Nanoagrotechnology for Soil Quality, Crop Performance and Environmental Management

  • Jeyabalan Sangeetha
  • Devarajan ThangaduraiEmail author
  • Ravichandra Hospet
  • Etigemane Ramappa Harish
  • Prathima Purushotham
  • Mohammed Abdul Mujeeb
  • Jadhav Shrinivas
  • Muniswamy David
  • Abhishek Channayya Mundaragi
  • Shivasharana Chandrabanda Thimmappa
  • Suresh Basavaraj Arakera
  • Ram Prasad


Nanotechnology is emerging as the key enabling technology that contributes to increased crop production with special emphasis on soil protection with environmental sustainability. Increasing worldwide food security and challenging climatic conditions are the key components for encouraging the scientific community to focus on accelerating the growth of nanoagrotechnology. Last few decades immensely contributed to the field of agriculture; technological innovations by several hybrid varieties, synthetic chemical compounds and advanced techniques of biotechnology are an integral part of this achievement. The present decade emerged as the “decade of nanoagrotechnology”, as a new origin of agricultural developments through most groundbreaking scientific finding in the field.


Aptamers Carbon nanotube Pesticides Fertilizers Agrochemicals Smart dust technology 


  1. Adak T, Kumar J, Dey D, Shakil NA, Walia S (2012a) Residue and bio-efficacy evaluation of controlled release formulations of imidacloprid against pests in soybean (Glycine max). J Environ Sci Health B 47(3):226–231PubMedCrossRefGoogle Scholar
  2. Adak T, Kumar J, Shakil NA, Walia S (2012b) Development of controlled release formulations of imidacloprid employing novel nano-ranged amphiphilic polymers. J Environ Sci Health B 47(3):217PubMedCrossRefGoogle Scholar
  3. Adhikari T, Kundu S, Biswas AK, Tarafdar JC, Rao AS (2012) Effect of copper oxide nano particle on seed germination of selected crops. J Agric Sci Technol 2:815–823Google Scholar
  4. Afrasiabi Z, Eivazi F, Popham H, Stanley D, Upendran A, Kannan R (2012) Silver nanoparticles as pesticides. In: Capacity building grants program project director’s meeting. National Institute of Food and Agriculture, Huntsville. September 16–19Google Scholar
  5. Aghdam MTB, Mohammadi H, Ghorbanpour M (2016) Effects of nanoparticulate anatase titanium dioxide on physiological and biochemical performance of Linum usitatissimum (Linaceae) under well-watered and drought stress conditions. Braz J Bot 39(1):139–146CrossRefGoogle Scholar
  6. Agrawal S, Rathore P (2014) Nanotechnology pros and cons to agriculture: a review. Int J Curr Microbiol App Sci 3(3):43–55Google Scholar
  7. Aktar MW, Sengupta D, Chowdhury A (2009) Impact of pesticides use in agriculture: their benefits and hazards. Interdiscip Toxicol 2(1):1–12PubMedPubMedCentralCrossRefGoogle Scholar
  8. Al-Samarrai AM (2012) Nanoparticles as alternative to pesticides in management plant diseases – a review. Int J Sci Res Publ 2(4):1–4Google Scholar
  9. Arifin DY, Lee LY, Wang CH (2006) Mathematical modeling and simulation of drug release from microspheres: implications to drug delivery systems. Adv Drug Deliv Rev 58:1274–1325PubMedCrossRefGoogle Scholar
  10. Asghari S, Johari SA, Lee JH, Kim YS, Jeon YB, Choi HJ, Moon MC, Yu IJ (2012) Toxicity of various silver nanoparticles compared with silver ions in Daphnia magna. J Nanobiotech 10:14. doi: 10.1186/1477-3155-10-14 CrossRefGoogle Scholar
  11. AshaRani PV, Mun GLK, Hande MP, Valiyaveettil S (2009) Cytotoxicity and genotoxicity of silver nanoparticles in human cells. ACS Nano 3:279–290PubMedCrossRefGoogle Scholar
  12. Ashkavand P, Tabari M, Zarafshar M, Tomášková I, Struve D (2015) Nanoparticles on drought resistance in hawthorn seedlings. Leśne Pr Badawcze 76(4):350–359Google Scholar
  13. Azimi R, Borzelabad MJ, Feizi H, Azimi A (2014) Interaction of SiO2 nanoparticles with seed prechilling on germination and early seedling growth of tall wheat grass (Agropyron elongatum L.) Pol J Chem Technol 16:25–29CrossRefGoogle Scholar
  14. Aziz N, Faraz M, Pandey R, Sakir M, Fatma T, Varma A, Barman I, Prasad R (2015) Facile algae-derived route to biogenic silver nanoparticles: synthesis, antibacterial and photocatalytic properties. Langmuir 31:11605–11612. doi: 10.1021/acs.langmuir.5b03081 PubMedCrossRefGoogle Scholar
  15. Aziz N, Pandey R, Barman I, Prasad R (2016) Leveraging the attributes of Mucor hiemalis-derived silver nanoparticles for a synergistic broad-spectrum antimicrobial platform. Front Microbiol 7:1984PubMedPubMedCentralCrossRefGoogle Scholar
  16. Baac H, Hajós JP, Lee J, Kim D, Kim SJ, Shuler ML (2006) Antibody-based surface plasmon resonance detection of intact viral pathogen. Biotechnol Bioeng 94(4):815–819PubMedCrossRefGoogle Scholar
  17. Barik TK, Sahu B, Swain V (2008) Nanosilica – from medicine to pest control. Parasitol Res 103(2):253–258PubMedCrossRefGoogle Scholar
