Advertisement

Nanoengineering Superabsorbent Materials: Agricultural Applications

  • Majid PeyraviEmail author
  • Peyman Pouresmaeel Selakjani
  • Soodabeh Khalili
Chapter

Abstract

The superabsorbent polymers (SAP) are able to absorb large amounts of water. Superabsorbent materials are known as hydrophilic complexes which have the capacity to absorb a large volume of aqueous fluids in a short time and desorb the absorbed water under stress condition. The absorption capacity of SAP is one of the important parameters of that could limit the application of this material. The use of superabsorbent polymers for water managing and the renewal of arid as well as desert environment have been considered greatly. The encouraging results show that superabsorbent materials can help agriculture and environment by irrigation water consumption reduction, fertilizer retention time improvement in soil, lowering the death rate of plants, and plant growth rate increment. Overall, the modification of superabsorbent polymers using nanotechnology could include employment of nanomaterials for preparation of superabsorbent nanocomposite materials. One of the most convenient and useful superabsorbent nanocomposites is superabsorbent/clay nanocomposites which are introduced in this chapter.

Keywords

Superabsorbent polymers Agricultural nanotechnology Nanocomposites Nano clay Absorption 

References

  1. Ali MA, Rehman I, Iqbal A, Din S, Rao AQ, Latif A, Samiullah TR, Azam S, Husnain T (2014) Nanotechnology, a new frontier in agriculture. Adv Life Sci 1(3):129–138Google Scholar
  2. Bortolin A, Aouada FA, Mattoso LH, Ribeiro C (2013) Nanocomposite PAAm/methyl cellulose/montmorillonite hydrogel: evidence of synergistic effects for the slow release of fertilizers. J Agric Food Chem 61(31):7431–7439CrossRefPubMedGoogle Scholar
  3. Bowman DC, Evans RY (1991) Calcium inhibition of polyacrylamide gel hydration is partially reversible by potassium. Hortscience 26(8):1063–1065Google Scholar
  4. Brannon-Peppas L, Harland RS (2012) Absorbent polymer technology. Elsevier, New YorkGoogle Scholar
  5. Colombo P (1993) Swelling-controlled release in hydrogel matrices for oral route. Adv Drug Deliv Rev 11(1):37–57CrossRefGoogle Scholar
  6. Cooper SL, Peppas NA (1982) Biomaterials, interfacial phenomena and applications. American Chemical Society, Washington, DCCrossRefGoogle Scholar
  7. Dotson NA, Galvan R, Macosko CW (1988) Structural development during nonlinear free-radical polymerizations. Macromolecules 21(8):2560–2568CrossRefGoogle Scholar
  8. Elliott M (2004) Superabsorbent polymers. Product development scentist for SAP BASF Aktiengesellschaft ss 13Google Scholar
  9. Esposito F, Del Nobile M, Mensitieri G, Nicolais L (1996) Water sorption in cellulose-based hydrogels. J Appl Polym Sci 60(13):2403–2407CrossRefGoogle Scholar
  10. Flory PJ (1953) Principles of polymer chemistry. Cornell University Press, IthacaGoogle Scholar
  11. Giannelis EP (1996) Polymer layered silicate nanocomposites. Adv Mater 8(1):29–35CrossRefGoogle Scholar
  12. Haraguchi K, Takehisa T (2002) Nanocomposite hydrogels: a unique organic-inorganic network structure with extraordinary mechanical, optical, and swelling/de-swelling properties. Adv Mater 14(16):1120CrossRefGoogle Scholar
  13. Hussien RA, Donia AM, Atia AA, El-Sedfy OF, El-Hamid ARA, Rashad RT (2012) Studying some hydro-physical properties of two soils amended with kaolinite-modified cross-linked poly-acrylamides. Catena 92:172–178CrossRefGoogle Scholar
