 10:691–695. doi: 10.1007/s11051-007-9288-5 CrossRefGoogle Scholar
  69. Hassan LA, Elijah AT, Ojiefoh OC, Joseph O, Sunday BO, Olugbenga DE, Anuoluwapo AA (2016) Biosynthesis of silver nanoparticles using Garcinia kola and its antimicrobial potential. Afr J Pure Appl Chem 10:1–7. doi: 10.5897/ajpac2015.0650 CrossRefGoogle Scholar
  70. Heinemeyer J, Eubel H, Wehmhöner D, Jänsch L, Braun HP (2004) Proteomic approach to characterize the supramolecular organization of photosystems in higher plants. Phytochemistry 65:1683–1692. doi: 10.1016/j.phytochem.2004.04.022 PubMedCrossRefGoogle Scholar
  71. Huang J, Li Q, Sun D, Lu Y, Su Y, Yang X, Wang H, Wang Y, Shao W, He N, Hong J, Chen C (2007) Biosynthesis of silver and gold nanoparticles by novel sundried Cinnamomum camphora leaf. Nanotechnology 18:105104CrossRefGoogle Scholar
  72. Huang J, Lin L, Sun D, Chen H, Yang D, Li Q (2015) Bio-inspired synthesis of metal nanoparticles and application. Chem Soc Rev 44:6330–6374. doi: 10.1039/C5CS00133A PubMedCrossRefGoogle Scholar
  73. Ibrahim HM (2015) Green synthesis and characterization of silver nanoparticles using banana peel extract and their antimicrobial activity against representative microorganisms. J Radiat Res Appl Sci 8:265–275. doi: 10.1016/j.jrras.2015.01.007 CrossRefGoogle Scholar
  74. Iravani S (2011) Green synthesis of metal nanoparticles using plants. Green Chem 13:2638–2650. doi: 10.1039/C1GC15386B CrossRefGoogle Scholar
  75. Iravani S, Zolfaghari B (2013) Green synthesis of silver nanoparticles using Pinus eldarica bark extract. Bio Med Res Int 2013:639725. doi: 10.1155/2013/639725 Google Scholar
  76. Jacob SJ, Finub JS, Narayanan A (2012) Synthesis of silver nanoparticles using Piper longum leaf extracts and its cytotoxic activity against Hep-2 cell line. Colloids Surf B: Biointerfaces 91:212–214. doi: 10.1016/j.colsurfb.2011.11.001 PubMedCrossRefGoogle Scholar
  77. Jagtap UB, Bapat VA (2013) Green synthesis of silver nanoparticles using Artocarpus heterophyllus Lam. seed extract and its antibacterial activity. Ind Crop Prod 46:132–137CrossRefGoogle Scholar
  78. Jain D, Daima HK, Kachhwaha S, Kothari SL (2009) Synthesis of plant-mediated silver nanoparticles using papaya fruit extract and evaluation of their antimicrobial activities. Dig J Nanomater Biostruct 4:557–563Google Scholar
  79. Jayaseelan C, Ramkumar R, Rahuman AA, Perumal P (2013) Green synthesis of gold nanoparticles using seed aqueous extract of Abelmoschus esculentus and its antifungal activity. Ind Crop Prod 45:423–429. doi: 10.1016/j.indcrop.2012.12.019 CrossRefGoogle Scholar
  80. Jha AK, Prasad K (2010) Green synthesis of silver nanoparticles using Cycas leaf. Int J Green Nanotechnol: Phys Chem 1:110–117. doi: 10.1080/19430871003684572 CrossRefGoogle Scholar
  81. Jia L, Zhang Q, Li Q, Song H (2009) The biosynthesis of palladium nanoparticles by antioxidants in Gardenia jasminoides Ellis: long lifetime nanocatalysts for p-nitrotoluene hydrogenation. Nanotechnology 20:385601. doi: 10.1088/0957-4484/20/38/385601 PubMedCrossRefGoogle Scholar
  82. Karthick V, Ganesh-Kumar V, Maiyalagan T, Deepa R, Govindaraju K, Rajeswari A, Stalin-Dhas T (2012) Green synthesis of well dispersed nanoparticles using leaf extract of medicinally useful Adhatoda vasica nees. Micro Nanosys 4:192–198CrossRefGoogle Scholar
  83. Kasthuri J, Veerapandian S, Rajendiran N (2009) Biological synthesis of silver and gold nanoparticles using apiin as reducing agent. Colloids Surf B: Biointerfaces 68:55–60PubMedCrossRefGoogle Scholar
  84. Kathiravan V, Ravi S, Ashokkumar S (2014) Synthesis of silver nanoparticles from Melia dubia leaf extract and their in vitro anticancer activity. Spectrochim Acta Part A: Mol Biomol Spectrosc 130:116–121CrossRefGoogle Scholar
  85. Kaviya S, Santhanalakshmi J, Viswanathan B, Muthumary J, Srinivasan K (2011) Biosynthesis of silver nanoparticles using Citrus sinensis peel extract and its antibacterial activity. Spectrochim Acta Mol Biomol Spectrosc 79:594–598. doi: 10.1016/j.saa.2011.03.040 CrossRefGoogle Scholar
  86. Keegstra K, Talmadge KW, Bauer WD, Albersheim P (1973) The structure of plant cell walls III. A model of the walls of suspension-cultured sycamore cells based on the interconnections of the macromolecular components. Plant Physiol 51:188–197PubMedPubMedCentralCrossRefGoogle Scholar
  87. Khodakovskaya M, Dervishi E, Mahmood M, Xu Y, Li Z, Watanabe F, Biris AS (2009) Carbon nanotubes are able to penetrate plant seed coat and dramatically affect seed germination and plant growth. ACS Nano 3:3221–3227. doi: 10.1021/nn900887m PubMedCrossRefGoogle Scholar
