Production of Bionanomaterials from Agricultural Wastes

  • Jeyabalan SangeethaEmail author
  • Devarajan Thangadurai
  • Ravichandra Hospet
  • Prathima Purushotham
  • Kartheek Rajendra Manowade
  • Mohammed Abdul Mujeeb
  • Abhishek Channayya Mundaragi
  • Sudisha Jogaiah
  • Muniswamy David
  • Shivasharana Chandrabanda Thimmappa
  • Ram Prasad
  • Etigemane Ramappa Harish


Nature is gifted with numerous nanomaterials which could be simply prepared from plant materials. Agricultural waste (waste produced on a farm through various farming activities) includes both natural and nonnatural wastes. In the agricultural residues, refuse and wastes create a significant amount of worldwide agricultural productivity. It has variously been estimated that wastes can account for over 30% of worldwide agricultural productivity. The goal of this chapter is to assess the most recent trends to produce bionano nanomaterials from agricultural waste. Nanocellulose extraction from agricultural wastes is a promising substitute for waste treatment, and a few more wide applications of nanocellulose in biological science are much expected in the near future. The most salient nanocellulose applications in this chapter deal with the production and support matrices for enzyme immobilization, biosensors, and antimicrobial agents. Silicon nanoparticles concluded to be one of the elite compounds for the enhancement of agricultural yields.


Nanocellulose Agrowaste Activate carbon Black carbon Graphene 


  1. Abe K, Yano H (2010) Comparison of the characteristics of cellulose microfibril aggregates isolated from fiber and parenchyma cells of Moso bamboo (Phyllostachys pubescens). Cellulose 17(2):271–277CrossRefGoogle Scholar
  2. Abe K, Iwamoto S, Yano H (2007) Obtaining cellulose nanofibers with a uniform width of 15 nm from wood. Biomacromolecules 8(10):3276–3278PubMedCrossRefGoogle Scholar
  3. Abe K, Nakatsubo F, Yano H (2009) High-strength nanocomposite based on fibrillated chemi-thermomechanical pulp. Compos Sci Technol 69(14):2434–2437CrossRefGoogle Scholar
  4. Affandi S, Setyawan H, Winardi S, Purwanto A, Balgis R (2009) A facile method for the production of high purity silica xerogels from bagasse ash. J Adv Powder Technol 20:468–472CrossRefGoogle Scholar
  5. Affandi MM, Julianto T, Majeed A (2011) Development and stability evaluation of astaxanthin nanoemulsion. Asian J Pharma Clin Res 4:143–148Google Scholar
  6. Ajayan P, Zhou O (2001) Applications of carbon nanotubes. In: Dresselhaus M, Dresselhaus G, Avouris P (eds) Carbon nanotubes. Springer, Berlin, pp 391–425CrossRefGoogle Scholar
  7. Akhtar MS, Panwar J, Yun YS (2013) Biogenic synthesis of metallic nanoparticles by plant extracts. ACS Sustain Chem Eng 1(6):591–602CrossRefGoogle Scholar
  8. Alemdar A, Sain M (2008) Isolation and characterization of nanofibers from agricultural residues – wheat straw and soy hulls. Bioresour Technol 99(6):1664–1671PubMedCrossRefGoogle Scholar
  9. Antonyraj CA, Jeong J, Kim B, Shin S, Kim S, Lee KY, Cho JK (2013) Selective oxidation of HMF to DFF using Ru/γ-alumina catalyst in moderate boiling solvents toward industrial production. J Ind Eng Chem 19(3):1056–1059CrossRefGoogle Scholar
  10. Asano H, Muraki S, Endo H, Bandow S, Iijima S (2010) Strong magnetism observed in carbon nanoparticles produced by the laser vaporization of a carbon pellet in hydrogen-containing Ar balance gas. J Phys Condens Matter 22:1–6CrossRefGoogle Scholar
  11. Aspler J, Bouchard J, Hamad W, Berry R, Beck S, Drolet F, Zou X (2013) Review of nanocellulosic products and their applications. In: Dufresne A, Thomas S, Pothan LA (eds) Biopolymer nanocomposites. Wiley, Hoboken, pp 461–508CrossRefGoogle Scholar
  12. Awan AT, Tsukamoto J, Tasic L (2013) Orange waste as a biomass for 2G-ethanol production using low cost enzymes and co-culture fermentation. RSC Adv 3:25071–25078CrossRefGoogle Scholar
  13. Bachilo S, Balzano L, Herrera J, Pompeo F, Resasco D, Weisman R (2003) Narrow (n,m)- distribution of single-walled carbon nanotubes grown using a solid supported catalyst. J Am Chem Soc 125:11186–11187PubMedCrossRefGoogle Scholar
  14. Bacic A, Harris PJ, Stone BA (1988) Structure and function of plant cell walls. In: Preiss J, Stumpf PK, Conn EE (eds) The biochemistry of plants. Academic Press, New York, pp 297–371CrossRefGoogle Scholar
  15. Balandin AA, Ghosh S, Bao W, Calizo I, Teweldebrhan D, Miao F, Lau CN (2008) Superior thermal conductivity of single-layer graphene. Nano Lett 8:902–907PubMedCrossRefGoogle Scholar
  16. Batalov A, Jacques V, Kaiser F, Siyushev P, Neumann P, Rogers LJ, McMurtrie RL, Manson NB, Jelezko F, Wrachtrup J (2009) Low temperature studies of the excited-state structure of negatively charge nitrogen-vacancy color centers in diamond. Phys Rev Lett 102:195506. PubMedCrossRefGoogle Scholar
  17. Beck-Candanedo S, Roman M, Gray DG (2005) Effect of reaction conditions on the properties and behavior of wood cellulose nanocrystal suspensions. Biomol Ther 6:1048–1054Google Scholar
  18. Bennett SW, Adeleye A, Ji Z, Keller AA (2013) Stability, metal leaching, photoactivity and toxicity in freshwater systems of commercial single wall carbon nanotubes. Water Res 47:4074–4085PubMedCrossRefGoogle Scholar