  18. Bawankar SD, Bhople SB, Jaiswal VD (2012) Mobile networking for smart dust with RFID sensor networks. Int J Smart Sensors Ad Hoc Netw 2(3):62–66Google Scholar
  19. Bedos C, Cellier P, Calvet R, Barriuso E (2002) Occurrence of pesticides in the atmosphere in France. Agronomie 22:35–49CrossRefGoogle Scholar
  20. Bergeson LL (2010) Nanosilver: US EPA’s pesticide office considers how best to proceed. Environ Qual Manag 19(3):79–85CrossRefGoogle Scholar
  21. Bhagat D, Samanta SK, Bhattacharya S (2013) Efficient management of fruit pests by pheromone nanogels. Sci Rep 3:1294. doi: 10.1038/srep01294 PubMedPubMedCentralCrossRefGoogle Scholar
  22. Bhattacharyya A, Bhaumik A, Rani PU, Mandal S, Epidi TT (2010) Nanoparticles – a recent approach to insect pest control. Afr J Biotechnol 9(24):3489–3493Google Scholar
  23. Bhattacharyya A, Duraisamy P, Govindarajan M, Buhroo AA, Prasad R (2016a) Nano-biofungicides: emerging trend in insect pest control. In: Prasad R (ed) Advances and applications through fungal nanobiotechnology. Springer International Publishing, Cham, pp 307–319CrossRefGoogle Scholar
  24. Bhattacharyya A, Prasad R, Buhroo AA, Duraisamy P, Yousuf I, Umadevi M, Bindhu MR, Govindarajan M, Khanday AL (2016b) One-pot fabrication and characterization of silver nanoparticles using Solanum lycopersicum: an eco-friendly and potent control tool against Rose Aphid, Macrosiphum rosae. J Nanosci Article ID 4679410, 7 pages,
  25. Boonham N, Glover R, Tomlinson J, Mumford R (2008) Exploiting generic platform technologies for the detection and identification of plant pathogens. Eur J Plant Pathol 121:355–363CrossRefGoogle Scholar
  26. Bordes P, Pollet E, Avérous L (2009) Nano-biocomposites: biodegradable polyester/nanoclay systems. Prog Polym Sci 34:125–155CrossRefGoogle Scholar
  27. Bouwmeester H, Dekkers S, Noordam MY, Hagens WI, Bulder AS, Voorde GT, Sips A (2009) Review of health safety aspects of nanotechnologies in food production. Regul Toxicol Pharmacol 53(1):52–62PubMedCrossRefGoogle Scholar
  28. Bradley EL, Castle L, Chaudhry Q (2011) Applications of nanomaterials in food packaging with a consideration of opportunities for developing countries. Trends Food Sci Technol 22:604–610CrossRefGoogle Scholar
  29. Byrappa K, Ohara S, Adschiri T (2008) Nanoparticle synthesis using supercritical fluid technology – towards biomedical applications. Adv Drug Deliv Rev 60:299–327PubMedCrossRefGoogle Scholar
  30. Chakravarthy AK, Chandrashekharaiah KSB, Bhattacharya A, Dhanabala K, Gurunatha K, Ramesh P (2012) Bio efficacy of inorganic nanoparticles CdS, Nano-Ag and Nano-TiO2 against Spodoptera litura (Fabricius) (Lepidoptera: Noctuidae). Curr Biotica 6(3):271–281Google Scholar
  31. Chartuprayoon N, Rheem Y, Chen W, Myung NV (2010) Detection of plant pathogen using LPNE grown single conducting polymer nanoribbon. In: Proceedings of the 218th ECS meeting. Las Vegas. October 10–15, p 2278Google Scholar
  32. Chau CF, Wu SH, Yen GC (2007) The development of regulations for food nanotechnology. Trends Food Sci Technol 18(5):269–280CrossRefGoogle Scholar
  33. Chaudhry Q, Scotter M, Blackburn J, Ross B, Boxall A, Castle L, Aitken R, Watkins R (2008) Applications and implications of nanotechnologies for the food sector. Food Add Contam 25(3):241–258CrossRefGoogle Scholar
  34. Chen H, Yadav R (2011) Nanotechnologies in agriculture: new tools for sustainable development. Trends Food Sci Technol 22:585–594CrossRefGoogle Scholar
  35. Chinnamuthu CR, Boopathi PM (2009) Nanotechnology and agroecosystem. Madras Agric J 96(1–6):17–31Google Scholar
  36. Chong MN, Jin B, Chow CW, Saint C (2010) Recent developments in photocatalytic water treatment technology: a review. Water Res 44:2997–3027PubMedCrossRefGoogle Scholar
  37. Cioffi N, Torsi L, Ditaranto N (2004) Antifungal activity of polymer-based copper nanocomposite coatings. Appl Phys Lett 85(12):2417–2419CrossRefGoogle Scholar
  38. Clemente Z, Castro VL, Jonsson CM, Fraceto LF (2011) Ecotoxicology of Nano-TiO – an evaluation of its toxicity to organisms of aquatic ecosystems. Int J Environ Res 6:33–50Google Scholar
  39. Currie HA, Perry CC (2007) Silica in plants: biological, biochemical and chemical studies. Ann Bot 100:1383–1389PubMedPubMedCentralCrossRefGoogle Scholar
  40. De A, Bose R, Kumar A, Mozumdar S (2014) Targeted delivery of pesticides using biodegradable polymeric nanoparticles. Springer India, New Delhi, pp 59–81Google Scholar
  41. De Oliveira JL, Campos EVR, Bakshi M, Abhilash PC, Fraceto LF (2014) Application of nanotechnology for the encapsulation of botanical insecticides for sustainable agriculture: prospects and promises. Biotechnol Adv 32(8):1550–1561PubMedCrossRefGoogle Scholar
  42. Doyle M (2006) Nanotechnology: a brief literature review. Food Research Institute, University of Wisconsin, MadisonGoogle Scholar