  88. Khodakovskaya MV, de Silva K, Biris AS, Dervishi E, Villagarcia H (2012) Carbon nanotubes induce growth enhancement of tobacco cells. ACS Nano 6:2128–2135. doi: 10.1021/nn204643g PubMedCrossRefGoogle Scholar
  89. Klaine SJ, Alvarez PJ, Batley GE, Fernandes TF, Handy RD, Lyon DY, Mahendra S, McLaughlin MJ, Lead JR (2008) Nanomaterials in the environment: behavior, fate, bioavailability, and effects. Environ Toxicol Chem 27:1825–1851. doi: 10.1897/08-090.1 PubMedCrossRefGoogle Scholar
  90. Knauer K, Bucheli T (2009) Nano-materials-the need for research in agriculture. Agrarforschung 16:390–395Google Scholar
  91. Kora AJ, Sashidhar RB, Arunachalam J (2010) Gum kondagogu (Cochlospermum gossypium): a template for the green synthesis and stabilization of silver nanoparticles with antibacterial application. Carbohydr Polym 82:670–679. doi: 10.1016/j.carbpol.2010.05.034 CrossRefGoogle Scholar
  92. Kotakadi VS, Rao YS, Gaddam SA, Prasad TNVKV, Reddy AV, Gopal DS (2013) Simple and rapid biosynthesis of stable silver nanoparticles using dried leaves of Catharanthus roseus. Linn. G. Donn and its antimicrobial activity. Colloids Surf B: Biointerfaces 105:194–198. doi: 10.1016/j.colsurfb.2013.01.003 PubMedCrossRefGoogle Scholar
  93. Kouvaris P, Delimitis A, Zaspalis V, Papadopoulos D, Tsipas SA, Michailidis N (2012) Green synthesis and characterization of silver nanoparticles produced using Arbutus Unedo leaf extract. Mater Lett 76:18–20. doi: 10.1016/j.matlet.2012.02.025 CrossRefGoogle Scholar
  94. Krishnaraj C, Jagan EG, Rajasekar S, Selvakumar P, Kalaichelvan PT, Mohan N (2010) Synthesis of silver nanoparticles using Acalypha indica leaf extracts and its antibacterial activity against water borne pathogens. Colloids Surf B: Biointerfaces 76:50–56. doi: 10.1016/j.colsurfb.2009.10.008 PubMedCrossRefGoogle Scholar
  95. Krishnaraj C, Jagan EG, Ramachandran R, Abirami SM, Mohan N, Kalaichelvan PT (2012) Effect of biologically synthesized silver nanoparticles on Bacopa monnieri (Linn.) Wettst. plant growth metabolism. Process Biochem 47:651–658. doi: 10.1016/j.procbio.2012.01.006 CrossRefGoogle Scholar
  96. Kumar KM, Sinha M, Mandal BK, Ghosh AR, Kumar KS, Reddy PS (2012) Green synthesis of silver nanoparticles using Terminalia chebula extract at room temperature and their antimicrobial studies. Spectrochim Acta Part A: Mol Biomol Spectrosc 91:228–233CrossRefGoogle Scholar
  97. Kumar B, Smita K, Cumbal L, Debut A (2014a) Synthesis of silver nanoparticles using Sacha inchi (Plukenetia volubilis L.) leaf extracts. Saudi J Biol Sci 21:605–609. doi: 10.1016/j.sjbs.2014.07.004 PubMedPubMedCentralCrossRefGoogle Scholar
  98. Kumar DA, Palanichamy V, Roopan SM (2014b) Green synthesis of silver nanoparticles using Alternanthera dentata leaf extract at room temperature and their antimicrobial activity. Spectrochim Acta Part A: Mol Biomol Spectrosc 127:168–171. doi: 10.1016/j.saa.2014.02.058 CrossRefGoogle Scholar
  99. Kumar HA, Mandal BK, Kumar KM, Babu Maddinedi S, Kumar TS, Madhiyazhagan P, Ghosh AR (2014c) Antimicrobial and antioxidant activities of Mimusops elengi seed extract mediated isotropic silver nanoparticles. Spectrochimica Acta Part A: Molecul Biomolecul Spectroscopy 130:13–18. doi: 10.1016/j.saa.2014.03.024 CrossRefGoogle Scholar
  100. Kumar PV, Pammi SVN, Kollu P, Satyanarayana KVV, Shameem U (2014d) Green synthesis and characterization of silver nanoparticles using Boerhaavia diffusa plant extract and their antibacterial activity. Ind Crop Prod 52:562–566. doi: 10.1016/j.indcrop.2013.10.050 CrossRefGoogle Scholar
  101. Kumari M, Khan SS, Pakrashi S, Mukherjee A, Chandrasekaran N (2011) Cytogenetic and genotoxic effects of zinc oxide nanoparticles on root cells of Allium cepa. J Hazard Mater 190:613–621PubMedCrossRefGoogle Scholar
  102. Kuppusamy P, Yusoff MM, Maniam GP, Govindan N (2016) Biosynthesis of metallic nanoparticles using plant derivatives and their new avenues in pharmacological applications–an updated report. Saudi Pharm J 24:473–484. doi: 10.1016/j.jsps.2014.11.013 PubMedCrossRefGoogle Scholar
  103. Lee WM, An YJ, Yoon H, Kweon HS (2008) Toxicity and bioavailability of copper nanoparticles to the terrestrial plants mung bean (Phaseolus radiatus) and wheat (Triticum aestivum): plant agar test for water-insoluble nanoparticles. Environ Toxicol Chem 27:1915–1921. doi: 10.1897/07-481.1 PubMedCrossRefGoogle Scholar
  104. Lee HJ, Song JY, Kim BS (2013) Biological synthesis of copper nanoparticles using Magnolia kobus leaf extract and their antibacterial activity. J Chem Technol Biotechnol 88:1971–1977. doi: 10.1002/jctb.4052 Google Scholar