  19. Bergmann CP, Machado F (2015) Carbon nanomaterials as adsorbents for environmental and biological applications. Springer, Berlin, pp 1–122Google Scholar
  20. Bhatnagar, A. Sain, M (2003) US Patent Pending, Application No. 60/512, 912Google Scholar
  21. Bhatnagar A, Sain M (2005) Processing of cellulose nanofiber-reinforced composites. J Reinf Plast Compos 24:1259–1268CrossRefGoogle Scholar
  22. Birla SS, Gaikwad SC, Gade AK, Rai MK (2013) Rapid synthesis of silver nanoparticles from Fusarium oxysporum by optimizing physicocultural conditions. Sci World J 2013:796018. CrossRefGoogle Scholar
  23. Boufi S (2014) Nanofibrillated cellulose: sustainable nanofiller with broad potentials use. In: Hakeem KR, Jawaid M, Rashid U (eds) Biomass and bioenergy. Springer, Berlin, pp 267–305Google Scholar
  24. Bourlinos AB, Stassinopoulos A, Anglos D, Zboril R, Georgakilas V, Giannelis EP (2008) Photoluminescent carbogenic dots. Chem Mater 20:4539–4541CrossRefGoogle Scholar
  25. Brodie BC (1859) On the atomic weight of graphite. Philos Trans R Soc Lond 149:249–259CrossRefGoogle Scholar
  26. Cao L, Wang X, Meziani MJ, Lu F, Wang H, Luo PG, Lin Y, Harruff BA, Veca LM, Murray D, Xie SY, Sun YP (2007) Carbon dots for multiphoton bioimaging. J Am Chem Soc 129(37):11318–11319PubMedPubMedCentralCrossRefGoogle Scholar
  27. Cassell A, Raymakers J, Kong J, Dai H (1999) Large scale CVD synthesis of single-walled carbon nanotubes. J Phys Chem B 103:6484–6492CrossRefGoogle Scholar
  28. Chakraborty A, Sain M, Kortschot M (2006) Reinforcing potential of wood pulp derived microfibres in a PVA matrix. Holzforschung 60(1):53–58CrossRefGoogle Scholar
  29. Chan YS, Don MM (2013) Biosynthesis and structural characterization of Ag nanoparticles from white rot fungi. Mater Sci Eng C 33(1):282–288CrossRefGoogle Scholar
  30. Charreau H, Foresti ML, Vazquez A (2013) Nanocellulose patents trends: a comprehensive review on patents on cellulose nanocrystals, microfibrillated cellulose and bacterial cellulose. Recent Pat Nanotechnol 7(1):56–80PubMedCrossRefGoogle Scholar
  31. Chen Y, Liu C, Chang PR, Cao X, Anderson DP (2009) Bionanocomposites based on pea starch and cellulose nano whiskers hydrolyzed from pea hull fibre: effect of hydrolysis time. Carbohydr Polym 76(4):607–615CrossRefGoogle Scholar
  32. Chen H, Wang F, Zhang C, Shi Y, Jin G, Yuan S (2010) Preparation of nano-silica materials: the concept from wheat straw. J Non-Cryst Solids 356(50–51):2781–2785CrossRefGoogle Scholar
  33. Chen W, Yu H, Liu Y, Chen P, Zhang M, Hai Y (2011) Individualization of cellulose nanofibers from wood using high-intensity ultrasonication combined with chemical pretreatments. Carbohydr Polym 83(4):1804–1811CrossRefGoogle Scholar
  34. Chen J, Yao B, Li C, Shi G (2013) An improved hummers method for eco-friendly synthesis of graphene oxide. Carbon 64:225–229CrossRefGoogle Scholar
  35. Cheng Q, Wang S, Rials TG (2009) Poly(vinyl alcohol) nanocomposites reinforced with cellulose fibrils isolated by high intensity ultrasonication. Compos Part A: Appl Sci Manuf 40:218–224CrossRefGoogle Scholar
  36. Cheng Q, Wang S, Han Q (2010) Novel process for isolating fibrils from cellulose fibers by high-intensity ultrasonication II. Fibril characterization. J Appl Polym Sci 115(5):2756–2762CrossRefGoogle Scholar
  37. Cherian BM, Leao AL, de Souza SF, Thomas S, Pothan LA, Kottaisamy M (2010) Isolation of nanocellulose from pineapple leaf fibres by steam explosion. Carbohydr Polym 81(3):720–725CrossRefGoogle Scholar
  38. Chiang I, Brinson B, Huang A, Willis P, Bronikowski M, Margrave J, Smalley R, Hauge R (2001) Purification and characterization of single-wall carbon nanotubes (SWNTs) obtained from the gas-phase decomposition of CO (HiPCO process). J Phys Chem B 105:8297–8301CrossRefGoogle Scholar
  39. Chung C, Kim YK, Shin D, Ryoo SR, Hong BH, Min DH (2013) Biomedical applications of graphene and graphene oxide. Acc Chem Res 46:2211–2224PubMedCrossRefGoogle Scholar
  40. Clowes FAL, Juniper BE (1968) Plant cells. Blackwell Scientific Publications Ltd, Oxford, pp 203–297Google Scholar
  41. De Jong KP, Geus JW (2000) Carbon nanofibers: catalytic synthesis and applications. Catal Rev 42:481–510CrossRefGoogle Scholar
  42. De Morais TE, Correa AC, Manzoli A, de Lima LF, de Oliveira CR, Mattoso LHL (2010) Cellulose nanofibers from white and naturally colored cotton fibers. Cellulose 17(3):595–606CrossRefGoogle Scholar
  43. Dinand E, Chanzy H, Vignon RM (1999) Suspensions of cellulose micro fibrils from sugar beet pulp. Food Hydrocoll 13(3):275–283CrossRefGoogle Scholar
  44. Ding LH, Olesik SV (2004) Synthesis of polymer nanospheres and carbon nanospheres using the monomer 1,8-dihydroxymethyl-1,3,5,7-octatetrayne. Nano Lett 4:2271–2276CrossRefGoogle Scholar
  45. Ding LH, Olesik SV (2005) Carbon micro beads produced through synthesis and pyrolysis of poly(1,8-dibutyl-1,3,5,7-octatetrayne). Chem Mater 17:2353–2360CrossRefGoogle Scholar
  46. Dodson JR, Hunt AJ, Matharu AS, Budarin VL, Clark JH (2011) The chemical value of wheat straw combustion residues. RSC Adv 1:523–530CrossRefGoogle Scholar
  47. Dominko R, Gaberscek M, Drofenik J, Bele M, Jamnik J (2003) Influence of carbon black distribution on performance of oxide cathodes for Li ion batteries. Electrochim Acta 48:3709–3716CrossRefGoogle Scholar