  43. Duran N, Marcato PD (2013) Nanobiotechnology perspectives, role of nanotechnology in the food industry: a review. Int J Food Sci Technol 48(6):1127–1134CrossRefGoogle Scholar
  44. Emamifar A, Kadivar M, Shahedi M, Soleimanian-Zad S (2010) Evaluation of nanocomposite packaging containing Ag and ZnO on shelf life of fresh orange juice. Innovative Food Sci Emerg Technol 11:742–748CrossRefGoogle Scholar
  45. EPA (2010) Nanomaterial case studies: nanoscale titanium dioxide in water treatment and in topical sunscreen. RTP Division, European Protection Agency, Washington, DC. Accessed 11 Aug 2016Google Scholar
  46. Epstein E (2009) Silicon: its manifold roles in plants. Ann Appl Biol 155:155–160CrossRefGoogle Scholar
  47. Esteban-Tejeda L, Malpartida F, Esteban-Cubillo A, Pecharromán C, Moya JS (2009) Antibacterial and antifungal activity of a soda-lime glass containing copper nanoparticles. Nanotechnology 20(50):505–701CrossRefGoogle Scholar
  48. Fanger GO (1974) Microencapsulation: a brief history and introduction. In: Vandegaer JE (ed) Microencapsulation: process and applications. Plenum Press, New York, pp 1–20CrossRefGoogle Scholar
  49. Forim MR, Costa ES, da Silva MFGF, Fernandes JB, Mondego JM, Junior ALB (2013) Development of a new method to prepare nano-microparticles loaded with extracts of Azadirachta indica, their characterization and use in controlling Plutella xylostella. J Agric Food Chem 61(38):9131–9139PubMedCrossRefGoogle Scholar
  50. Friedmann D, Mendiveb C, Bahnemann D (2010) TiO for water treatment: parameters affecting the kinetics and mechanisms of photocatalysis. Appl Catal B Environ 99:398–406CrossRefGoogle Scholar
  51. Fujishima A, Zhang X, Tryk DA (2008) TiO2 photocatalysis and related surface phenomena. Surf Sci Rep 63:515–582CrossRefGoogle Scholar
  52. Gao J, Xu B (2009) Applications of nanomaterials inside cells. Nano Today 4:37–51. doi: 10.1016/j.nantod.2008.10.009 CrossRefGoogle Scholar
  53. Gao X, Zou C, Wang L, Zhang F (2005) Silicon improves water use efficiency in maize plants. J Plant Nutr 27:1457–1470CrossRefGoogle Scholar
  54. Gao F, Hong F, Liu C, Zheng L, Su M, Wu X, Yang F, Wu C, Yang P (2006) Mechanism of nano-anatase TiO2 on promoting photosynthetic carbon reaction of spinach. Biol Trace Elem Res 111(1–3):239–253PubMedCrossRefGoogle Scholar
  55. Garber C (2006) Nanotechnology food coming to a fridge near you. Accessed 11 Aug 2016
  56. Garner KL, Keller AA (2014) Emerging patterns for engineered nanomaterials in the environment: a review of fate and toxicity studies. J Nanopart Res 16:250–253CrossRefGoogle Scholar
  57. Gaya UI, Abdullah AH (2008) Heterogeneous photocatalytic degradation of organic contaminants over titaniumdioxide: a review of fundamentals, process and problems. J Photochem Photobiol A Chem 9:1–12CrossRefGoogle Scholar
  58. Gehrke I, Geiser A, Somborn-Schulz A (2015) Innovations in nanotechnology for water treatment. Nanotechnol Sci Appl 8:1–17PubMedPubMedCentralCrossRefGoogle Scholar
  59. Ghormade V, Deshpande MV, Paknikar KM (2011) Perspectives for nano-biotechnology enabled protection and nutrition of plants. Biotechnol Adv 29(6):792–803. doi: 10.1016/j.biotechadv.2011.06.007 PubMedCrossRefGoogle Scholar
  60. Giraldo JP, Landry MP, Faltermeier SM (2014) Plant nanobionics approach to augment photosynthesis and biochemical sensing. Nat Mater 13(4):400–408. doi: 10.1038/nmat3890 PubMedCrossRefGoogle Scholar
  61. Gogos A, Knauer K, Bucheli TD (2012) Nanomaterials in plant protection and fertilization: current state, foreseen applications, and research priorities. J Agric Food Chem 60(39):9781–9792. doi: 10.1021/jf302154y PubMedCrossRefGoogle Scholar
  62. Goix S, Lévêque T, Xiong TT, Schreck E, Baeza-Squiban A, Geret F, Uzu G, Austruy A, Dumat C (2014) Environmental and health impacts of fine and ultrafine metallic particles: assessment of threat scores. Environ Res 133:185–194PubMedCrossRefGoogle Scholar
  63. Goswami A, Roy I, Sengupta S, Debnath N (2010) Novel applications of solid and liquid formulations of nanoparticles against insect pests and pathogens. Thin Solid Films 519(3):1252–1257. doi: 10.1016/j.tsf.2010.08.079 CrossRefGoogle Scholar
  64. Gruère GP (2011) Labeling nano-enabled consumer products. NanoToday 6(2):117–121CrossRefGoogle Scholar
  65. Haghighi M, Pessarakli M (2013) Influence of silicon and nano-silicon on salinity tolerance of cherry tomatoes (Solanum lycopersicum L.) at early growth stage. Sci Hortic 161:111–117CrossRefGoogle Scholar
  66. Haghighi M, Afifipour Z, Mozafarian M (2012) The effect of N-Si on tomato seed germination under salinity levels. J Biol Environ Sci 6:87–90Google Scholar
  67. Hasanpour H, Maali-Amiri R, Zeinali H (2015) Effect of TiO2 nanoparticles on metabolic limitations to photosynthesis under cold in chickpea. Russ J Plant Physiol 62:779–787CrossRefGoogle Scholar