  105. Li M, Zhu L, Lin D (2011) Toxicity of ZnO nanoparticles to Escherichia coli: mechanism and the influence of medium components. Environ Sci Technol 45:1977–1983. doi: 10.1021/es102624t PubMedCrossRefGoogle Scholar
  106. Lin D, Xing B (2007) Phytotoxicity of nanoparticles: inhibition of seed germination and root growth. Environ Pollut 150:243–250. doi: 10.1016/j.envpol.2007.01.016 PubMedCrossRefGoogle Scholar
  107. Ma X, Geiser-Lee J, Deng Y, Kolmakov A (2010) Interactions between engineered nanoparticles (ENPs) and plants: phytotoxicity, uptake and accumulation. Sci Total Environ 408:3053–3061. doi: 10.1016/j.scitotenv.2010.03.031 PubMedCrossRefGoogle Scholar
  108. Maensiri S, Laokul P, Klinkaewnarong J, Phokha S, Promarak V, Seraphin S (2008) Indium oxide (In2O3) nanoparticles using Aloe vera plant extract: synthesis and optical properties. J Optoelectron Adv Mater 10:161–165Google Scholar
  109. Mahmoodzadeh H, Nabavi M, Kashefi H (2013) Effect of nanoscale titanium dioxide particles on the germination and growth of canola (Brassica napus). J Ornamental Hortic Plants 3:25–32Google Scholar
  110. Makarov VV, Makarova SS, Love AJ, Sinitsyna OV, Dudnik AO, Yaminsky IV, Taliansky ME, Kalinina NO (2014) Biosynthesis of stable iron oxide nanoparticles in aqueous extracts of Hordeum vulgare and Rumex acetosa plants. Langmuir 30:5982–5988. doi: 10.1021/la5011924 PubMedCrossRefGoogle Scholar
  111. Mariselvam R, Ranjitsingh AJA, Nanthini AUR, Kalirajan K, Padmalatha C, Selvakumar PM (2014) Green synthesis of silver nanoparticles from the extract of the inflorescence of Cocos nucifera (family: Arecaceae) for enhanced antibacterial activity. Spectrochim Acta A Mol Biomol Spectrosc 129:537–541. doi: 10.1016/j.saa.2014.03.066 PubMedCrossRefGoogle Scholar
  112. Moon RJ, Frihart CR, Wegner T (2006) Nanotechnology applications in the forest products industry. Forest Prod J 56:4Google Scholar
  113. Muniyappan N, Nagarajan NS (2014) Green synthesis of silver nanoparticles with Dalbergia spinosa leaves and their applications in biological and catalytic activities. Process Biochem 49:1054–1061. doi: 10.1016/j.procbio.2014.03.015 CrossRefGoogle Scholar
  114. Murugan K, Dinesh D, Kumar PJ, Panneerselvam C, Subramaniam J, Madhiyazhagan P, Suresh U, Nicoletti M, Alarfaj AA, Munusamy MA, Higuchi A (2015) Datura metel-synthesized silver nanoparticles magnify predation of dragonfly nymphs against the malaria vector Anopheles stephensi. Parasitol Res 114:4645–4654. doi: 10.1007/s00436-015-4710-x PubMedCrossRefGoogle Scholar
  115. Nadagouda MN, Iyanna N, Lalley J, Han C, Dionysiou DD, Varma RS (2014) Synthesis of silver and gold nanoparticles using antioxidants from blackberry, blueberry, pomegranate, and turmeric extracts. ACS Sus Chem Engin 2:1717–1723. doi: 10.1021/sc500237k CrossRefGoogle Scholar
  116. Naika HR, Lingaraju K, Manjunath K, Kumar D, Nagaraju G, Suresh D, Nagabhushana H (2015) Green synthesis of CuO nanoparticles using Gloriosa superba L. extract and their antibacterial activity. J Taibah University Sci 9:7–12. doi: 10.1016/j.jtusci.2014.04.006 CrossRefGoogle Scholar
  117. Nair R, Varghese SH, Nair BG, Maekawa T, Yoshida Y, Kumar DS (2010) Nanoparticulate material delivery to plants. Plant Sci 179:154–163. doi: 10.1016/j.plantsci.2010.04.012 CrossRefGoogle Scholar
  118. Nalawade P, Mukherjee P, Kapoor S (2014) Biosynthesis, characterization and antibacterial studies of silver nanoparticles using pods extract of Acacia auriculiformis. Spectrochim Acta A Mol Biomol Spectrosc 129:121–124. doi: 10.1016/j.saa.2014.03.032 PubMedCrossRefGoogle Scholar
  119. Nasrollahzadeh M, Sajadi SM, Rostami-Vartooni A, Khalaj M (2014) Journey on greener pathways: use of Euphorbia condylocarpa M. bieb as reductant and stabilizer for green synthesis of Au/Pd bimetallic nanoparticles as reusable catalysts in the Suzuki and Heck coupling reactions in water. RSC Adv 4:43477–43484. doi: 10.1039/c4ra07173e CrossRefGoogle Scholar
  120. Nasrollahzadeh M, Sajadi SM, Rostami-Vartooni A, Khalaj M (2015a) Green synthesis of Pd/Fe3O4 nanoparticles using Euphorbia condylocarpa M. bieb root extract and their catalytic applications as magnetically recoverable and stable recyclable catalysts for the phosphine-free Sonogashira and Suzuki coupling reactions. J Molecul Catal A: Chem 396:31–39. doi: 10.1016/j.molcata.2014.09.029 CrossRefGoogle Scholar