  48. Donia AM, Atia AA, Abouzayed FI (2012) Preparation and characterization of nano-magnetic cellulose with fast kinetic properties towards the adsorption of some metal ions. Chem Eng J 191:22–30CrossRefGoogle Scholar
  49. Du Y, Yin Z, Zhu J, Huang X, Wu X, Zeng Z, Yan Q, Zhang H (2012) A general method for the large-scale synthesis of uniform ultrathin metal sulphide nanocrystals. Nat Commun 3:1177. doi: 10.1038/ncomms2181 PubMedCrossRefGoogle Scholar
  50. Dufresne A (2013) Nanocellulose: a new ageless bionanomaterial. Mater Today 16(6):220–227CrossRefGoogle Scholar
  51. Dufresne A, Vignon M (1998) Improvement of starch film performances using cellulose microfibrils. Macromolecules 31:2693–2696CrossRefGoogle Scholar
  52. Dufrense A, Cavaille JY, Helbert W (1997a) Thermoplastic nanocomposites filled with wheat straw cellulose whiskers. Part II: effect of processing and modeling. Polym Compos 18:199Google Scholar
  53. Dufresne A, Caville J, Vignon M (1997b) Mechanical behavior of sheets prepared from sugar beet cellulose microfibrils. J Appl Polym Sci 64:1185–1194CrossRefGoogle Scholar
  54. Dufresne A, Dupeyre D, Vignon MR (2000) Cellulose microfibrils from potato tuber cells: processing and characterization of starch-cellulose microfibril composites. J App Polym Sci 76(14):2080–2092CrossRefGoogle Scholar
  55. Elazzouzi-Hafraoui S, Nishiyama Y, Putaux JL, Heux L, Dubreuil F, Rochas C (2008) The shape and size distribution of crystalline nanoparticles prepared by acid hydrolysis of native cellulose. Biomacromolecules 9(1):57–65PubMedCrossRefGoogle Scholar
  56. Espindola-Gonzalez A, Martinez-Hernadez AL, Angeles-Chavez C, Castano VM, Velasco-Santos C (2010) Novel crystalline SiO2 nanoparticles via annelids bioprocessing of agro-industrial wastes. Nanoscale Res Lett 5(9):1408–1417PubMedPubMedCentralCrossRefGoogle Scholar
  57. Fernando F, María LH, Ana ME, Italo C, Fernando A (2005) Fibre concentrates from apple pomace and citrus peel as potential fibre sources for food enrichment. Food Chem 91:395–401CrossRefGoogle Scholar
  58. Frances N, Nikolay AP, Michael JFB, Tim G, Paul AM (2009) Novel one-pot synthesis and characterization of bioactive thiol-silicate nanoparticles for biocatalytic and biosensor applications. Nanotechnology 20(5):055612. doi: 10.1088/0957-4484/20/5/055612 CrossRefGoogle Scholar
  59. Fu H, Yang X, Jiang X, Yu A (2013) Bimetallic Ag–Au nanowires: synthesis, growth mechanism, and catalytic properties. Langmuir 29(23):7134–7142PubMedCrossRefGoogle Scholar
  60. Georgakilas V, Otyepka M, Bourlinos AB, Chandra V, Kim N, Kemp KC, Hobza P, Zboril R, Kim KS (2012) Functionalization of graphene: covalent and non-covalent approaches, derivatives and applications. Chem Rev 112:6156–6214PubMedCrossRefGoogle Scholar
  61. Gherghel L, Kubel C, Lieser G, Rader HJ, Mullen K (2002) Pyrolysis in the mesophase: a chemist’s approach toward preparing carbon nano- and microparticles. J Am Chem Soc 124:13130–13138PubMedCrossRefGoogle Scholar
  62. Ghorbani F, Sanati AM, Malek M (2015) Production of silica nanoparticles from rice husk as agricultural waste by environmental friendly technique. Environ Stud Persian Gulf 2(1):56–65Google Scholar
  63. Ghosh S, Ranebennur TK, Vasan H (2011) Study of antibacterial efficacy of hybrid chitosan-silver nanoparticles for prevention of specific biofilm and water purification. Int J Carbohydr Chem. 693759. doi: 10.1155/2011/693759 Google Scholar
  64. Glinka YD, Lin KW, Chang HC, Lin SHJ (1999) Multiphoton-excited luminescence from diamond nanoparticles. J Phys Chem B 103(21):4251–4263CrossRefGoogle Scholar
  65. Gruber A, Dräbenstedt A, Tietz C, Fleury L, Wrachtrup J, von Borczyskowski C (1997) Scanning confocal optical microscopy and magnetic resonance on single defect centers. Science 276(5321):2012–2014CrossRefGoogle Scholar
  66. Gu S, Zhou J, Yu C, Luo Z, Wang Q, Shi Z (2015) A novel two-staged thermal synthesis method of generating nanosilica from rice husk via pre-pyrolysis combined with calcination. Ind Crop Prod 65:1–6CrossRefGoogle Scholar
  67. Guo S, Dong S (2011) Graphene nanosheet: synthesis, molecular engineering, thin film, hybrids, and energy and analytical applications. Chem Soc Rev 40:2644–2672PubMedCrossRefGoogle Scholar
  68. Habibi Y, Heux L, Mahrouz M, Vignon MR (2008) Morphological and structural study of seed pericarp of Opuntia ficus-indica prickly pear fruits. Carbohydr Polym 72(1):102–112CrossRefGoogle Scholar
  69. Habibi Y, Lucia LA, Rojas OJ (2010) Cellulose nanocrystals: chemistry, self assembling, and applications. Chem Rev 110:3479–3500PubMedCrossRefGoogle Scholar
  70. Hakim LF, Portman JL, Casper MD, Weimer AW (2005) Aggregation behavior of nanoparticles in fluidized beds. Powder Technol 160(3):149–160CrossRefGoogle Scholar
  71. Hammel E, Tang X, Trampert M, Schmitt T, Mauthner K, Eder A, Potschke P (2004) Carbon nanofibers for composite applications. Carbon 42:1153–1158CrossRefGoogle Scholar
  72. Hanus MJ, Harris AI (2010) Synthesis, characterisation and applications of coiled carbon nanotubes. J Nanosci Nanotechnol 10:2261–2283PubMedCrossRefGoogle Scholar
  73. Hariharan V, Sivakumar G (2013) Studies on synthesized nanosilica obtained from bagasse ash. Int J Chem Tech Res 5(3):1263–1266Google Scholar