  68. Hawrylak-Nowak B, Matraszek R, Szymańska M (2010) Selenium modifies the effect of short-term chilling stress on cucumber plants. Biol Trace Elem Res 138:307–315PubMedCrossRefGoogle Scholar
  69. Hojjat SS (2016) The effect of silver nanoparticle on lentil seed germination under drought stress. Int J Farm Allied Sci 5(3):208–212Google Scholar
  70. Hong F, Zhou J, Liu C, Yang F, Wu C, Zheng L, Yang P (2005) Effect of nano titanium oxide on phytochemical reaction of chloroplast of spinach. Biol Trace Elem Res 105(1):269–279PubMedCrossRefGoogle Scholar
  71. Husen A, Siddiqi KS (2014) Carbon and fullerene nanomaterials in plant system. J Nanobiotechnol 12:16. doi: 10.1186/1477-3155-12-16 CrossRefGoogle Scholar
  72. Huyghebaert A, Van Huffel X, Houins G (2010) Nanotechnology in the food chain: opportunities and risks. Springer, BerlinGoogle Scholar
  73. Iran Nanotechnology Initiative Council (2009) First nano-organic iron chelated fertilizer invented in IranGoogle Scholar
  74. Jaberzadeh A, Moaveni P, Moghadam THR, Zahedi H (2013) Influence of bulk and nanoparticles titanium foliar application on some agronomic traits, seed gluten and starch contents of wheat subjected to water deficit stress. Not Bot Hortic Agrobot 41(1):201–207Google Scholar
  75. Jagadevan S, Jayamurthy M, Dobson P, Thompson IPA (2012) Novel hybrid nanozerovalent iron initiated oxidation biological degradation approach for remediation of recalcitrant waste metal working fluids. Water Res 46:2395–2404PubMedCrossRefGoogle Scholar
  76. Jain KK (2005) The role of nanobiotechnology in drug discovery. Drug Discov Today 10(21):1435–1442. doi: 10.1016/S1359-6446(05)03573-7 PubMedCrossRefGoogle Scholar
  77. Janmohammadi M, Amanzadeh T, Sabaghnia N, Ion V (2016) Effect of nano-silicon foliar application on safflower growth under organic and inorganic fertilizer regimes. Bot Lithuanica 22(1):53–64Google Scholar
  78. Jayaseelan C, Rahuman AA, Rajakumar G, Vishnu Kirthi A, Santhoshkumar T, Marimuthu S, Bagavan A, Kamaraj C, Zahir AA, Elango G (2011) Synthesis of pediculocidal and larvicidal silver nanoparticles by leaf extract from heart leaf moon seed plant, Tinospora cordifolia Miers. Parasitol Res 109(1):185–194. doi: 10.1007/s00436-010-2242-y PubMedCrossRefGoogle Scholar
  79. Kah M (2015) Nanopesticides and nanofertilizers: emerging contaminants or opportunities for risk mitigation? Front Chem 3:64. doi: 10.3389/fchem.2015.00064 PubMedPubMedCentralCrossRefGoogle Scholar
  80. Kah M, Beulke S, Tiede K, Hofmann T (2013) Nanopesticides: state of knowledge, environmental fate, and exposure modeling. Crit Rev Environ Sci Technol 43:1823–1867CrossRefGoogle Scholar
  81. Khan MN, Mobin M, Abbas ZK, AlMutairi KA, Siddiqui ZH (2016) Role of nanomaterials in plants under challenging environments. Plant Physiol Biochem. doi: 10.1016/j.plaphy.2016.05.038 Google Scholar
  82. Khater HF (2011) Ecosmart biorational insecticides: alternative insect control strategies. In: Parveen F (ed) Insecticides: advances in integrated pest management. InTech, Croatia, pp 780–782Google Scholar
  83. Khot LR, Sankaran S, Maja JM, Ehsani R, Schuster EW (2012) Applications of nanomaterials in agricultural production and crop protection: a review. Crop Prot 35:64–70CrossRefGoogle Scholar
  84. Kim SJ, Ko SH, Kang KH, Han J (2010) Direct seawater desalination by ion concentration polarisation. Nat Nanotechnol 5:297–301PubMedCrossRefGoogle Scholar
  85. Ko KS, Kong IC (2014) Toxic effects of nanoparticles on bioluminescence activity, seed germination, and gene mutation. Appl Microbiol Biotechnol 98:3295–3303PubMedCrossRefGoogle Scholar
  86. Kohan-Baghkheirati E, Geisler-Lee J (2015) Gene expression, protein function and pathways of Arabidopsis thaliana responding to silver nanoparticles in comparison to silver ions, cold, salt, drought, and heat. Nanomaterials 5:436–467PubMedPubMedCentralCrossRefGoogle Scholar
  87. Kumar J, Shakil NA, Khan MA, Malik K, Walia S (2011) Development of controlled release formulations of carbofuran and imidacloprid and their bioefficacy evaluation against aphid, Aphis gossypii and leafhopper, Amrasca biguttula (Ishida) on potato crop. J Environ Sci Health B 46(8):678–682. doi: 10.1080/03601234.2012.592066 PubMedGoogle Scholar
  88. Kuzma J, Verhage P (2006) Nanotechnology in agriculture and food production: anticipated applications. Woodrow Wilson International Center for Scholars, Washington, DC. Accessed 11 Aug 2016Google Scholar
  89. Lamsal K, Kim SW, Jung JH, Kim YS, Kim KS, Lee YS (2011) Inhibition effects of silver nanoparticles against powdery mildews on cucumber and pumpkin. Mycobiology 39(1):26–32. doi: 10.4489/MYCO.2011.39.1.026 PubMedPubMedCentralCrossRefGoogle Scholar
  90. Larkins B, Bringgs S, Delmer D, Dick R, Flavell R, Gressel J, Habtemariam T, Lal R, Pell AN, St Leger R, Wall RJ (2008) Emerging technologies to benefit farmers in sub-Saharan Africa and South Asia. National Academies Press, Washington, DCGoogle Scholar