  14. Jatav GK, Mukhopadhyay R, De N (2013) Characterization of swelling behaviour of nanoclay composite. Int J Innov Res Sci Eng Technol 2:1560–1563Google Scholar
  15. Johnson MS, Veltkamp CJ (1985) Structure and functioning of water-storing agricultural polyacrylamides. J Sci Food Agric 36(9):789–793CrossRefGoogle Scholar
  16. Kabiri K, Omidian H, Zohuriaan-Mehr M, Doroudiani S (2011) Superabsorbent hydrogel composites and nanocomposites: a review. Polym Compos 32(2):277–289CrossRefGoogle Scholar
  17. Kazanskii K, Dubrovskii S (1992) Chemistry and physics of “agricultural” hydrogels. In: Polyelectrolytes hydrogels chromatographic materials. Springer, pp 97–133Google Scholar
  18. Khadem SA, Galavi M, Ramrodi M, Mousavi SR, Rousta MJ, Rezvani-Moghadam P (2010) Effect of animal manure and superabsorbent polymer on corn leaf relative water content, cell membrane stability and leaf chlorophyll content under dry conditionGoogle Scholar
  19. Kinney A, Scranton AB (1994) Formation and structure of cross-linked polyacrylates: methods for modeling network formation. In: ACS symposium series (USA)Google Scholar
  20. Langer R, Peppas N (1981) Present and future applications of biomaterials in controlled drug delivery systems. Biomaterials 2(4):201–214CrossRefPubMedGoogle Scholar
  21. LeBaron PC, Wang Z, Pinnavaia TJ (1999) Polymer-layered silicate nanocomposites: an overview. Appl Clay Sci 15(1):11–29CrossRefGoogle Scholar
  22. Liang R, Liu M (2006) Preparation and properties of coated nitrogen fertilizer with slow release and water retention. Ind Eng Chem Res 45(25):8610–8616CrossRefGoogle Scholar
  23. Liu PS, Li L, Zhou NL, Zhang J, Wei SH, Shen J (2006) Synthesis and properties of a poly (acrylic acid)/montmorillonite superabsorbent nanocomposite. J Appl Polym Sci 102(6):5725–5730CrossRefGoogle Scholar
  24. Macosko CW (1985) Rheological changes during crosslinking. Br Polym J 17(2):239–245CrossRefGoogle Scholar
  25. Mahida VP, Patel MP (2014) Synthesis of new superabsorbent poly (NIPAAm/AA/N-allylisatin) nanohydrogel for effective removal of As (V) and Cd (II) toxic metal ions. Chin Chem Lett 25(4):601–604CrossRefGoogle Scholar
  26. Meng Y, Wang JN, Xu L, Li AM (2012) Fast removal of Pb 2+ from water using new chelating fiber modified with acylamino and amino groups. Chin Chem Lett 23(4):496–499CrossRefGoogle Scholar
  27. Morgan AB, Gilman J (2007) Polymer-clay nanocomposites: design and application of multi-functional materials. Mater Matter 2:20–25Google Scholar
  28. Nie J, Du B, Oppermann W (2005) Swelling, elasticity, and spatial inhomogeneity of poly (N-isopropylacrylamide)/clay nanocomposite hydrogels. Macromolecules 38(13):5729–5736CrossRefGoogle Scholar
  29. Organization WH (2005) Bentonite, kaolin, and selected clay minerals. WHO, GenevaGoogle Scholar
  30. Patel YN, Patel MP (2013) A new fast swelling poly [DAPB-co-DMAAm-co-AASS] superabsorbent hydrogel for removal of anionic dyes from water. Chin Chem Lett 24(11):1005–1007CrossRefGoogle Scholar
  31. Peppas NA (1987) Hydrogels in medicine and pharmacy, vol 3. CRC press, Boca RatonGoogle Scholar
  32. Qi X, Liu M, Chen Z, Liang R (2007) Preparation and properties of diatomite composite superabsorbent. Polym Adv Technol 18(3):184–193CrossRefGoogle Scholar
  33. Raju KM, Raju MP, Mohan YM (2003) Synthesis of superabsorbent copolymers as water manageable materials. Polym Int 52(5):768–772CrossRefGoogle Scholar
