Skip to main content

Nanomaterials: Implications on Agroecosystem

  • Chapter
  • First Online:
Nanotechnology

Abstract

Nanotechnology is one of the novel discoveries which are being explored in all fields. Nowadays the use of nanotechnology in various industries including agriculture and pharmaceuticals has attracted the attention of many researchers. The role of this technology in agriculture sector (crop management, crop improvement, nanofertilizer, nanoherbicides, and nanopesticides) is examined in this study; nanofertilizer has played a more effective role than others. They can increase nutrition and reduce soil toxicity. The growth of conventional herbicide-resistant weed species can be prevented using nanoherbicides.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ali MA, Rehman I, Iqbal A, Din S, Rao AQ, Latif A, Samiullah TR, Azam S, Husnain T (2014) Nanotechnology, a new frontier in agriculture. Adv Life Sci 1(3):129–138

    Google Scholar 

  • Azeredo H (2009) Nanocomposites for food packaging applications. Food Res Int 42(9):1240–1253

    Article  Google Scholar 

  • Aziz N, Faraz M, Pandey R, Sakir M, Fatma T, Varma A, Barman, Prasad R (2015) Facile algae-derived route to biogenic silver nanoparticles: synthesis, antibacterial and photocatalytic properties. Langmuir 31:11605–11612

    Article  CAS  PubMed  Google Scholar 

  • Aziz N, Pandey R, Barman I, Prasad R (2016) Leveraging the attributes of Mucor hiemalis-derived silver nanoparticles for a synergistic broad-spectrum antimicrobial platform. Front Microbiol 7:1984. doi:10.3389/fmicb.2016.01984

    Article  PubMed  PubMed Central  Google Scholar 

  • Baruah S, Dutta J (2009) Nanotechnology applications in sensing and pollution degradation in agriculture. Env Chem Lett J 7:191–204

    Article  CAS  Google Scholar 

  • Bergeson LL (2010a) Nanosilver: US EPA’s pesticide office considers how best to proceed. Environ Qual Manag 19(3):79e85

    Article  Google Scholar 

  • Bergeson LL (2010b) Nanosilver pesticide products: what does the future hold. Environ Qual Manag 19(4):73e82

    Article  Google Scholar 

  • Bickel A, Killorn R (2001) Spatial response of corn to banded zinc sulfate fertilizer in Iowa, 31st North central Extension Industry Soil Fertility Conference, Potash and Phosphate Institute, 605/692–6280, 17:14–15

    Google Scholar 

  • Bordes P, Pollet E, Avérous L (2009) Nano-biocomposites: biodegradable polyester/nanoclay systems. Prog Polym Sci 34:125e155

    Article  Google Scholar 

  • Borm PJA, Robbins D, Haubold S, Kuhlbusch T, Fissan H, Donaldson K, Schins R, Stone V, Kreyling W, Lademann J, Krutmann J, Warheit D, Oberdörster E (2006) The potential risks of nanomaterials: a review carried out for ECETOC. Part Fibre Toxicol 3:11

    Article  PubMed  PubMed Central  Google Scholar 

  • Bouwmeester H, Dekkers S, Noordam MY, Hagens WI, Bulder AS, de Heer C, ten Voorde SECGS, Wijnhoven WP, Marvin HJP, Sips AJAM (2009) Review of health safety aspects of nanotechnologies in food production. Regul Toxicol Pharmacol 53:52e62

    Article  Google Scholar 

  • Brady NR, Weil RR (1999) In: Brady NR, Weil RR (eds) The nature and properties of soils. Prentice Hall, New Jersey, pp 415–473

    Google Scholar 

  • Chinnamuthu CR, Boopathi PM (2009a) Nanotechnology and agroecosystem. Madras Agric J 96:17–31

    Google Scholar 

  • Chinnamuthu CR, Boopathi PM (2009b) Review nanotechnology and agroecosystem. Madras Agric J 96(1–6):17–31

    Google Scholar 

  • Choudalakis G, Gotsis A (2009) Permeability of polymer/clay nanocomposites: a review. Eur Polym J 45(4):967–984

    Article  CAS  Google Scholar 

  • Corbett S, Ron Rivera (2008) Solution in a pot. The New York Times.