  91. Lawrence MJ, Rees GD (2000) Microemulsion-based media as novel drug delivery systems. Adv Drug Deliv Rev 45(1):89–121. doi: 10.1016/S0169-409X(00)00103-4 PubMedCrossRefGoogle Scholar
  92. Lee J, Mahendra S, Alvarez PJJ (2010) Nanomaterials in the construction industry: a review of their applications and environmental health and safety considerations. ACS Nano 4(7):3580–3590. doi: 10.1021/nn100866w PubMedCrossRefGoogle Scholar
  93. Lin D, Xing B (2008) Root uptake and phytotoxicity of ZnO nanoparticles. Environ Sci Technol 42:5580–5585. doi: 10.1021/es800422x PubMedCrossRefGoogle Scholar
  94. Linglan M, Chao L, Chunxiang Q, Sitao Y, Jie L, Fengqing G, Fashui H (2008) Rubisco activase mRNA expression in spinach: modulation by nanoanatase treatment. Biol Trace Elem Res 122(2):168–178. doi: 10.1007/s12011-007-8069-4 PubMedCrossRefGoogle Scholar
  95. Liu R, Lal R (2014) Synthetic apatite nanoparticles as a phosphorus fertilizer for soybean (Glycine max). Sci Rep 4:5686. doi: 10.1038/srep05686 PubMedPubMedCentralCrossRefGoogle Scholar
  96. Lodriche SS, Soltani S, Mirzazadeh R (2013) Silicon nanocarrier for delivery of drug, pesticides and herbicides, and for waste water treatment. United States Patent, US20130225412 A1Google Scholar
  97. López MM, Llop P, Olmos A, Marco-Noales E, Cambra M, Bertolini E (2009) Are molecular tools solving the challenges posed by detection of plant pathogenic bacteria and viruses? Curr Issues Mol Biol 11:13–46PubMedGoogle Scholar
  98. Lövenstam G, Rauscher H, Roebben G, Sokull Klüttgen B, Gibson N, Putaud JP, Stamm H (2010) Considerations on a definition of nanomaterial for regulatory purposes. Publication Office of the European Union, Luxembourg. Accessed 11 Aug 2016Google Scholar
  99. Lu CM, Zhang CY, Wen JQ, Wu GR, Tao MX (2002) Research on the effect of nanometer materials on germination and growth enhancement of Glycine max and its mechanism. Soybean Sci 21(3):168–171Google Scholar
  100. Ma JF (2004) Role of silicon in enhancing the resistance of plants to biotic and abiotic stresses. Soil Sci Plant Nutr 50:11–18CrossRefGoogle Scholar
  101. McKeague MK, Giamberardino A, DeRosa MC (2011) Advances in aptamer based biosensors for food safety. In: Somerset V (ed) Environmental biosensors. InTech, Croatia, pp 17–42Google Scholar
  102. Miller DD (2010) Food nanotechnology: new leverage against iron deficiency. Nat Nanotechnol 5(5):318–319PubMedCrossRefGoogle Scholar
  103. Mittler R (2006) Abiotic stress, the field environment and stress combination. Trends Plant Sci 11:15–19PubMedCrossRefGoogle Scholar
  104. Moaveni P, Kheiri T (2011) TiO2 nano particles affected on maize (Zea mays L). In: 2nd international conference on agricultural and animal science. Maldives, pp 160–163Google Scholar
  105. Mogul MG, Akin H, Hasirci N, Trantolo DJ, Gresser JD, Wise DL (1996) Controlled release of biologically active agents for purposes of agricultural crop management. Resour Conserv Recycl 16:289–320CrossRefGoogle Scholar
  106. Mohammadi R, Maali-Amiri R, Abbasi A (2013) Effect of TiO2 nanoparticles on chickpea response to cold stress. Biol Trace Elem Res 152:403–410PubMedCrossRefGoogle Scholar
  107. Monica RC, Cremonini R (2009) Nanoparticles and higher plants. Caryologia 62:161–165CrossRefGoogle Scholar
  108. Montgomery MA, Elimelech M (2007) Water and sanitation in developing countries: including health in the equation. Environ Sci Technol 44(1):17–24CrossRefGoogle Scholar
  109. Mukal D, Sexena N, Dwivedi PD (2009) Emerging trends of nanoparticles application in food technology: safety paradigms. Nanotoxicol 3:10–18CrossRefGoogle Scholar
  110. Musante C, White JC (2010) Toxicity of silver and copper to Cucurbita pepo: differential effects of nano and bulk-size particles. Environ Toxicol 27(9):510–517. doi: 10.1002/tox.20667 PubMedCrossRefGoogle Scholar
  111. Naderi MR, Abedi A (2012) Application of nanotechnology in agriculture and refinement of environmental pollutants. J Nanotechnol 11(1):18–26Google Scholar
  112. Naderi MR, Danesh-Shahraki A (2013) Nanofertilizers and their roles in sustainable agriculture. Int J Agric Crop Sci 5(19):2229–2232Google Scholar
  113. Naidoo L, Kistnasamy EJ (2015) A desktop evaluation of the potential impact of nanotechnology applications in the field of environmental health in a developing country. Am J Publ Health Res 3(5):182–186Google Scholar
  114. Nair R, Varghese SH, Nair BG, Maekawa T, Yoshida Y, Kumar DS (2010) Nanoparticulate material delivery to plants. Plant Sci 179(3):154–163CrossRefGoogle Scholar
  115. Neethirajan S, Jayas DS (2010) Nanotechnology for the food and bioprocessing industries. Food Bioprocess Technol 4(1):39–47CrossRefGoogle Scholar
  116. Nord E (2009) Top 10 reasons for using nanotech in food. Accessed 11 Aug 2016
