Nanomaterials: Implications on Agroecosystem

  • M. R. DavariEmail author
  • S. Bayat Kazazi
  • O. Akbarzadeh Pivehzhani


Nanotechnology is one of the novel discoveries which are being explored in all fields. Nowadays the use of nanotechnology in various industries including agriculture and pharmaceuticals has attracted the attention of many researchers. The role of this technology in agriculture sector (crop management, crop improvement, nanofertilizer, nanoherbicides, and nanopesticides) is examined in this study; nanofertilizer has played a more effective role than others. They can increase nutrition and reduce soil toxicity. The growth of conventional herbicide-resistant weed species can be prevented using nanoherbicides.


Nanotechnology Nano fertilizer Agriculture Crop management Nano herbicides 


  1. Ali MA, Rehman I, Iqbal A, Din S, Rao AQ, Latif A, Samiullah TR, Azam S, Husnain T (2014) Nanotechnology, a new frontier in agriculture. Adv Life Sci 1(3):129–138Google Scholar
  2. Azeredo H (2009) Nanocomposites for food packaging applications. Food Res Int 42(9):1240–1253CrossRefGoogle Scholar
  3. Aziz N, Faraz M, Pandey R, Sakir M, Fatma T, Varma A, Barman, Prasad R (2015) Facile algae-derived route to biogenic silver nanoparticles: synthesis, antibacterial and photocatalytic properties. Langmuir 31:11605–11612CrossRefPubMedGoogle Scholar
  4. Aziz N, Pandey R, Barman I, Prasad R (2016) Leveraging the attributes of Mucor hiemalis-derived silver nanoparticles for a synergistic broad-spectrum antimicrobial platform. Front Microbiol 7:1984. doi: 10.3389/fmicb.2016.01984 CrossRefPubMedPubMedCentralGoogle Scholar
  5. Baruah S, Dutta J (2009) Nanotechnology applications in sensing and pollution degradation in agriculture. Env Chem Lett J 7:191–204CrossRefGoogle Scholar
  6. Bergeson LL (2010a) Nanosilver: US EPA’s pesticide office considers how best to proceed. Environ Qual Manag 19(3):79e85CrossRefGoogle Scholar
  7. Bergeson LL (2010b) Nanosilver pesticide products: what does the future hold. Environ Qual Manag 19(4):73e82CrossRefGoogle Scholar
  8. Bickel A, Killorn R (2001) Spatial response of corn to banded zinc sulfate fertilizer in Iowa, 31st North central Extension Industry Soil Fertility Conference, Potash and Phosphate Institute, 605/692–6280, 17:14–15Google Scholar
  9. Bordes P, Pollet E, Avérous L (2009) Nano-biocomposites: biodegradable polyester/nanoclay systems. Prog Polym Sci 34:125e155CrossRefGoogle Scholar
  10. Borm PJA, Robbins D, Haubold S, Kuhlbusch T, Fissan H, Donaldson K, Schins R, Stone V, Kreyling W, Lademann J, Krutmann J, Warheit D, Oberdörster E (2006) The potential risks of nanomaterials: a review carried out for ECETOC. Part Fibre Toxicol 3:11CrossRefPubMedPubMedCentralGoogle Scholar
  11. Bouwmeester H, Dekkers S, Noordam MY, Hagens WI, Bulder AS, de Heer C, ten Voorde SECGS, Wijnhoven WP, Marvin HJP, Sips AJAM (2009) Review of health safety aspects of nanotechnologies in food production. Regul Toxicol Pharmacol 53:52e62CrossRefGoogle Scholar
  12. Brady NR, Weil RR (1999) In: Brady NR, Weil RR (eds) The nature and properties of soils. Prentice Hall, New Jersey, pp 415–473Google Scholar
  13. Chinnamuthu CR, Boopathi PM (2009a) Nanotechnology and agroecosystem. Madras Agric J 96:17–31Google Scholar
  14. Chinnamuthu CR, Boopathi PM (2009b) Review nanotechnology and agroecosystem. Madras Agric J 96(1–6):17–31Google Scholar
  15. Choudalakis G, Gotsis A (2009) Permeability of polymer/clay nanocomposites: a review. Eur Polym J 45(4):967–984CrossRefGoogle Scholar
  16. Corbett S, Ron Rivera (2008) Solution in a pot. The New York Times.Google Scholar