    Google Scholar 

  • Corredor E, Testillano PS, Coronado MJ, González-Melendi P, Fernández-Pacheco R, Marquina C, Ibarra R, de-la-Fuente JM, Rubiales D, Perez-de-Luque A, Risueno MC (2009) Nanoparticle penetration and transport living pumpkin plants: in situ subcellular identification. BMC Plant Biol 9:45

    Article  PubMed  PubMed Central  Google Scholar 

  • Cui HX, Sun CJ, Liu Q, Jiang J, Gu W (2010) Applications of nanotechnology in agrochemical formulation, perspectives, challenges and strategies. In: International conference on Nanoagri, Sao Pedro, Brazil, pp 28–33

    Google Scholar 

  • Cui H, Jiang J, Liu Q (2011) On plant nutrition smart delivery systems and precision fertilization. Acta Metall Sin 17:494–499

    Google Scholar 

  • Darder M, Aranda P, Ruiz-Hitzky E (2007) Bionanocomposites: a new concept of ecological, bioinspired and functional hybrid materials. Adv Mater 19(10):1309–1319

    Article  CAS  Google Scholar 

  • DeRosa MC, Monreal C, Schnitzer M, Walsh R, Sultan Y (2010) Nanotechnology in fertilizers. Nat Nanotechnol 5(2):91

    Article  CAS  PubMed  Google Scholar 

  • Dhillon NK, Mukhopadhyay SS (2015) Nanotechnology and allelopathy: synergism in action. J Crop Weed 11(2):187–191

    Google Scholar 

  • Ditta A (2012) How helpful is nanotechnology in agriculture? Adv Nat Sci Nanosci Nanotechnol 3:10

    Article  Google Scholar 

  • Doug R, Luvall JC, Shaw J, Mask P, Kissel D, Sullivan D (2009) Precision agriculture: changing the face of farming. http://www.agiweb.org/geotimes/nov03/feature_agric.html

  • Fanger GO (1974) Microencapsulation: a brief history and introduction. In: Vandegaer JE (ed) Microencapsulation: process and applications. Plenum Press, New York, pp 1–20

    Chapter  Google Scholar 

  • Farris S, Schaich KM, Liu L, Piergiovanni L, Yam KL (2009) Development of polyion-complex hydrogels as an alternative approach for the production of bio-based polymers for food packaging applications: a review. Trends Food Sci Technol 20(8):316–332

    Article  CAS  Google Scholar 

  • Ghormade V, Deshpande MV, Paknikar KM (2011) Perspectives for nano-biotechnology enabled protection and nutrition of plants. Biotechnol Adv 29:792–803

    Article  CAS  PubMed  Google Scholar 

  • González-Melendi P, Fernández-Pacheco R, Coronado MJ, Corredor E, Testillano PS et al (2008) Nanoparticles as smart treatment-delivery systems in plants: assessment of different techniques of microscopy for their visualization in plant tissues. Ann Bot 101:187–195

    Article  PubMed  Google Scholar 

  • Jianhui Y, Kelong H, Yuelong W, Suqin L (2005) Study on anti-pollution nanopreparation of dimethomorph and its performance. Chin Sci Bull 50(2):108e112

    Google Scholar 

  • Khodakovskaya M, Dervishi E, Mahmood M, Xu Y, Li Z et al (2009) Carbon nanotubes are able to penetrate plant seed coat and dramatically affect seed germination and plant growth. ACS Nano 3(10):3221–3227

    Article  CAS  PubMed  Google Scholar 

  • Lam D, Smolander M (2010) International forum on emerging technologies in food, pp 222–223

    Google Scholar 

  • Leggo PJ (2000) An investigation of plant growth in an organo-zeolitic substrate and its ecological significance. Plant Soil 219:135–146

    Article  CAS  Google Scholar 

  • Milani N, McLaughlin M, Hettiaratchchi GM, Beak DK, Kirby JK, Stacey S (2010) Fate of nanoparticulate zinc oxide fertilisers in soil: solubility, diffusion and solid phase speciation. Soil Solutions Chang World:1–6

    Google Scholar 

  • Mousavi SR, Rezaei M (2011) Nanotechnology in agriculture and food production. J Appl Environ Biol Sci 1(10):414–419

    Google Scholar 

  • Naderi MR, Danesh-shahraki A (2013) Nanofertilizers and their roles in sustainable agriculture. J Agric Crop Sci JACS 5–9:2229–2232

    Google Scholar 

  • Oberdörster G, Oberdörster E, Oberdörster J (2005) Nanotoxicology: an emerging discipline evolving from studies of ultrafine particles. Environ Health Perspect 113:823–839

    Article  PubMed  PubMed Central  Google Scholar 

  • Park HJ, Sung HK, Hwa JK, Seong HC (2006) A new composition of nanosized silica-silver for control of various plant diseases. Plant Pathol J 22:295–302