  117. Nuruzzaman MD, Rahaman MM, Liu Y, Naidu R (2016) Nanoencapsulation, nano-guard for pesticides: a new window for safe application. J Agric Food Chem 64:1447–1487PubMedCrossRefGoogle Scholar
  118. Oerke EC (2006) Crop losses to pests. J Agric Sci 144:31–43CrossRefGoogle Scholar
  119. Pan B, Xing BS (2008) Adsorption mechanisms of organic chemicals on carbon nanotubes. Environ Sci Technol 42:9005–9013PubMedCrossRefGoogle Scholar
  120. Park HJ, Kim SH, Kim HJ, Choi SH (2006) A new composition of nanosized silica-silver for control of various plant diseases. Plant Pathol J 22(3):295–302CrossRefGoogle Scholar
  121. Patterson DT, Westbrook JK, Joyce RJV, Lingren PD, Rogasik J (1999) Weeds, insects and diseases. Clim Chang 43:711–727CrossRefGoogle Scholar
  122. Pei ZF, Ming DF, Liu D, Wan GL, Geng XX, Gong HJ, Zhou WJ (2010) Silicon improves the tolerance to water-deficit stress induced by polyethylene glycol in wheat (Triticum aestivum L.) seedlings. J Plant Growth Regul 29:106–115CrossRefGoogle Scholar
  123. Pepper D (2011) The toxic consequences of the green revolution. Accessed 11 Aug 2016
  124. Perez-de-Luque A, Rubiales D (2009) Nanotechnology for parasitic plant control. Pest Manag Sci 65(5):540–545PubMedCrossRefGoogle Scholar
  125. Perlatti B, Bergo PLS, Fernandes da Silva MFG, Fernandes JB, Forim MR (2013) Polymeric nanoparticle-based insecticides: a controlled release purpose for agrochemicals. In: Trdan S (ed) Insecticides: development of safer and more effective technologies. InTech, Rijeka. Accessed 11 Aug 2016Google Scholar
  126. Pothakamuri UR, Barbosa-Cánovas GV (1995) Fundamental aspects of controlled release in foods. Trends Food Sci Technol 6:397–406CrossRefGoogle Scholar
  127. Pourkhaloee A, Haghighi M, Saharkhiz MJ, Jouzi H, Doroodmand MM (2011) Investigation on the effects of carbon nanotubes (CNTs) on seed germination and seedling growth of salvia (Salvia microsiphon), pepper (Capsicum annum) and tall fescue (Festuca arundinacea). J Seed Technol 33:155–160Google Scholar
  128. Prasad R (2016) Advances and applications through fungal nanobiotechnology. Springer, International Publishing, Cham. ISBN:978-3-319-42989-2Google Scholar
  129. Prasad R, Kumar V, Prasad KS (2014) Nanotechnology in sustainable agriculture: present concerns and future aspects. Afr J Biotechnol 13(6):705–713CrossRefGoogle Scholar
  130. Prasad R, Pandey R, Barman I (2016) Engineering tailored nanoparticles with microbes: quo vadis. WIREs Nanomed Nanobiotechnol 8:316–330. doi: 10.1002/wnan.1363 CrossRefGoogle Scholar
  131. Prasad R, Bhattacharyya A, Nguyen QD (2017a) Nanotechnology in sustainable agriculture: recent developments, challenges, and perspectives. Front Microbiol 8:1014. doi: 10.3389/fmicb.2017.01014
  132. Prasad R, Pandey R, Varma A, Barman I (2017b) Polymer based nanoparticles for drug delivery systems and cancer therapeutics. In: Kharkwal H, Janaswamy S (eds) Natural polymers for drug delivery. CABI, Oxfordshire, pp 53–70Google Scholar
  133. Qados AMSA, Moftah AE (2015) Influence of silicon and nano-silicon on germination, growth and yield of faba bean (Vicia faba L.) under salt stress conditions. Am J Exp Agric 5:509–524CrossRefGoogle Scholar
  134. Qu X, Alvarez PJ, Li Q (2013) Applications of nanotechnology in water and wastewater treatment. Water Res 47:3931–3946PubMedCrossRefGoogle Scholar
  135. Qureshi A, Kang WP, Davidson JL, Gurbuz Y (2009) Review on carbon-derived, solid-state, micro and nano sensors for electrochemical sensing applications. Diam Relat Mater 18:1401–1420CrossRefGoogle Scholar
  136. Racuciu M, Creanga DE (2006) TMA-OH coated magnetic nanoparticles internalized in vegetal tissue. Rom J Phys 52(3–4):395–402Google Scholar
  137. Racuciu M, Miclauş S, Creanga DE (2009) The response of plant tissues to magnetic fluid and electromagnetic exposure. Rom J Biophys 19:73–82Google Scholar
  138. Rafi MM, Epstein E, Falk RH (1997) Silicon deprivation causes abnormalities in wheat (Triticum aestivum L.) J Plant Physiol 152:497–501CrossRefGoogle Scholar
  139. Ragaei M, Sabry AH (2014) Nanotechnology for insect pest control. Int J Sci Environ Technol 3(2):528–545Google Scholar
  140. Rai M, Ingle A (2012) Role of nanotechnology in agriculture with special reference to management of insect pests. Appl Microbiol Biotechnol 94(2):287–293PubMedCrossRefGoogle Scholar
  141. Raliya R, Tarafdar JC (2013) ZnO nanoparticle biosynthesis and its effect on phosphorous-mobilizing enzyme secretion and gum contents in Clusterbean (Cyamopsis tetragonoloba L). Agric Res 2(1):48–57CrossRefGoogle Scholar
  142. Raliya R, Tarafdar JC, Biswas P (2016) Enhancing the mobilization of native phosphorus in the mung bean rhizosphere using ZnO nanoparticles synthesized by soil fungi. J Agric Food Chem 64(16):3111–3118PubMedCrossRefGoogle Scholar
  143. Rameshaiah GN, Pallavi J, Shabnam S (2015) Nanofertilizers and nano sensors – an attempt for developing smart agriculture. Int J Eng Res Gen Sci 3(1):314–320Google Scholar