  17. Corredor E, Testillano PS, Coronado MJ, González-Melendi P, Fernández-Pacheco R, Marquina C, Ibarra R, de-la-Fuente JM, Rubiales D, Perez-de-Luque A, Risueno MC (2009) Nanoparticle penetration and transport living pumpkin plants: in situ subcellular identification. BMC Plant Biol 9:45CrossRefPubMedPubMedCentralGoogle Scholar
  18. Cui HX, Sun CJ, Liu Q, Jiang J, Gu W (2010) Applications of nanotechnology in agrochemical formulation, perspectives, challenges and strategies. In: International conference on Nanoagri, Sao Pedro, Brazil, pp 28–33Google Scholar
  19. Cui H, Jiang J, Liu Q (2011) On plant nutrition smart delivery systems and precision fertilization. Acta Metall Sin 17:494–499Google Scholar
  20. Darder M, Aranda P, Ruiz-Hitzky E (2007) Bionanocomposites: a new concept of ecological, bioinspired and functional hybrid materials. Adv Mater 19(10):1309–1319CrossRefGoogle Scholar
  21. DeRosa MC, Monreal C, Schnitzer M, Walsh R, Sultan Y (2010) Nanotechnology in fertilizers. Nat Nanotechnol 5(2):91CrossRefPubMedGoogle Scholar
  22. Dhillon NK, Mukhopadhyay SS (2015) Nanotechnology and allelopathy: synergism in action. J Crop Weed 11(2):187–191Google Scholar
  23. Ditta A (2012) How helpful is nanotechnology in agriculture? Adv Nat Sci Nanosci Nanotechnol 3:10CrossRefGoogle Scholar
  24. Doug R, Luvall JC, Shaw J, Mask P, Kissel D, Sullivan D (2009) Precision agriculture: changing the face of farming.
  25. Fanger GO (1974) Microencapsulation: a brief history and introduction. In: Vandegaer JE (ed) Microencapsulation: process and applications. Plenum Press, New York, pp 1–20CrossRefGoogle Scholar
  26. Farris S, Schaich KM, Liu L, Piergiovanni L, Yam KL (2009) Development of polyion-complex hydrogels as an alternative approach for the production of bio-based polymers for food packaging applications: a review. Trends Food Sci Technol 20(8):316–332CrossRefGoogle Scholar
  27. Ghormade V, Deshpande MV, Paknikar KM (2011) Perspectives for nano-biotechnology enabled protection and nutrition of plants. Biotechnol Adv 29:792–803CrossRefPubMedGoogle Scholar
  28. González-Melendi P, Fernández-Pacheco R, Coronado MJ, Corredor E, Testillano PS et al (2008) Nanoparticles as smart treatment-delivery systems in plants: assessment of different techniques of microscopy for their visualization in plant tissues. Ann Bot 101:187–195CrossRefPubMedGoogle Scholar
  29. Jianhui Y, Kelong H, Yuelong W, Suqin L (2005) Study on anti-pollution nanopreparation of dimethomorph and its performance. Chin Sci Bull 50(2):108e112Google Scholar
  30. Khodakovskaya M, Dervishi E, Mahmood M, Xu Y, Li Z et al (2009) Carbon nanotubes are able to penetrate plant seed coat and dramatically affect seed germination and plant growth. ACS Nano 3(10):3221–3227CrossRefPubMedGoogle Scholar
  31. Lam D, Smolander M (2010) International forum on emerging technologies in food, pp 222–223Google Scholar
  32. Leggo PJ (2000) An investigation of plant growth in an organo-zeolitic substrate and its ecological significance. Plant Soil 219:135–146CrossRefGoogle Scholar
  33. Milani N, McLaughlin M, Hettiaratchchi GM, Beak DK, Kirby JK, Stacey S (2010) Fate of nanoparticulate zinc oxide fertilisers in soil: solubility, diffusion and solid phase speciation. Soil Solutions Chang World:1–6Google Scholar
  34. Mousavi SR, Rezaei M (2011) Nanotechnology in agriculture and food production. J Appl Environ Biol Sci 1(10):414–419Google Scholar
  35. Naderi MR, Danesh-shahraki A (2013) Nanofertilizers and their roles in sustainable agriculture. J Agric Crop Sci JACS 5–9:2229–2232Google Scholar
  36. Oberdörster G, Oberdörster E, Oberdörster J (2005) Nanotoxicology: an emerging discipline evolving from studies of ultrafine particles. Environ Health Perspect 113:823–839CrossRefPubMedPubMedCentralGoogle Scholar
  37. Park HJ, Sung HK, Hwa JK, Seong HC (2006) A new composition of nanosized silica-silver for control of various plant diseases. Plant Pathol J 22:295–302CrossRefGoogle Scholar