  74. Hassan AF, Abdelghny AM, Elhadidy H, Youssef AM (2014) Synthesis and characterization of high surface area nanosilica from rice husk ash by surfactant-free sol–gel method. J Sol-Gel Sci Technol 69:465–472CrossRefGoogle Scholar
  75. Hata K, Futaba D, Mizuno K, Namai T, Yumura M, Iijima S (2004) Water-assisted highly efficient synthesis of impurity-free single-walled carbon nanotubes. Science 306:1362PubMedCrossRefGoogle Scholar
  76. He W, Jiang S, Zhang Q, Pan M (2013) Nanofiber from Bambusa. Bioresources 8(4):5678–5689CrossRefGoogle Scholar
  77. Healy ML, Dahlben LJ, Isaacs JA (2008) Environmental assessment of single-walled carbon nanotube processes. J Ind Ecol 12:376–393CrossRefGoogle Scholar
  78. Hokkanen S, Repo E, Suopajärvi T, Liimatainen H, Niinimäki J, Sillanpää M (2013) Removal of heavy metals from aqueous solutions by succinic anhydride modified mercerized nanocellulose. Chem Eng J 223:40–47CrossRefGoogle Scholar
  79. Hokkanen S, Bhatnagar A, Sillanpää M (2016) A review on modification methods to cellulose-based adsorbents to improve adsorption capacity. Water Res 91:156–173PubMedCrossRefGoogle Scholar
  80. Honek JF (2013) Bionanotechnology and bionanomaterials: John Honek explains the good things that can come in very small packages. BMC Biochem 14:29. doi: 10.1186/1471-2091-14-29 PubMedPubMedCentralCrossRefGoogle Scholar
  81. Hong G, Diao S, Antaris AL, Dai H (2015) Carbon nanomaterials for biological imaging and nanomedicinal therapy. Chem Rev 115:10816–10906PubMedCrossRefGoogle Scholar
  82. Hsu WK, Terrones M, Hare JP, Terrones H, Kroto HW, Walton DRM (1996) Electrolytic formation of carbon nanostructures. Chem Phys Lett 262:161–166CrossRefGoogle Scholar
  83. Huang J, Lin L, Sun D, Chen H, Yang D, Li Q (2015) Bioinspired synthesis of metal nanomaterials and applications. Chem Soc Rev 44(17):6330–6374PubMedCrossRefGoogle Scholar
  84. Hummers WS, Offeman RE (1958) Preparation of graphitic oxide. J Am Chem Soc 80:1339CrossRefGoogle Scholar
  85. Hurt RH, Monthioux M, Kane A (2006) Toxicology of carbon nanomaterials: status, trends, and perspectives on the special issue. Carbon 44:1028–1033CrossRefGoogle Scholar
  86. Hussain HI, Yi Z, Rookes JE, Kong LX, Cahill DM (2013) Mesoporous silica nanoparticles as a biomolecule delivery vehicle in plants. J Nanopart Res 15:1676. doi: 10.1007/s11051-013-1676-4 CrossRefGoogle Scholar
  87. Indhumathi P, Shabhudeen SSP, Saraswathy CP (2011) Synthesis and characterization of nano silica from the pods of Delonix regia ash. Int J Adv Eng Technol 2(4):421–426Google Scholar
  88. Jang J, Oh JH, Stucky GD (2002) Fabrication of ultrafine conducting polymer and graphite nanoparticles. Angew Chem Int Ed 41:4016–4019CrossRefGoogle Scholar
  89. Javed SH, Shah FH, Manasha M (2011) Extraction of amorphous silica from wheat husk using KMNO4. J Fac Eng Technol 18(1):39–46Google Scholar
  90. Johnson MP, Donnet JB, Wang TK, Wang CC, Locke RW, Brinson BE, Marriott T (2002) A dynamic continuum of nano structured carbons in the combustion furnace. Carbon 40:189–194CrossRefGoogle Scholar
  91. Kalia S, Boufi S, Celli A, Kango S (2014) Nanofibrillated cellulose: surface modification and potential applications. Colloid Polym Sci 292(1):5–31CrossRefGoogle Scholar
  92. Kamath SR, Proctor A (1998) Silica gel from rice husk ash: preparation and characterization. Cereal Chem 75:484–487CrossRefGoogle Scholar
  93. Kanchi S, Kumar G, Lo AY, Tseng CM, Chen SK, Lin CY, Chin TS (2014) Exploitation of de-oiled Jatropha waste for gold nanoparticles synthesis: a green approach. Arab J Chem.
  94. Kardam A, Raj KR, Srivastava S, Srivastava MM (2014) Nanocellulose fibers for biosorption of cadmium, nickel, and lead ions from aqueous solution. Clean Technol Environ Policy 16:385–393CrossRefGoogle Scholar
  95. Karimi J, Mohsenzadeh S (2016) Effects of silicon oxide nanoparticles on growth and physiology of wheat seedlings. Russ J Plant Physiol 63:119–123CrossRefGoogle Scholar
  96. Kettunen M, Silvennoinen RJ, Houbenov N, Nykänen A, Ruokolainen J, Saini J, Pore V, Kemell M, Ankerfors M, Lindström T (2011) Photoswitchable super absorbency based on nanocellulose aerogels. Adv Funct Mater 21(3):510–517CrossRefGoogle Scholar
  97. Khalil MMH, Ismail EH, El-Magdoub F (2012) Biosynthesis of Au nanoparticles using olive leaf extract: 1st nano updates. Arab J Chem 5(4):431–437CrossRefGoogle Scholar
  98. Khawas P, Das AJ, Dash KK, Deka SC (2014) Thin-layer drying characteristics of Kachkal banana peel (Musa ABB) of Assam, India. Int Food Res J 21(3):1011–1018Google Scholar
  99. Klemm D, Kramer F, Moritz S, Lindström T, Ankerfors M, Gray D, Dorris A (2011) Nanocelluloses: a new family of nature-based materials. Angew Chem Int 50:5438–5466CrossRefGoogle Scholar
  100. Kumar KS, Amutha R, Arumugam P, Berchmans S (2011) Synthesis of gold nanoparticles: an ecofriendly approach using Hansenula anomala. ACS Appl Mater Interfaces 3(5):1418–1425CrossRefGoogle Scholar
  101. Kumar A, Mohanta K, Kumar D, Parkash O (2012) Properties and industrial applications of rice husk: a review. Int J Emerg Technol Adv Eng 2(10):86–90Google Scholar
  102. Kwon SJ, Bard AJ (2012) DNA analysis by application of Pt nanoparticle electrochemical amplification with single label response. J Am Chem Soc 134(26):10777–10779PubMedCrossRefGoogle Scholar