  144. Rao KJ, Paria S (2013) Use of sulfur nanoparticles as a green pesticide on Fusarium solani and Venturia inaequalis phytopathogens. RSC Adv 3(26):10471–10478CrossRefGoogle Scholar
  145. Renton A (2006) Welcome to the world of nanofoods.,,1971266,00.html. Accessed 11 Aug 2016
  146. Rico CM, Majumdar S, Duarte-Gardea M, Peralta-Videa JR, Gardea-Torresdey JL (2011) Interaction of nanoparticles with edible plants and their possible implications in the food chain. J Agric Food Chem 59(8):3485–3498PubMedPubMedCentralCrossRefGoogle Scholar
  147. Risch SJ, Reineccius GA (1995) Encapsulation and controlled release of food ingredients. American Chemical Society, Washington, DC, p 590CrossRefGoogle Scholar
  148. Sabaghnia N, Janmohammadi M (2014) Graphic analysis of nano-silicon by salinity stress interaction on germination properties of lentil using the biplot method. Agric For 60(3):29–40Google Scholar
  149. Sabaghnia N, Janmohammadi M (2015) Effect of nano-silicon particles application on salinity tolerance in early growth of some lentil genotypes. Ann UMCS Biol 69:39–55Google Scholar
  150. Sadik OA, Zhou AL, Kikandi S, Du N, Wang Q, Varner K (2009) Sensors as tools for quantitation, nanotoxicity and nanomonitoring assessment of engineered nanomaterials. J Environ Monit 11(10):1782–1800PubMedCrossRefGoogle Scholar
  151. Sasson Y, Levy-Ruso G, Toledano O, Ishaaya I (2007) Nanosuspensions: emerging novel agrochemical formulations. In: Ishaaya I, Nauen R, Horowitz AR (eds) Insecticides design using advanced technologies. Springer, Berlin, pp 1–39CrossRefGoogle Scholar
  152. Schnettler B, Crisóstomo G, Mills N, Miranda H, Mora M, Lobos G, Grunert KG (2013) Preferences for sunflower oil produced conventionally, produced with nanotechnology or genetically modified in the Araucanía region of Chile. Cien Inv Agric 40(1):17–29CrossRefGoogle Scholar
  153. Schoen DT, Schoen AP, Hu L, Kim HS, Heilshorn SC, Cui Y (2010) High speed water sterilization using one dimensional nano structures. Nano Lett 10(9):3628–3632PubMedCrossRefGoogle Scholar
  154. Schulman JH, Stoeckenius W, Prince LM (1959) Mechanism of formation and structure of micro emulsions by electron microscopy. J Phys Chem 63(10):1677–1680CrossRefGoogle Scholar
  155. Scott N, Chen H, Rutzke CJ (2003) Nanoscale science and engineering for agriculture and food systems: a report submitted to cooperative state research, education and extension service. U.S. Department of Agriculture: National Planning Workshop, Washington, DCGoogle Scholar
  156. Seghatoleslami MJ, Feizi H, Mousavi G, Berahmand A (2015) Effect of magnetic field and silver nanoparticles on yield and water use efficiency of Carum copticum under water stress conditions. Pol J Chem Technol 17:110–114CrossRefGoogle Scholar
  157. Sekhon BS (2014) Nanotechnology in agri-food production: an overview. Nanotechnol Sci Appl 7:31–53PubMedPubMedCentralCrossRefGoogle Scholar
  158. Sharma V, Sharma A (2012) Nanotechnology: an emerging future trend in wastewater treatment with its innovative products and processes. Int J Enhanc Res Sci Tech Eng 1:121–128Google Scholar
  159. Sharon M, Choudhary A, Kumar R (2010) Nanotechnology in agricultural diseases and food safety. J Phytol 2(4):83–92Google Scholar
  160. Singh A, Singh S, Prasad SM (2016) Scope of nanotechnology in crop science: profit or loss. Res Rev J Bot Sci 5(1):1–4Google Scholar
  161. Singh D, Singh SC, Kumar S, Lal B, Singh NB (2010) Effect of titanium dioxide nanoparticles on the growth and biochemical parameters of Brassica oleracea. In: Riberio C, de Assis OBG, Mattoso LHC, Mascarenas S (eds) International conference on food and agricultural applications of nanotechnologies. São PedroGoogle Scholar
  162. Solanki P, Bhargava A, Chhipa H, Jain N, Panwar J (2015) Nano-fertilizers and their smart delivery system. In: Rai M, Ribeiro C, Mattoso L, Duran N (eds) Nanotechnologies in food and agriculture. Springer, New York, pp 81–102Google Scholar
  163. Srivastava A, Rao DP (2014) Enhancement of seed germination and plant growth of wheat, maize, peanut and garlic using multiwalled carbon nanotubes. Eur Chem Bull 3(5):502–504Google Scholar
  164. Stadler T, Buteler M, Weaver DK, Sofie S (2012) Comparative toxicity of nanostructured alumina and a commercial inert dust for Sitophilus oryzae (L.) and Rhyzopertha dominica (F.) at varying ambient humidity levels. J Stored Prod Res 48:81–90CrossRefGoogle Scholar
  165. Subramanian KS, Manikanda A, Thirunavukkarasu M, Rahale CS (2015) Nano-fertilizers for balanced crop nutrition. In: Rai M, Ribeiro C, Mattoso L, Duran N (eds) Nanotechnologies in food and agriculture. Springer, New York. doi: 10.1007/978-3-319-14024-7_3 Google Scholar