  121. Nasrollahzadeh M, Sajadi SM, Maham M (2015b) Green synthesis of palladium nanoparticles using Hippophae rhamnoides Linn leaf extract and their catalytic activity for the Suzuki–Miyaura coupling in water. J Molecul Catal A: Chem 396:297–303. doi: 10.1016/j.molcata.2014.10.019 CrossRefGoogle Scholar
  122. Navarro E, Baun A, Behra R, Hartmann NB, Filser J, Miao AJ, Quigg A, Santschi PH, Sigg L (2008) Environmental behavior and ecotoxicity of engineered nanoparticles to algae, plants, and fungi. Ecotoxicology 17:372–386. doi: 10.1007/s10646-008-0214-0 PubMedCrossRefGoogle Scholar
  123. Nel A, Xia T, Mädler L, Li N (2006) Toxic potential of materials at the nanolevel. Science 311:622–627. doi: 10.1126/science.1114397 PubMedCrossRefGoogle Scholar
  124. Netala VR, Kotakadi VS, Nagam V, Bobbu P, Ghosh SB, Tartte V (2015) First report of biomimetic synthesis of silver nanoparticles using aqueous callus extract of Centella asiatica and their antimicrobial activity. Appl Nanosci 5:801–807. doi: 10.1007/s13204-014-0374-6 CrossRefGoogle Scholar
  125. Nisha SN, Aysha OS, Rahaman JS, Kumar PV, Valli S, Nirmala P, Reena A (2014) Lemon peels mediated synthesis of silver nanoparticles and its antidermatophytic activity. Spectrochim Acta A Mol Biomol Spectrosc 124:194–198. doi: 10.1016/j.saa.2013.12.019 CrossRefGoogle Scholar
  126. Noruzi M, Zare D, Davoodi D (2012) A rapid biosynthesis route for the preparation of gold nanoparticles by aqueous extract of cypress leaves at room temperature. Spectrochim Acta A Mol Biomol Spectrosc 94:84–88. doi: 10.1016/j.saa.2012.03.041 PubMedCrossRefGoogle Scholar
  127. Panda KK, Achary VM, Krishnaveni R, Padhi BK, Sarangi SN, Sahu SN, Panda BB (2011) In vitro biosynthesis and genotoxicity bioassay of silver nanoparticles using plants. Toxicol in Vitro 25:1097–1105. doi: 10.1016/j.tiv.2011.03.008 PubMedCrossRefGoogle Scholar
  128. Patil CD, Patil SV, Borase HP, Salunke BK, Salunkhe RB (2012) Larvicidal activity of silver nanoparticles synthesized using Plumeria rubra plant latex against Aedes aegypti and Anopheles stephensi. Parasitol Res 110:1815–1822. doi: 10.1007/s00436-011-2704-x PubMedCrossRefGoogle Scholar
  129. Peters RJ, Bouwmeester H, Gottardo S, Amenta V, Arena M, Brandhoff P, Marvin HJ, Mech A, Moniz FB, Pesudo LQ, Rauscher H (2016) Nanomaterials for products and application in agriculture, feed and food. Trends Food Sci Technol 54:155–164. doi: 10.1016/j.tifs.2016.06.008 CrossRefGoogle Scholar
  130. Philip D (2010) Green synthesis of gold and silver nanoparticles using Hibiscus rosa sinensis. Phys E Low-Dimensional Syst Nanostruct 42:1417–1424. doi: 10.1016/j.physe.2009.11.081 CrossRefGoogle Scholar
  131. Philip D, Unni C, Aromal SA, Vidhu VK (2011) Murraya koenigii leaf-assisted rapid green synthesis of silver and gold nanoparticles. Spectrochim Acta A Mol Biomol Spectrosc 78:899–904. doi: 10.1016/j.saa.2010.12.060 PubMedCrossRefGoogle Scholar
  132. Prabhu D, Arulvasu C, Babu G, Manikandan R, Srinivasan P (2013) Biologically synthesized green silver nanoparticles from leaf extract of Vitex negundo L. induce growth-inhibitory effect on human colon cancer cell line HCT15. Process Biochem 48:317–324. doi: 10.1016/j.procbio.2012.12.013 CrossRefGoogle Scholar
  133. Prasad R (2014) Synthesis of silver nanoparticles in photosynthetic plants. J Nanoparticle:963961. http://dx.doi.org/10.1155/2014/963961
  134. Prasad R, Swamy VS (2013) Antibacterial activity of silver nanoparticles synthesized by bark extract of Syzygium cumini. J Nanopart 2013:1–6. doi: 10.1155/2013/431218 CrossRefGoogle Scholar
  135. Prasad R, Swamy VS, Prasad KS, Varma A (2012) Biogenic synthesis of silver nanoparticles from the leaf extract of Syzygium cumini (L.) and its antibacterial activity. Int J Pharm Bio Sci 3(4):745–752Google Scholar
  136. Prasad R, Kumar V, Prasad KS (2014) Nanotechnology in sustainable agriculture: present concerns and future aspects. Afr J Biotechnol 13(6):705–713CrossRefGoogle Scholar
  137. Prasad R, Pandey R, Barman I (2016) Engineering tailored nanoparticles with microbes: quo vadis. WIREs Nanomed Nanobiotechnol 8:316–330. doi: 10.1002/wnan.1363 CrossRefGoogle Scholar
  138. Prasad R, Bhattacharyya A, Nguyen QD (2017) Nanotechnology in sustainable agriculture: recent developments, challenges, and perspectives. Front Microbiol 8:1014. doi: 10.3389/fmicb.2017.01014
  139. Prathna TC, Chandrasekaran N, Raichur AM, Mukherjee A (2011) Biomimetic synthesis of silver nanoparticles by Citrus limon (lemon) aqueous extract and theoretical prediction of particle size. Colloids Surf B: Biointerfaces 82(1):152–159. doi: 10.1016/j.colsurfb.2010.08.036 PubMedCrossRefGoogle Scholar