  103. Larciprete R, Lizzit S, Botti S, Cepek C, Goldoni A (2002) Structural reorganization of carbon nanoparticles into single-wall nanotubes. Phys Rev B 66:12140–12142CrossRefGoogle Scholar
  104. Lario YE, Sendra E, Fuentes C, Pérez-Álvarez JA (2004) Preparation of high dietary fiber powder from lemon juice by-products. Innovative Food Sci Emerg Technol 5(1):113–117CrossRefGoogle Scholar
  105. Lee C, Wei X, Kysar JW, Hone J (2008) Measurement of the elastic properties and intrinsic strength of monolayer grapheme. Science 321:385–388PubMedCrossRefGoogle Scholar
  106. Li R, Fei J, Cai Y, Li Y, Feng J, Yao J (2009) Cellulose whiskers extracted from mulberry: a novel biomass production. Carbohydr Polym 76(1):94–99CrossRefGoogle Scholar
  107. Li HT, He XD, Liu Y, Huang H, Lian SY, Lee ST, Kang ZH (2011) One-step ultrasonic synthesis of water-soluble carbon nanoparticles with excellent photoluminescent properties. Carbon 49:605–609CrossRefGoogle Scholar
  108. Liu F, Wen LX, Li ZZ, Yu W, Sun HY, Chen JF (2006) Porous hollow silica nanoparticles as controlled delivery system for water-soluble pesticide. Mater Res Bull 41:2268–2275CrossRefGoogle Scholar
  109. Liu H, Ye T, Mao C (2007) Fluorescent carbon nanoparticles derived from candle soot. Angew Chem Int 46(34):6473–6485CrossRefGoogle Scholar
  110. Liu R, Wu D, Liu S, Koynov K, Knoll W, Li Q (2009) An aqueous route to multicolor photoluminescent carbon dots using silica spheres as carriers. Angew Chem Int 48(25):4598–4601CrossRefGoogle Scholar
  111. Liu H, Liu D, Yao F, Wu Q (2010) Fabrication and properties of transparent polymethylmethacrylate/cellulose nanocrystals composites. Bioresour Technol 101(14):5685–5692PubMedCrossRefGoogle Scholar
  112. Lu JP (1997) Elastic properties of carbon nanotubes and nanoropes. Phys Rev Lett 79:1297–1300CrossRefGoogle Scholar
  113. Lu P, Hsieh YL (2012) Highly pure amorphous silica nano-disks from rice straw. Powder Technol 225:149–155CrossRefGoogle Scholar
  114. Lu G, Park S, Yu K, Ruoff RS, Ocola LE, Rosenmann D, Chen J (2011) Toward practical gas sensing with highly reduced graphene oxide: a new signal processing method to circumvent run-to-run and device-to-device variations. ACS Nano 5:1154–1164PubMedCrossRefGoogle Scholar
  115. Luo X, Morrin A, Killard AJ, Smyth MR (2006) Application of nanoparticles in electrochemical sensors and biosensors. Electroanalysis 18(4):319–326CrossRefGoogle Scholar
  116. Manjula-Rani K, Palanisamy PN, Sivakumar P (2014) Synthesis and characterization of amorphous nano-silica from biomass ash. Int J Adv Technol Eng Sci 2(10):71–76Google Scholar
  117. Mansaray KG, Ghaly AE (1997) Physical and thermochemical properties of rice husk. Energy Sources 19(9):989–1004CrossRefGoogle Scholar
  118. Mao HY, Laurent S, Chen W, Akhavan O, Imani M, Ashkarran AA, Mahmoudi M (2013) Graphene: promises, facts, opportunities, and challenges in nanomedicine. Chem Rev 113:3407–3424PubMedCrossRefGoogle Scholar
  119. Mariño M, da Silva LL, Durán N, Tasic L (2015) Enhanced materials from nature: nanocellulose from citrus waste. Molecules 20:5908–5923PubMedCrossRefGoogle Scholar
  120. Marschilok A, Lee CY, Subramanian A, Takeuchi KJ, Takeuchi ES (2011) Carbon nanotube substrate electrodes for lightweight, long-life rechargeable batteries. Energy Environ Sci 4(8):2943–2951CrossRefGoogle Scholar
  121. Mauter MS, Elimelech M (2008) Environmental applications of carbon-based nanomaterials. Environ Sci Technol 42:5843–5859PubMedCrossRefGoogle Scholar
  122. May JW (1969) Platinum surface LEED rings. Surf Sci 17:267–270CrossRefGoogle Scholar
  123. Metreveli G, Wågberg L, Emmoth E, Belák S, Strømme M, Mihranyan A (2014) A size-exclusion nanocellulose filter paper for virus removal. Adv Healthc Mater 10(3):1546–1550CrossRefGoogle Scholar
  124. Mishra A, Tripathy SK, Yun SI (2012) Fungus mediated synthesis of gold nanoparticles and their conjugation with genomic DNA isolated from Escherichia coli and Staphylococcus aureus. Process Biochem 47(5):701–711CrossRefGoogle Scholar
  125. Mohammadinejad R, Karimi S, Iravani S, Varma RS (2016) Plant-derived nanostructures: types and applications. Green Chem 18(1):20–52CrossRefGoogle Scholar
  126. Mohanraj K, Kannan S, Barathan S, Sivakumar G (2012) Preparation and characterization of nano SiO2 from corn cob ash by precipitation method. Optoelectron Adv Mater 6:394–397Google Scholar
  127. Moon RJ, Martini A, Nairn J, Simonsen J, Youngblood J (2011) Cellulose nanomaterials review: structure, properties and nanocomposites. Chem Soc Rev 40:3941–3994PubMedCrossRefGoogle Scholar
  128. Mukherjee P, Ahmad A, Mandal D, Senapati S, Sainkar SR, Khan MI, Parishcha R, Ajaykumar PV, Alam M, Kumar R, Sastry M (2001) Fungus-mediated synthesis of silver nanoparticles and their immobilization in the mycelial matrix: a novel biological approach to nanoparticle synthesis. Nano Lett 1(10):515–519CrossRefGoogle Scholar
  129. Muramatsu H, Kim YA, Yang KS, Cruz-Silva R, Toda I, Yamada T, Terrones M, Endo M, Hayashi T, Saitoh H (2014) Rice husk-derived graphene with nano-sized domains and clean edges. Small 10(14):2766–2770PubMedCrossRefGoogle Scholar
  130. Murthy SK (2007) Nanoparticles in modern medicine: state of the art and future challenges. Int J Nanomedicine 2(2):129–141PubMedPubMedCentralGoogle Scholar