  38. Pérez de Luque A, Rubiales D (2009) Nanotechnology for parasitic plant control. Pest Manag Sci 65:540–545CrossRefPubMedGoogle Scholar
  39. Prasad R (2014) Synthesis of silver nanoparticles in photosynthetic plants. J Nanopart Article ID 963961.
  40. Prasad R, Kumar V, Prasad KS (2014) Nanotechnology in sustainable agriculture: present concerns and future aspects. Afr J Biotechnol 13(6):705–713CrossRefGoogle Scholar
  41. Prasad R, Pandey R, Barman I (2016) Engineering tailored nanoparticles with microbes: quo vadis. WIREs Nanomed Nanobiotechnol 8:316–330CrossRefGoogle Scholar
  42. Prasad R, Bhattacharyya A, Nguyen QD (2017) Nanotechnology in sustainable agriculture: recent developments, challenges, and perspectives. Front Microbiol 8:1014. doi: 10.3389/fmicb.2017.01014
  43. Rai V, Acharya S, Dey N (2012) Implications of nanobiosensors in agriculture. J Biomaterials Nanobiotechnol 3:315–324CrossRefGoogle Scholar
  44. Rai M, Ribeiro C, Mattaso L, Duran N (2016) Nanotechnology in food and agriculture. Springer, Cham. doi: 10.1007/978-3-319-14024-7_4
  45. Rameshaiah GN, Pallavi J, Shabnam S (2015) Nano fertilizer and nano sensor- an attempt for developing smart agriculture. J Eng Res Gen Sci 3:314–320Google Scholar
  46. Shakhashiri (2010) Apply a fertilizer to the soil to keep cultivated plants healthy. 103-1.
  47. Sharon M, Choudhary AK, Kuma R (2010) Nanotechnology in agricultural diseases and food safety. J Phytology 2(4):83–92Google Scholar
  48. Silver S (2003) Bacterial silver resistance: molecular biology and uses and misuses of silver compounds. FEMS Microbiol Rev 27:341–353CrossRefPubMedGoogle Scholar
  49. Sinha Ray S, Bousmina M (2005) Biodegradable polymers and their layered silicate nanocomposites: in greening the 21st century materials world. Prog Mater Sci 50(8):962–1079CrossRefGoogle Scholar
  50. Siracusa V, Rocculi P, Romani S, Rosa MD (2008) Biodegradable polymers for food packaging: a review. Trends Food Sci Technol 19(12):634–643CrossRefGoogle Scholar
  51. Solsana F, Mendez JP (2003) Water disinfection, Pan American Center for Sanitary Engineering and Environmental Sciences. Pan American Health Organization, LimaGoogle Scholar
  52. Thakkar MN, Mhatre S, Parikh RY (2010) Biological synthesis of metallic nanoparticles. Nanotechol Biol Med 6:257–262CrossRefGoogle Scholar
  53. Vigani M, Rodríguez-Cerezo E (2014) Nanotechnology for the agricultural sector: from research to the field, Claudia Parisi, [work shop]Google Scholar
  54. Warad HC, Dutta J (1995) Nanotechnology for agriculture and food systems-a view microelectronics. School of Advanced Technologies, Asian Institute of Technology, Thailand.
  55. Weiss J, Takhistov P, McClements DJ (2006) Functional materials in food nanotechnology. J Food Sci 71(9):R107–R116CrossRefGoogle Scholar
  56. Wilkins RM (2004) Controlled release technology, agricultural. In: Seidel A (ed) Kirk-Othermer encyclopedia of chemical technology, 5th edn. Wiley, New JerseyGoogle Scholar
  57. Wu G, Xiao M, Yang C, Yu YT (2011) U2 snRNA is inducibly pseudouridylated at novel sites by Pus7p and snR81 RNP. EMBO J 30(1):79–89Google Scholar
  58. Yang F, Hong F, You W, Liu C, Gao F et al (2006) Influence of nano-anatase TiO2 on the nitrogen metabolism of growing spinach. Biol Trace Elem Res 110(2):179–190CrossRefPubMedGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2017

Authors and Affiliations

  • M. R. Davari
    • 1
    Email author
  • S. Bayat Kazazi
    • 2
  • O. Akbarzadeh Pivehzhani
    • 3
  1. 1.PNUTehranI.R. of Iran
  2. 2.Young Professionals for Agricultural Development (YPARD Iran)ArakIran
  3. 3.PETRONAS UniversityIpohMalaysia

Personalised recommendations