  140. Premanand G, Shanmugam N, Kannadasan N, Sathishkumar K, Viruthagiri G (2016) Nelumbo nucifera leaf extract mediated synthesis of silver nanoparticles and their antimicrobial properties against some human pathogens. Appl Nanosci 6:409–415. doi: 10.1007/s13204-015-0442-6 CrossRefGoogle Scholar
  141. Puišo J, Jonkuvienė D, Mačionienė I, Šalomskienė J, Jasutienė I, Kondrotas R (2014) Biosynthesis of silver nanoparticles using lingonberry and cranberry juices and their antimicrobial activity. Colloids Surf B: Biointerfaces 121:214–221. doi: 10.1016/j.colsurfb.2014.05.001 PubMedCrossRefGoogle Scholar
  142. Qu J, Yuan X, Wang X, Shao P (2011a) Zinc accumulation and synthesis of ZnO nanoparticles using Physalis alkekengi L. Environ Pollut 159:1783–1788. doi: 10.1016/j.envpol.2011.04.016 PubMedCrossRefGoogle Scholar
  143. Qu J, Luo C, Hou J (2011b) Synthesis of ZnO nanoparticles from Zn-hyperaccumulator (Sedum alfredii Hance) plants. IET Micro Nano Lett 6:174–176. doi: 10.1049/mnl.2011.0004 CrossRefGoogle Scholar
  144. Raghunandan D, Basavaraja S, Mahesh B, Balaji S, Manjunath SY, Venkataraman A (2009) Biosynthesis of stable polyshaped gold nanoparticles from microwave-exposed aqueous extracellular anti-malignant guava (Psidium guajava) leaf extract. NanoBiotechnology 5:34–41. doi: 10.1007/s12030-009-9030-8 CrossRefGoogle Scholar
  145. Raghunandan D, Bedre MD, Basavaraja S, Sawle B, Manjunath SY, Venkataraman A (2010) Rapid biosynthesis of irregular shaped gold nanoparticles from macerated aqueous extracellular dried clove buds (Syzygium aromaticum) solution. Colloids Surf B: Biointerfaces 79:235–240PubMedCrossRefGoogle Scholar
  146. Rahimi-Nasrabadi M, Pourmortazavi SM, Shandiz SA, Ahmadi F, Batooli H (2014) Green synthesis of silver nanoparticles using Eucalyptus leucoxylon leaves extract and evaluating the antioxidant activities of extract. Nat Prod Res 28:1964–1969PubMedCrossRefGoogle Scholar
  147. Ramar M, Manikandan B, Marimuthu PN, Raman T, Mahalingam A, Subramanian P, Karthick S, Munusamy A (2015) Synthesis of silver nanoparticles using Solanum trilobatum fruits extract and its antibacterial, cytotoxic activity against human breast cancer cell line MCF 7. Spectrochim Acta Mol Biomol Spectrosc 140:223–228CrossRefGoogle Scholar
  148. Rao SV (2011) Picosecond nonlinear optical studies of gold nanoparticles synthesised using coriander leaves (Coriandrum sativum). J Mod Opt 58:1024–1029CrossRefGoogle Scholar
  149. Rashidipour M, Heydari R (2014) Biosynthesis of silver nanoparticles using extract of olive leaf: synthesis and in vitro cytotoxic effect on MCF-7 cells. J Nanostruct Chem 4:1–6CrossRefGoogle Scholar
  150. Raut RW, Mendhulkar VD, Kashid SB (2014) Photosensitized synthesis of silver nanoparticles using Withania somnifera leaf powder and silver nitrate. J Photochem Photobiol B Biol 132:45–55CrossRefGoogle Scholar
  151. Raut-Rajesh W, Lakkakula Jaya R, Kolekar Niranjan S, Mendhulkar Vijay D, Kashid Sahebrao B (2009) Phytosynthesis of silver nanoparticle using Gliricidia sepium (Jacq.) Curr Nanosci 5:117–122CrossRefGoogle Scholar
  152. Reddy NJ, Vali DN, Rani M, Rani SS (2014) Evaluation of antioxidant, antibacterial and cytotoxic effects of green synthesized silver nanoparticles by Piper longum fruit. Mat Sci Engin: C 34:115–122. doi: 10.1016/j.msec.2013.08.039 CrossRefGoogle Scholar
  153. Roduner E (2006) Size matters: why nanomaterials are different. Chem Soc Rev 35:583–592PubMedCrossRefGoogle Scholar
  154. Roopan SM, Bharathi A, Kumar R, Khanna VG, Prabhakarn A (2012) Acaricidal, insecticidal, and larvicidal efficacy of aqueous extract of Annona squamosa L peel as biomaterial for the reduction of palladium salts into nanoparticles. Colloids Surf B: Biointerfaces 92:209–212PubMedCrossRefGoogle Scholar
  155. Roopan SM, Madhumitha G, Rahuman AA, Kamaraj C, Bharathi A, Surendra TV (2013) Low-cost and eco-friendly phyto-synthesis of silver nanoparticles using Cocos nucifera coir extract and its larvicidal activity. Ind Crop Prod 43:631–635. doi: 10.1016/j.indcrop.2012.08.013 CrossRefGoogle Scholar
  156. Rupiasih NN, Aher A, Gosavi S, Vidyasagar PB (2015) Green synthesis of silver nanoparticles using latex extract of Thevetia peruviana: a novel approach towards poisonous plant utilization. In Recent Trend Physic Mat Sci Technol 204:1–10. doi: 10.1007/978-981-287-128-2_1 Google Scholar
  157. Sable NE, Gaikwad SW, Bonde SH, Gade AN, Rai M (2012) Phytofabrication of silver nanoparticles by using aquatic plant Hydrilla verticilata. Nusantara Bio sci 4:45–49Google Scholar