  131. Musyoka S, Ngila C, Moodley B, Kindness A, Petrik L, Greyling C (2011) Oxolane-2,5-dione modified electrospun cellulose nanofibers for heavy metals adsorption. J Hazard Mater 192:922–927CrossRefGoogle Scholar
  132. Nair R, Varghese SH, Nair BG, Maekawa T, Yoshida Y, Kumar DS (2010) Nanoparticulate material delivery to plants. Plant Sci 179:154–163CrossRefGoogle Scholar
  133. Néabo JR, Gagné SR, Carrière CV, Morin JF (2013) Soluble conjugated one-dimensional nanowires prepared by topochemical polymerization of a butadiynes-containing star-shaped molecule in the xerogel state. Langmuir 29:3446–3452PubMedCrossRefGoogle Scholar
  134. Neugart F, Zappe A, Jelezko F, Tietz C, Boudou JP, Krueger A, Wrachtrup J (2007) Dynamics of diamond nanoparticles in solution and cells. Nano Lett 7(12):3588–3591PubMedCrossRefGoogle Scholar
  135. Novoselov KS, Fal’ko VI, Colombo L, Gellert PR, Schwab MG, Kim K (2012) A roadmap for grapheme. Nature 490:192–200PubMedCrossRefGoogle Scholar
  136. Okoronkwo EA, Imoisili PE, Olubayode SA, Olusunle SOO (2016) Development of silica nanoparticle from corn cob ash. Adv Nanoparticles 5:135–139CrossRefGoogle Scholar
  137. Omid A, Keyvan B, Ali M (2014) Synthesis of graphene from natural and industrial carbonaceous wastes. RSC Adv 4:20441–20448CrossRefGoogle Scholar
  138. Paakko M, Ankerfors M, Kosonen H, Nykanen A, Ahol S, Osterberg M, Ruokolainen J, Laine J, Larsson PT, Ikkala O, Lindström T (2007) Enzymatic hydrolysis combined with mechanical shearing and high-pressure homogenization for nanoscale cellulose fibrils and strong gels. Biomacromolecules 8(6):1934–1941PubMedCrossRefGoogle Scholar
  139. Patel V, Berthold D, Puranik P, Gantar M (2015) Screening of cyanobacteria and microalgae for their ability to synthesize silver nanoparticles with antibacterial activity. Biotechnol Rep 5:112–119CrossRefGoogle Scholar
  140. Pelissari MF, Sobral PJA, Menegalli FC (2014) Isolation and characterization of cellulose nanofibers from banana peels. Cellulose 21(1):417–432CrossRefGoogle Scholar
  141. Prasad R (2014) Synthesis of silver nanoparticles in photosynthetic plants. J Nanoparticles:963961.
  142. Prasad R (2016) Advances and applications through fungal nanobiotechnology. Springer, International Publishing, Cham. ISBN:978-3-319-42989-2Google Scholar
  143. Prasad R, Pandey R, Barman I (2016) Engineering tailored nanoparticles with microbes: quo vadis. WIREs Nanomed Nanobiotechnol 8:316–330. doi: 10.1002/wnan.1363 CrossRefGoogle Scholar
  144. Prerna K, Sankar CD (2016) Isolation and characterization of cellulose nanofibers from culinary banana peel using high-intensity ultrasonication combined with chemical treatment. Carbohydr Polym 137:608–616CrossRefGoogle Scholar
  145. Qadri SB, Gorzkowski E, Rath BB, Feng J, Qadri SN, Kim H, Caldwell JD, Imam MA (2015) Nanoparticles and nanorods of silicon carbide from the residues of corn. J Appl Phys 117:044306. CrossRefGoogle Scholar
  146. Rafiee E, Shahebrahimi S, Feyzi M, Shaterzadeh M (2012) Optimization of synthesis and characterization of nanosilica produced from rice husk (a common waste material). Int Nano Lett 2(29):1–9Google Scholar
  147. Rajesh K, Rajesh KS, Dinesh PS (2016) Natural and waste hydrocarbon precursors for the synthesis of carbon based nanomaterials: graphene and CNTs. Renew Sust Energ Rev 58:976–1006CrossRefGoogle Scholar
  148. Ray SC, Saha A, Jana NR, Sarkar NR (2009) Fluorescent carbon nanoparticles: synthesis, characterization, and bioimaging application. J Phys Chem C 113:18546–18551CrossRefGoogle Scholar
  149. Rezanezhad S, Nazanezhad N, Asadpur G (2013) Nanocellulose from straw. Lignocellulose 2(1):282–291Google Scholar
  150. Riddin T, Gericke M, Whiteley CG (2010) Biological synthesis of platinum nanoparticles: effect of initial metal concentration. Enzym Microb Technol 46(6):501–505CrossRefGoogle Scholar
  151. Rodionova G, Saito T, Lenes M, Eriksen O, Gregersen O, Fukuzumi H, Isogai A (2011) Mechanical and oxygen barrier properties of films prepared from fibrillated dispersions of TEMPO-oxidized Norway spruce and eucalyptus pulps. Cellulose 19(3):705–711CrossRefGoogle Scholar
  152. Rondeau-Mouro C, Bouchet B, Pontoire B, Robert P, Mazoyer J, Buleon A (2003) Structural features and potential texturising properties of lemon and maize cellulose microfibrils. Carbohydr Polym 53(3):241–252CrossRefGoogle Scholar
  153. Rosa MF, Medeiros ES, Malmonge JA, Gregorski KS, Wood DF, Mattoso LHC, Glennb G, Ortsb WJ, Imam SH (2010) Cellulose nano whiskers from coconut husk fibers: effect of preparation conditions on their thermal and morphological behavior. Carbohydr Polym 81(1):83–92CrossRefGoogle Scholar
  154. Roy N, Gaur A, Jain A, Bhattacharya S, Rani V (2013) Green synthesis of silver nanoparticles: an approach to overcome toxicity. Environ Toxicol Pharmacol 36(3):807–812PubMedCrossRefGoogle Scholar
  155. Sana NO, Kurs C, Tümtas UY, Yas Ö, Ortac B, Tekinay T (2014) Novel one-step synthesis of silica nanoparticles from sugarbeet bagasse by laser ablation and their effects on the growth of freshwater algae culture. Particuology 17:29–35CrossRefGoogle Scholar
  156. Santi G, Crognale S, Moresi M, Petruccioli M, D’Annibale A (2012) Improved orange peel waste pretreatments for bioethanol production. Environ Eng Manag J 11(3):S55Google Scholar