  166. Suriyaprabha R, Karunakaran G, Yuvakkumar R, Rajendran V, Kannan N (2012) Silica nanoparticles for increased silica availability in maize (Zea mays L.) seeds under hydroponic conditions. Curr Nanosci 8:902–908CrossRefGoogle Scholar
  167. Tai-Chia C, Chih-Ching H (2009) Aptamer-functionalized nano-biosensors. Sensors 9(12):10356–10388CrossRefGoogle Scholar
  168. Tiwari DK, Dasgupta-Schubert N, Cendejas LMJV, Villegas J, Montoya LC, Garcia SEB (2014) Interfacing carbon nanotubes (CNT) with plants: enhancement of growth, water and ionic nutrient uptake in maize (Zea mays) and implications for nanoagriculture. Appl Nanosci 4(5):577–591CrossRefGoogle Scholar
  169. Torabian S, Zahedi M, Khoshgoftar AH (2016) Effects of foliar spray of two kinds of zinc oxide on the growth and ion concentration of sunflower cultivars under salt stress. J Plant Nutr 39:172–180CrossRefGoogle Scholar
  170. Tothill IE (2001) Biosensors developments and potential applications in the agricultural diagnosis sector. Comput Electron Agric 30:205–218CrossRefGoogle Scholar
  171. Tramon C (2014) Modelling the controlled release of essential oils from a polymer matrix – a special case. Ind Crop Prod 61:23–30CrossRefGoogle Scholar
  172. Tratnyek PG, Johnson RL (2006) Nanotechnologies for environmental cleanup. NanoToday 1:44–48CrossRefGoogle Scholar
  173. van den Berg F, Kubiak R, Benjey WG, Majewski MS, Yates SR, Reeves GL, Smelt JH, van der Linden AMA (1999) Emission of pesticides into the air. In: Van Dijk HFG, Van Pul WAJ, De Voogt P (eds) Fate of pesticides in the atmosphere: implications for environmental risk assessment. Springer, Netherlands, pp 195–218CrossRefGoogle Scholar
  174. Vidyalakshmi R, Bhakyaraj R, Subhasree RS (2009) Encapsulation “the future of probiotics” – a review. Adv Biol Res 3(3–4):96–103Google Scholar
  175. Vinutha JS, Bhagat D, Bakthavatsalam N (2013) Nanotechnology in the management of polyphagous pest Helicoverpa armigera. J Acad Ind Res 1(10):606–608Google Scholar
  176. Wang H, Kou X, Pei Z, Xiao JQ, Shan X, Xing B (2011) Physiological effects of magnetite (Fe3O4) nanoparticles on perennial ryegrass (Lolium perenne L.) and pumpkin (Cucurbita mixta) plants. Nanotoxicol 5(1):30–42CrossRefGoogle Scholar
  177. Wei C, Yamato M, Wei W, Zhao X, Tsumoto K, Yoshimura T, Ozawa T, Chen YJ (2007) Genetic nanomedicine and tissue engineering. Med Clin N Am 91:889–898PubMedCrossRefGoogle Scholar
  178. Yada R (2009) Nanotechnology: a new frontier in foods, food packaging, and nutrient delivery. In: Pray L, Yaktine A (eds) Nanotechnology in food products. National Academies Press, Washington, DCGoogle Scholar
  179. Yao KS, Li SJ, Tzeng KC, Cheng TC, Chang CY, Chiu CY, Liao CY, Hsu JJ, Lin ZP (2009) Fluorescence silica nanoprobe as a biomarker for rapid detection of plant pathogens. Adv Mater Res 79(82):513–516CrossRefGoogle Scholar
  180. Yin L, Colman BP, McGill BM, Wright JP, Bernhardt ES (2012) Effects of silver nanoparticle exposure on germination and early growth of eleven wetland plants. PLoS One 7(10):476–474CrossRefGoogle Scholar
  181. Zaimenko NV, Didyk NP, Dzyuba OI, Zakrasov OV, Rositska NV, Viter AV (2014) Enhancement of drought resistance in wheat and corn by nanoparticles of natural mineral analcite. Ecol Balkanica 6(1):1–10Google Scholar
  182. Zareii FD, Roozbahani A, Hosnamidi A (2014) Evaluation the effect of water stress and foliar application of Fe nanoparticles on yield, yield components and oil percentage of safflower (Carthamus tinctorious L.) Int J Adv Biol Biomed Res 2:1150–1159Google Scholar
  183. Zhang W-X (2003) Nanoscale iron particles for environmental remediation: an overview. J Nanopart Res 5(3):323–332CrossRefGoogle Scholar
  184. Zhang L, Webster TJ (2009) Nanotechnology and nanomaterials: promises for improved tissue regeneration. NanoToday 4:66–80CrossRefGoogle Scholar
  185. Zheng L, Hong F, Lu S, Liu C (2005) Effect of nano-TiO2 on strength of naturally aged seeds and growth of spinach. Biol Trace Elem Res 104(1):83–92PubMedCrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2017

Authors and Affiliations

  • Jeyabalan Sangeetha
    • 1
  • Devarajan Thangadurai
    • 2
    Email author
  • Ravichandra Hospet
    • 2
  • Etigemane Ramappa Harish
    • 3
  • Prathima Purushotham
    • 2
  • Mohammed Abdul Mujeeb
    • 4
  • Jadhav Shrinivas
    • 3
  • Muniswamy David
    • 3
  • Abhishek Channayya Mundaragi
    • 2
  • Shivasharana Chandrabanda Thimmappa
    • 4
  • Suresh Basavaraj Arakera
    • 5
  • Ram Prasad
    • 6
  1. 1.Department of Environmental ScienceCentral University of KeralaKasaragodIndia
  2. 2.Department of BotanyKarnatak UniversityDharwadIndia
  3. 3.Department of ZoologyKarnatak UniversityDharwadIndia
  4. 4.Department of Microbiology and BiotechnologyKarnatak UniversityDharwadIndia
  5. 5.Department of Marine BiologyKarnatak University PG CentreKarwarIndia
  6. 6.Amity Institute of Microbial TechnologyAmity UniversityNoidaIndia

Personalised recommendations