  158. Sadeghi B, Gholamhoseinpoor F (2015) A study on the stability and green synthesis of silver nanoparticles using Ziziphora tenuior (Zt) extract at room temperature. Spectrochim Acta Mol Biomol Spectrosc 134:310–315. doi: 10.1016/j.saa.2014.06.046 CrossRefGoogle Scholar
  159. Salam HA, Sivaraj R, Venckatesh R (2014) Green synthesis and characterization of zinc oxide nanoparticles from Ocimum basilicum L. var. purpurascens Benth.-Lamiaceae leaf extract. Mater Lett 131:16–18. doi: 10.1016/j.matlet.2014.05.033 CrossRefGoogle Scholar
  160. Salunke BK, Sawant SS, Kim BS (2014a) Potential of Kalopanax septemlobus leaf extract in synthesis of silver nanoparticles for selective inhibition of specific bacterial strain in mixed culture. Appl Biochem Biotechnol 174:587–601. doi: 10.1007/s12010-014-1077-x PubMedCrossRefGoogle Scholar
  161. Salunke BK, Shin J, Sawant SS, Alkotaini B, Lee S, Kim BS (2014b) Rapid biological synthesis of silver nanoparticles using Kalopanax pictus plant extract and their antimicrobial activity. Korean J Chem Eng 31:2035–2040. doi: 10.1007/s11814-014-0149-5 CrossRefGoogle Scholar
  162. Saminathan K (2015) Herbal synthesis of silver nanoparticles using Eclipta alba and its antimicrobial activity. Int J Curr Microbiol App Sci 4(3):1092–1097Google Scholar
  163. Sasidharan S, Chen Y, Saravanan D, Sundram KM, Latha LY (2011) Extraction, isolation and characterization of bioactive compounds from plants’ extracts. African J Tradition Complement Alt Med 8:1–10Google Scholar
  164. Sathishkumar M, Sneha K, Kwak IS, Mao J, Tripathy SJ, Yun YS (2009a) Phyto-crystallization of palladium through reduction process using Cinnamom zeylanicum bark extract. J Hazard Mater 171:400–404. doi: 10.1016/j.jhazmat.2009.06.014 PubMedCrossRefGoogle Scholar
  165. Sathishkumar M, Sneha K, Won SW, Cho CW, Kim S, Yun YS (2009b) Cinnamon zeylanicum bark extract and powder mediated green synthesis of nano-crystalline silver particles and its bactericidal activity. Colloids Surf B: Biointerfaces 73:332–338. doi: 10.1016/j.colsurfb.2009.06.005 PubMedCrossRefGoogle Scholar
  166. Sathishkumar G, Gobinath C, Wilson A, Sivaramakrishnan S (2014) Dendrophthoe falcata (Lf) Ettingsh (Neem mistletoe): a potent bioresource to fabricate silver nanoparticles for anticancer effect against human breast cancer cells (MCF-7). Spectrochim Acta A Mol Biomol Spectrosc 128:285–290. doi: 10.1016/j.saa.2014.02.096 PubMedCrossRefGoogle Scholar
  167. Saware K, Sawle B, Salimath B, Jayanthi K, Abbaraju V (2014) Biosynthesis and characterization of silver nanoparticles using Ficus benghalensis leaf extract. Int J Res Eng Technol 3:867–874. doi: 10.1007/s10876-014-0697-1 Google Scholar
  168. Saxena A, Tripathi RM, Zafar F, Singh P (2012) Green synthesis of silver nanoparticles using aqueous solution of Ficus benghalensis leaf extract and characterization of their antibacterial activity. Mater Lett 67:91–94CrossRefGoogle Scholar
  169. Shankar SS, Rai A, Ahmad A, Sastry M (2004a) Rapid synthesis of Au, Ag, and bimetallic Au core–Ag shell nanoparticles using Neem (Azadirachta indica) leaf broth. J Colloid Interface Sci 275:496–502. doi: 10.1016/j.jcis.2004.03.003 PubMedCrossRefGoogle Scholar
  170. Shankar SS, Rai A, Ankamwar B, Singh A, Ahmad A, Sastry M (2004b) Biological synthesis of triangular gold nanoprisms. Nature Mat 3:482–488. doi: 10.1038/nmat1152 CrossRefGoogle Scholar
  171. Sharma NC, Sahi SV, Nath S, Parsons JG, Gardea-Torresde JL, Pal T (2007) Synthesis of plant-mediated gold nanoparticles and catalytic role of biomatrix-embedded nanomaterials. Environ Sci Technol 41:5137–5142PubMedPubMedCentralCrossRefGoogle Scholar
  172. Shekhawat GS, Arya V (2009) Biological synthesis of Ag nanoparticles through in vitro cultures of Brassica juncea C. zern. In Adv Mat Res 67:295–299CrossRefGoogle Scholar
  173. Showalter AM (1993) Structure and function of plant cell wall proteins. Plant Cell 5:9. doi: 10.1105/tpc.5.1.9 PubMedPubMedCentralCrossRefGoogle Scholar
  174. Singhal G, Bhavesh R, Kasariya K, Sharma AR, Singh RP (2011) Biosynthesis of silver nanoparticles using Ocimum sanctum (Tulsi) leaf extract and screening its antimicrobial activity. J Nanopart Res 13:2981–2988. doi: 10.1007/s11051-010-0193-y CrossRefGoogle Scholar
  175. Siva S, Sameem SM, Sudharsan S, Kannan RS (2014) Green, effective biological route for the synthesis of silver nanoparticles using Cyperus rotundus grass extracts. Int J Curr Res 6:4532–4538Google Scholar