  157. Saumya S, Pillai B, Abraham DE, Girija N, Geetha P, Jacob L, Koshy M (2013) Biosorption of Cd(II) from aqueous solution using xanthated nano banana cellulose: equilibrium and kinetic studies. Ecotoxicol Environ Saf 98:352–360CrossRefGoogle Scholar
  158. Schröfel A, Kratošová G, Šafařík I, Šafaříková M, Raška I, Shor LM (2014) Applications of biosynthesized metallic nanoparticles- a review. Acta Biomater 10(10):4023–4042PubMedCrossRefGoogle Scholar
  159. Schwierz F (2010) Graphene transistors. Nat Nanotechnol 5:487–496PubMedCrossRefGoogle Scholar
  160. See CH, Harris ATA (2007) Review of carbon nanotube synthesis via fluidized-bed chemical vapor deposition. Int Eng Chem Res 46:997–1012CrossRefGoogle Scholar
  161. Selvi BR, Jagadeesan D, Suma BS, Nagashankar G, Arif M, Balasubramanyam K, Eswaramoorthy M, Kundu TK (2008) Intrinsically fluorescent carbon nanospheres as a nuclear targeting vector: delivery of membrane-impermeable molecule to modulate gene expression in vivo. Nano Lett 8(10):3182–3188PubMedCrossRefGoogle Scholar
  162. Shivaji S, Madhu S, Singh S (2011) Extracellular synthesis of antibacterial silver nanoparticles using psychrophilic bacteria. Process Biochem 46(9):1800–1807CrossRefGoogle Scholar
  163. Si YC, Samulski ET (2008) Exfoliated graphene separated by platinum nanoparticles. Chem Mater 20:6792–6797CrossRefGoogle Scholar
  164. Sidheswaran P, Bhat AN (1996) Recovery of amorphous silica in pure form from rice husk. Trans Indian Ceram Soc 55:93–96CrossRefGoogle Scholar
  165. Singh PS, Vidyasagar GM (2014) Biosynthesis, characterization, and antidermatophytic activity of silver nanoparticles using Raamphal plant (Annona reticulata) aqueous leaves extract. Indian J Mater Sci. 412452.
  166. Singh K, Arora JK, Sinha JMT, Srivastava S (2014) Functionalization of nanocrystalline cellulose for decontamination of Cr(III) and Cr(VI) from aqueous system: computational modelling approach. Clean Techn Environ Policy 16:1179–1191CrossRefGoogle Scholar
  167. Somanathan T, Prasad K, Ostrikov K, Saravanan A, Krishna VM (2015) Graphene oxide synthesis from agro waste. Nanomaterials 5(2):826–834PubMedPubMedCentralCrossRefGoogle Scholar
  168. Song H, Zhang L, He C, Qu Y, Tian YF, Lv Y (2011) Graphene sheets decorated with SnO2 nanoparticles: in situ synthesis and highly efficient materials for cataluminescence gas sensors. J Mater Chem 21:5972–5977CrossRefGoogle Scholar
  169. Spence KL, Venditti RA, Rojas OJ, Pawlak JJ, Hubbe MA (2011) Water vapor barrier properties of coated and filled microfibrillated cellulose composite films. Bioresources 6(4):4370–4388Google Scholar
  170. Srivastava V, Gusain D, Sharma YC (2015) Critical review on the toxicity of some widely used engineered nanoparticles. Ind Eng Chem Res 54:6209–6233CrossRefGoogle Scholar
  171. Staniland SS (2011) Magnetosomes: bacterial biosynthesis of magnetic nanoparticles and potential biomedical applications. In: Nanotechnologies for the life sciences. Wiley, Hoboken, doi:  10.1002/9783527610419.ntls0173
  172. Staudenmaier L (1898) Verfahren zur darstellung der graphitsäure. Ber Dtsch Chem Ges 31:1481–1487CrossRefGoogle Scholar
  173. Stephen JR, Macnaughtont SJ (1999) Developments in terrestrial bacterial remediation of metals. Curr Opin Biotechnol 10(3):230–233PubMedCrossRefGoogle Scholar
  174. Sun YP, Zhou B, Lin Y, Wang W, Fernando KAS, Pathak P, Meziani MJ, Harruff BA, Wang X, Wang H, Luo PG, Yang H, Kose ME, Chen B, Veca LM, Xie SY (2006) Quantum-sized carbon dots for bright and colorful photoluminescence. J Am Chem Soc 128(24):7756–7757PubMedCrossRefGoogle Scholar
  175. Sun D, Hussain HI, Yi Z, Rookes JE, Kong L, Cahill DM (2016) Mesoporous silica nanoparticles enhance seedling growth and photosynthesis in wheat and lupin. Chemosphere 152:81–91PubMedCrossRefGoogle Scholar
  176. Suriyaprabha R, Karunakaran G, Kavitha K, Yuvakkumar R, Rajendran V, Kannan N (2014) Application of silica nanoparticles in maize to enhance fungal resistance. IET Nanobiotechnol 8(3):133–137PubMedCrossRefGoogle Scholar
  177. Syed A, Saraswati S, Kundu GC, Ahmad A (2013) Biological synthesis of silver nanoparticles using the fungus Humicola sp. and evaluation of their cytotoxicity using normal and cancer cell lines Spectrochim. Acta A Mol Biomol Spectrosc 114:144–147CrossRefGoogle Scholar
  178. Terzioglu P, Yucel S (2012) Synthesis of magnesium silicate from wheat husk ash: effects of parameters on structural and surface properties. Bioresources 7(4):5435–5447CrossRefGoogle Scholar
  179. Tessonnier JP, Rosenthal D, Hansen TW, Hess C, Schuster ME, Blume R, Girgsdies F, Pfänder N, Timpe O, Su DS, Schlögl R (2009) Analysis of the structure and 187 chemical properties of some commercial carbon nanostructures. Carbon 47:1779–1798CrossRefGoogle Scholar
  180. Thygesen LG, Hidayat BJ, Johansen KS, Felby C (2011) Role of supramolecular structures in enzymatic hydrolysis of plant cell walls. J Ind Microbiol Biotechnol 38:975–983PubMedCrossRefGoogle Scholar
  181. Tibolla H, Pelissari FM, Menegalli FC (2014) Cellulose nanofibers produced from banana peel by chemical and enzymatic treatment. LWT-Food Sci Technol 59(2):1311–1318CrossRefGoogle Scholar
  182. Tischer PCSF, Sierakowski MR, Westfahl H, Tischer CA (2010) Nanostructural reorganization of bacterial cellulose by ultrasonic treatment. Biomacromolecules 11(5):1217–1224PubMedCrossRefGoogle Scholar