  34. Rao K, Mohapatra M, Anand S, Venkateswarlu P (2010) Review on cadmium removal from aqueous solutions. Int J Eng Sci Technol 2(7):81–103Google Scholar
  35. Rashidzadeh A, Olad A (2014) Slow-released NPK fertilizer encapsulated by NaAlg-g-poly (AA-co-AAm)/MMT superabsorbent nanocomposite. Carbohydr Polym 114:269–278CrossRefPubMedGoogle Scholar
  36. Rivas BL, Muñoz C (2010) Functional water-insoluble polymers with ability to remove arsenic (V). Polym Bull 65(1):1–11CrossRefGoogle Scholar
  37. Runcy W, Nithin C, Sabu T (2013) Layered clay rubber composites. In: Key engineering materials. Trans Tech Publ, pp 197–213Google Scholar
  38. Samsonov GV, Kuznetsova NP (1992) Crosslinked polyelectrolytes in biology. In: Polyelectrolytes hydrogels chromatographic materials. Springer, Berlin, pp 1–50Google Scholar
  39. Schexnailder P, Schmidt G (2009) Nanocomposite polymer hydrogels. Colloid Polym Sci 287(1):1–11CrossRefGoogle Scholar
  40. Scranton AB, Peppas NA (1990) A statistical model of free-radical copolymerization/crosslinking reactions. J Polym Sci A Polym Chem 28(1):39–57CrossRefGoogle Scholar
  41. Scranton AB, Klier J, Peppas NA (1991) Statistical analysis of free-radical copolymerization/crosslinking reactions using probability generating functions: reaction directionality and general termination. Macromolecules 24(6):1412–1415CrossRefGoogle Scholar
  42. Shimomura T, Namba T (1994) Preparation and application of high-performance superabsorbent polymers. In: ACS symposium seriesGoogle Scholar
  43. Uddin F (2008) Clays, nanoclays, and montmorillonite minerals. Metall Mater Trans A 39(12):2804–2814CrossRefGoogle Scholar
  44. Vaia RA, Jandt KD, Kramer EJ, Giannelis EP (1996) Microstructural evolution of melt intercalated polymer-organically modified layered silicates nanocomposites. Chem Mater 8(11):2628–2635CrossRefGoogle Scholar
  45. Vundavalli R, Vundavalli S, Nakka M, Rao DS (2015) Biodegradable nano-hydrogels in agricultural farming-alternative source for water resources. Proc Mater Sci 10:548–554CrossRefGoogle Scholar
  46. Williams RJ, Vallo CI (1988) Statistics of free-radical polymerizations revisited using a fragment approach. 2. Polyfunctional monomers. Macromolecules 21(8):2571–2575CrossRefGoogle Scholar
  47. Woodhouse J, Johnson M (1991) The effect of gel-forming polymers on seed germination and establishment. J Arid Environ 20(3):375–380Google Scholar
  48. Wu J, Wei Y, Lin J, Lin S (2003) Study on starch-graft-acrylamide/mineral powder superabsorbent composite. Polymer 44(21):6513–6520CrossRefGoogle Scholar
  49. Zhang J, Wang A (2007) Study on superabsorbent composites. IX: synthesis, characterization and swelling behaviors of polyacrylamide/clay composites based on various clays. React Funct Polym 67(8):737–745CrossRefGoogle Scholar
  50. Zhang MC, Zhou Q, Zhou Y, Li AM, Shuang CD (2012) Efficient adsorption and desorption of Cu 2+ by a novel acid-resistant magnetic weak acid resin. Chin Chem Lett 23(11):1267–1270CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2017

Authors and Affiliations

  • Majid Peyravi
    • 1
    Email author
  • Peyman Pouresmaeel Selakjani
    • 1
  • Soodabeh Khalili
    • 2
  1. 1.Nanotechnology Research Institute, Faculty of Chemical EngineeringBabol Noshirvani University of TechnologyBabolIran
  2. 2.Oil, Gas and Chemical Engineering DepartmentSemnan UniversitySemnanIran

Personalised recommendations