  176. Sivaraj R, Rahman PK, Rajiv P, Salam HA, Venckatesh R (2014) Biogenic copper oxide nanoparticles synthesis using Tabernaemontana divaricate leaf extract and its antibacterial activity against urinary tract pathogen. Spectrochim Acta Mol Biomol Spectrosc 133:178–181. doi: 10.1016/j.saa.2014.05.048 CrossRefGoogle Scholar
  177. Sivaraman D, Panneerselvam P, Muralidharan P, Prabhu TP, Kumar RV (2013) Green synthesis, characterization and anti-microbial activity of silver nanoparticles produced using Ipomoea aquatica forsk leaf extract. Int J Pharm Sci Res 4:2280Google Scholar
  178. Sosan A, Svistunenko D, Straltsova D, Tsiurkina K, Smolich I, Lawson T, Subramaniam S, Golovko V, Anderson D, Sokolik A, Colbeck I (2016) Engineered silver nanoparticles are sensed at the plasma membrane and dramatically modify the physiology of Arabidopsis thaliana plants. Plant J 85:245–257. doi: 10.1111/tpj.13105 PubMedCrossRefGoogle Scholar
  179. Stampoulis D, Sinha SK, White JC (2009) Assay-dependent phytotoxicity of nanoparticles to plants. Environ Sci Technol 43:9473–9479. doi: 10.1021/es901695c PubMedCrossRefGoogle Scholar
  180. Steinmetz NF, Evans DJ (2007) Utilisation of plant viruses in bionanotechnology. Org Biomol Chem 5:2891–2902. doi: 10.1039/b708175h PubMedCrossRefGoogle Scholar
  181. Sujitha MV, Kannan S (2013) Green synthesis of gold nanoparticles using Citrus fruits (Citrus limon, Citrus reticulata and Citrus sinensis) aqueous extract and its characterization. Spectrochim Acta A Mol Biomol Spectrosc 102:15–23. doi: 10.1016/j.saa.2012.09.042 PubMedCrossRefGoogle Scholar
  182. Suman TY, Rajasree SR, Kanchana A, Elizabeth SB (2013) Biosynthesis, characterization and cytotoxic effect of plant mediated silver nanoparticles using Morinda citrifolia root extract. Colloids Surf B: Biointerfaces 106:74–78. doi: 10.1016/j.colsurfb.2013.01.037 PubMedCrossRefGoogle Scholar
  183. Suman TY, Rajasree SR, Ramkumar R, Rajthilak C, Perumal P (2014) The green synthesis of gold nanoparticles using an aqueous root extract of Morinda citrifolia L. Spectrochim Acta Mol Biomol Spectrosc 118:11–16. doi: 10.1016/j.saa.2013.08.066 CrossRefGoogle Scholar
  184. Suresh G, Gunasekar PH, Kokila D, Prabhu D, Dinesh D, Ravichandran N, Ramesh B, Koodalingam A, Siva GV (2014) Green synthesis of silver nanoparticles using Delphinium denudatum root extract exhibits antibacterial and mosquito larvicidal activities. Spectrochim Acta Mol Biomol Spectrosc 127:61–66. doi: 10.1016/j.saa.2014.02.030 CrossRefGoogle Scholar
  185. Suresh D, Nethravathi PC, Rajanaika H, Nagabhushana H, Sharma SC (2015) Green synthesis of multifunctional zinc oxide (ZnO) nanoparticles using Cassia fistula plant extract and their photodegradative, antioxidant and antibacterial activities. Mat Sci Semicond Proc 31:446–454. doi: 10.1016/j.mssp.2014.12.023 CrossRefGoogle Scholar
  186. Swamy VS, Prasad R (2012) Green synthesis of silver nanoparticles from the leaf extract of Santalum album and its antimicrobial activity. J Optoelectron Biomed Mater 4(3):53–59Google Scholar
  187. Swamy MK, Sudipta KM, Jayanta K, Balasubramanya S (2015) The green synthesis, characterization, and evaluation of the biological activities of silver nanoparticles synthesized from Leptadenia reticulata leaf extract. Appl Nanosci 5:73–81. doi: 10.1007/s13204-014-0293-6 CrossRefGoogle Scholar
  188. Tan XM, Lin C, Fugetsu B (2009) Studies on toxicity of multi-walled carbon nanotubes on suspension rice cells. Carbon 47:3479–3487. doi: 10.1016/j.carbon.2009.08.018 CrossRefGoogle Scholar
  189. Torney F, Trewyn BG, Lin VS, Wang K (2007) Mesoporous silica nanoparticles deliver DNA and chemicals into plants. Nat Nanotechnol 2:295–300. doi: 10.1038/nnano.2007.108 PubMedCrossRefGoogle Scholar
  190. Tripathy A, Raichur AM, Chandrasekaran N, Prathna TC, Mukherjee A (2010) Process variables in biomimetic synthesis of silver nanoparticles by aqueous extract of Azadirachta indica (Neem) leaves. J Nanopart Res 12:237–246. doi: 10.1007/s11051-009-9602-5 CrossRefGoogle Scholar
  191. Vanaja M, Annadurai G (2013) Coleus aromaticus leaf extract mediated synthesis of silver nanoparticles and its bactericidal activity. Appl Nanosci 3:217–223. doi: 10.1007/s13204-012-0121-9 CrossRefGoogle Scholar
  192. Vankar PS, Shukla D (2012) Biosynthesis of silver nanoparticles using lemon leaves extract and its application for antimicrobial finish on fabric. Appl Nanosci 2:163–168. doi: 10.1007/s13204-011-0051-y CrossRefGoogle Scholar
  193. Vasanth K, Ilango K, MohanKumar R, Agrawal A, Dubey GP (2014) Anticancer activity of Moringa oleifera mediated silver nanoparticles on human cervical carcinoma cells by apoptosis induction. Colloid Surfaces B: Biointer 117:354–359. doi: 10.1016/j.colsurfb.2014.02.052 CrossRefGoogle Scholar