    Article  Google Scholar 

  • Pérez de Luque A, Rubiales D (2009) Nanotechnology for parasitic plant control. Pest Manag Sci 65:540–545

    Article  PubMed  Google Scholar 

  • Prasad R (2014) Synthesis of silver nanoparticles in photosynthetic plants. J Nanopart Article ID 963961. http://dx.doi.org/10.1155/2014/963961

  • Prasad R, Kumar V, Prasad KS (2014) Nanotechnology in sustainable agriculture: present concerns and future aspects. Afr J Biotechnol 13(6):705–713

    Article  CAS  Google Scholar 

  • Prasad R, Pandey R, Barman I (2016) Engineering tailored nanoparticles with microbes: quo vadis. WIREs Nanomed Nanobiotechnol 8:316–330

    Article  Google Scholar 

  • Prasad R, Bhattacharyya A, Nguyen QD (2017) Nanotechnology in sustainable agriculture: recent developments, challenges, and perspectives. Front Microbiol 8:1014. doi:10.3389/fmicb.2017.01014

  • Rai V, Acharya S, Dey N (2012) Implications of nanobiosensors in agriculture. J Biomaterials Nanobiotechnol 3:315–324

    Article  CAS  Google Scholar 

  • Rai M, Ribeiro C, Mattaso L, Duran N (2016) Nanotechnology in food and agriculture. Springer, Cham. doi:10.1007/978-3-319-14024-7_4

  • Rameshaiah GN, Pallavi J, Shabnam S (2015) Nano fertilizer and nano sensor- an attempt for developing smart agriculture. J Eng Res Gen Sci 3:314–320

    Google Scholar 

  • Shakhashiri (2010) Apply a fertilizer to the soil to keep cultivated plants healthy. 103-1. www.scifun.org

  • Sharon M, Choudhary AK, Kuma R (2010) Nanotechnology in agricultural diseases and food safety. J Phytology 2(4):83–92

    Google Scholar 

  • Silver S (2003) Bacterial silver resistance: molecular biology and uses and misuses of silver compounds. FEMS Microbiol Rev 27:341–353

    Article  CAS  PubMed  Google Scholar 

  • Sinha Ray S, Bousmina M (2005) Biodegradable polymers and their layered silicate nanocomposites: in greening the 21st century materials world. Prog Mater Sci 50(8):962–1079

    Article  Google Scholar 

  • Siracusa V, Rocculi P, Romani S, Rosa MD (2008) Biodegradable polymers for food packaging: a review. Trends Food Sci Technol 19(12):634–643

    Article  CAS  Google Scholar 

  • Solsana F, Mendez JP (2003) Water disinfection, Pan American Center for Sanitary Engineering and Environmental Sciences. Pan American Health Organization, Lima

    Google Scholar 

  • Thakkar MN, Mhatre S, Parikh RY (2010) Biological synthesis of metallic nanoparticles. Nanotechol Biol Med 6:257–262

    Article  CAS  Google Scholar 

  • Vigani M, Rodríguez-Cerezo E (2014) Nanotechnology for the agricultural sector: from research to the field, Claudia Parisi, [work shop]

    Google Scholar 

  • Warad HC, Dutta J (1995) Nanotechnology for agriculture and food systems-a view microelectronics. School of Advanced Technologies, Asian Institute of Technology, Thailand. http://www.nano.ait.ac.th

  • Weiss J, Takhistov P, McClements DJ (2006) Functional materials in food nanotechnology. J Food Sci 71(9):R107–R116

    Article  CAS  Google Scholar 

  • Wilkins RM (2004) Controlled release technology, agricultural. In: Seidel A (ed) Kirk-Othermer encyclopedia of chemical technology, 5th edn. Wiley, New Jersey

    Google Scholar 

  • Wu G, Xiao M, Yang C, Yu YT (2011) U2 snRNA is inducibly pseudouridylated at novel sites by Pus7p and snR81 RNP. EMBO J 30(1):79–89

    Google Scholar 

  • Yang F, Hong F, You W, Liu C, Gao F et al (2006) Influence of nano-anatase TiO2 on the nitrogen metabolism of growing spinach. Biol Trace Elem Res 110(2):179–190

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. R. Davari .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Nature Singapore Pte Ltd.

About this chapter

Cite this chapter

Davari, M.R., Bayat Kazazi, S., Akbarzadeh Pivehzhani, O. (2017). Nanomaterials: Implications on Agroecosystem. In: Prasad, R., Kumar, M., Kumar, V. (eds) Nanotechnology. Springer, Singapore. https://doi.org/10.1007/978-981-10-4573-8_4

Download citation

Publish with us

Policies and ethics