  194. Veerakumar K, Govindarajan M (2014) Adulticidal properties of synthesized silver nanoparticles using leaf extracts of Feronia elephantum (Rutaceae) against filariasis, malaria, and dengue vector mosquitoes. Parasitol Res 113:4085–4096. doi: 10.1007/s00436-014-4077-4 PubMedCrossRefGoogle Scholar
  195. Veerasamy R, Xin TZ, Gunasagaran S, Xiang TF, Yang EF, Jeyakumar N, Dhanaraj SA (2011) Biosynthesis of silver nanoparticles using mangosteen leaf extract and evaluation of their antimicrobial activities. J S Chem Soc 15:113–120. doi: 10.1016/j.jscs.2010.06.004 Google Scholar
  196. Velmurugan P, Anbalagan K, Manosathyadevan M, Lee KJ, Cho M, Lee SM, Park JH, Oh SG, Bang KS, Oh BT (2014) Green synthesis of silver and gold nanoparticles using Zingiber officinale root extract and antibacterial activity of silver nanoparticles against food pathogens. Bioproc Biosys Engin 37:1935–1943. doi: 10.1007/s00449-014-1169-6 CrossRefGoogle Scholar
  197. Vijayakumar M, Priya K, Nancy FT, Noorlidah A, Ahmed ABA (2013) Biosynthesis, characterisation and anti-bacterial effect of plant-mediated silver nanoparticles using Artemisia nilagirica. Ind Crop Prod 41:235–240. doi: 10.1016/j.indcrop.2012.04.017 CrossRefGoogle Scholar
  198. Vinod VTP, Saravanan P, Sreedhar B, Devi DK, Sashidhar RB (2011) A facile synthesis and characterization of Ag, Au and Pt nanoparticles using a natural hydrocolloid gum kondagogu (Cochlospermum gossypium). Colloids Surf B: Biointerfaces 83:291–298. doi: 10.1016/j.colsurfb.2010.11.035 PubMedCrossRefGoogle Scholar
  199. Vivero-Escoto JL, Rieter WJ, Lau H, Huxford-Phillips RC, Lin W (2013) Biodegradable polysilsesquioxane nanoparticles as efficient contrast agents for magnetic resonance imaging. Small 9:3523–3531. doi: 10.1002/smll.201300198 PubMedPubMedCentralCrossRefGoogle Scholar
  200. Wang Y, He X, Wang K, Zhang X, Tan W (2009) Barbated Skullcup herb extract-mediated biosynthesis of gold nanoparticles and its primary application in electrochemistry. Colloids Surf B: Biointerfaces 73:75–79. doi: 10.1016/j.colsurfb.2009.04.027 PubMedCrossRefGoogle Scholar
  201. Wang H, Kou X, Pei Z, Xiao JQ, Shan X, Xing B (2011) Physiological effects of magnetite (Fe3O4) nanoparticles on perennial ryegrass (Lolium perenne L.) and pumpkin (Cucurbita mixta) plants. Nanotoxicology 5:30–42. doi: 10.3109/17435390.2010.489206 PubMedCrossRefGoogle Scholar
  202. Wegner T, Jones P (2007) Nanotechnology for the forest products industry. Wood Fiber Sci 37:549–551Google Scholar
  203. Yang L, Watts DJ (2005) Particle surface characteristics may play an important role in phytotoxicity of alumina nanoparticles. Toxicol Lett 158:122–132PubMedCrossRefGoogle Scholar
  204. Yang X, Li Q, Wang H, Huang J, Lin L, Wang W, Jia L (2010) Green synthesis of palladium nanoparticles using broth of Cinnamomum camphora leaf. J Nanopart Res 12:1589–1598. doi: 10.1007/s11051-009-9675-1 CrossRefGoogle Scholar
  205. Yasmeen F, Raja NI, Mustafa G, Sakata K, Komatsu S (2016) Quantitative proteomic analysis of post-flooding recovery in soybean root exposed to aluminum oxide nanoparticles. J Proteome 30:136–150. doi: 10.1016/j.jprot.2016.03.014 CrossRefGoogle Scholar
  206. Zayed MF, Eisa WH (2014) Phoenix dactylifera L. leaf extract phytosynthesized gold nanoparticles; controlled synthesis and catalytic activity. Spectrochimica Acta Part A: Molecul Biomolecul Spectroscopy 121:238–244. doi: 10.1016/j.saa.2013.10.092 CrossRefGoogle Scholar
  207. Zhu H, Han J, Xiao JQ, Jin Y (2008) Uptake, translocation, and accumulation of manufactured iron oxide nanoparticles by pumpkin plants. J Environ Monit 10:713–717. doi: 10.1039/b805998e PubMedCrossRefGoogle Scholar
  208. Zuas O, Hamim N, Sampora Y (2014) Bio-synthesis of silver nanoparticles using water extract of Myrmecodia pendan (Sarang Semut plant). Mat Lett May 123:156–159. doi: 10.1016/j.matlet.2014.03.026 CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2017

Authors and Affiliations

  • Mohammadhassan Gholami-Shabani
    • 1
    • 2
  • Zeynab Gholami-Shabani
    • 3
  • Masoomeh Shams-Ghahfarokhi
    • 4
  • Fatemehsadat Jamzivar
    • 1
  • Mehdi Razzaghi-Abyaneh
    • 1
  1. 1.Department of MycologyPasteur Institute of IranTehranIran
  2. 2.Department of NanobiotechnologyPasteur Institute of IranTehranIran
  3. 3.Faculty of Aerospace, Science and Research CampusIslamic Azad UniversityTehranIran
  4. 4.Department of Mycology, Faculty of Medical SciencesTarbiat Modares UniversityTehranIran

Personalised recommendations