  183. Tripp SL, Pusztay SV, Ribbe AE, Wei A (2002) Self-assembly of cobalt nanoparticle rings. J Am Chem Soc 124(27):7914–7915PubMedCrossRefGoogle Scholar
  184. Tsukamoto J, Durán N, Tasic L (2013) Nanocellulose and bioethanol production from orange waste using isolated microorganisms. J Braz Chem Soc 24:1537–1543Google Scholar
  185. Van HL, Thuc CNH, Thuc HH (2013) Synthesis of silica nano particles from Vietnamese rice husk by sol–gel method. Nanoscale Res Lett 8:58. doi: 10.1186/1556-276X-8-58 CrossRefGoogle Scholar
  186. Wang S, Cheng Q (2009) A novel process to isolate fibrils from cellulose fibers by high-intensity ultrasonication part 1: process optimization. J Appl Polym Sci 113(2):1270–1275CrossRefGoogle Scholar
  187. Wang B, Sain M (2007) Isolation of nanofibers from soybean source and their reinforcing capability on synthetic polymers. Compos Sci Technol 67(11–12):2521–2527CrossRefGoogle Scholar
  188. Wang XZ, Hu Z, Chen X, Chen Y (2001) Preparation of carbon nanotubes and nanoparticles by microwave plasma-enhanced chemical vapor deposition. Sci Mater 44:1567–1570Google Scholar
  189. Wang Y, Zhang X, He X, Zhang W, Zhang X, Lu C (2014a) In situ synthesis of MnO2 coated cellulose nanofibers hybrid for effective removal of methylene blue. Carbohydr Polym 110:302–308PubMedCrossRefGoogle Scholar
  190. Wang Z, Fang C, Megharaj M (2014b) Characterization of iron polyphenol nanoparticles synthesized by three plant extracts and their fenton oxidation of azo dye. ACS Sustain Chem Eng 2(4):1022–1025CrossRefGoogle Scholar
  191. Wei H, Rodriguez K, Renneckar S, Vikesland PJ (2014) Environmental science and engineering applications of nanocellulose-based nanocomposites. Environ Sci Nano 1:302–316CrossRefGoogle Scholar
  192. Wen ZQ, Li G, Ren D (2011) Detection of trace melamine in raw materials used for protein pharmaceutical manufacturing using surface-enhanced Raman spectroscopy (SERS) with gold nanoparticles. Appl Spectrosc 65(5):514–521PubMedCrossRefGoogle Scholar
  193. Wen X, Chen X, Tian N, Gong J, Liu J, Rümmeli MH, Chu PK, Mijiwska E, Tang T (2014) Nanosized carbon black combined with Ni2O3 as “Universal” catalysts for synergistically catalyzing carbonization of polyolefin wastes to synthesize carbon nanotubes and application for supercapacitors. Environ Sci Technol 48:4048–4055PubMedCrossRefGoogle Scholar
  194. Williams DF (1999) The Williams dictionary of biomaterials. Liverpool University Press, LiverpoolGoogle Scholar
  195. Worathanakul P, Payubnop W, Muangpet A (2009) Characterization for post treatment effect of bagasse ash for silica extraction. Int J Chem Mol Nucl Mater Metall Eng 3(8):398–400Google Scholar
  196. Wu X, Lu C, Zhou Z, Yuan G, Xiong R, Zhang X (2014) Green synthesis and formation mechanism of cellulose nanocrystal-supported gold nanoparticles with enhanced catalytic performance. Environ Sci Nano 1(1):71–79CrossRefGoogle Scholar
  197. Xia Y, Yang H, Campbell CT (2013) Nanoparticles for catalysis. Acc Chem Res 46(8):1671–1672PubMedCrossRefGoogle Scholar
  198. Xiao Y, Long C, Zheng M, Dong H, Lei B, Zhang H, Liu Y (2014) High-capacity porous carbons prepared by KOH activation of activated carbon for super capacitors. Chin Chem Lett 25(6):865–868CrossRefGoogle Scholar
  199. Xie K, Zhao W, He X (2011a) Adsorption properties of nano-cellulose hybrid containing polyhedral oligomeric silsesquioxane and removal of reactive dyes from aqueous solution. Carbohydr Polym 83(4):1516–1520CrossRefGoogle Scholar
  200. Xie K, Jing L, Zhao W, Zhang Y (2011b) Adsorption removal of Cu2+ and Ni2+ from waste water using nano-cellulose hybrids containing reactive polyhedral oligomeric silsesquioxanes. J Appl Polym Sci 122(5):2864–2868CrossRefGoogle Scholar
  201. Yadav S, Kumar D, Sinha S (2014) Chemical carbonization of papaya seed originated charcoals for sorption of Pb(II) from aqueous solution. J Environ Chem Eng 2:9–14CrossRefGoogle Scholar
  202. Yalcin N, Sevinc V (2001) Studies on silica obtained from rice husk. Ceram Int 27:219–224CrossRefGoogle Scholar
  203. Yallappa S, Manjanna J, Dhananjaya BL (2015) Phytosynthesis of stable Au, Ag and Au–Ag alloy nanoparticles using J. sambac leaves extract, and their enhanced antimicrobial activity in presence of organic antimicrobials. Spectrochim Acta A Mol Biomol Spectrosc 137:236–243Google Scholar
  204. Yang XG, Li C, Wang W, Yang BJ, Zhang SY, Qian YTA (2004) Chemical route from PTFE to amorphous carbon nanospheres in supercritical water. Chem Commun 3:342–343CrossRefGoogle Scholar
  205. Yoon K, Hsiao BS, Chu B (2008) Functional nanofibers for environmental applications. J Mater Chem 18(44):5326–5334CrossRefGoogle Scholar
  206. Yu J, Ahn J, Zhang Q, Yoon SF, Rusli LYJ, Gan B, Chew K, Tan KH (2002) Catalyzed growth of carbon nanoparticles by microwave plasma chemical vapor deposition and their field emission properties. J Appl Phys 91:433–436CrossRefGoogle Scholar
  207. Yu SJ, Kang MW, Chang HC, Chen KM, Yu YC (2005) Bright fluorescent nanodiamonds: no photobleaching and low cytotoxicity. J Am Chem Soc 127(50):17604–17605PubMedCrossRefGoogle Scholar
  208. Yu X, Tong S, Ge M, Wu L, Zuo J, Cao C, Song (2013) Adsorption of heavy metal ions from aqueous solution by carboxylated cellulose nanocrystals. J Environ Sci 25:933–943CrossRefGoogle Scholar
  209. Zain NFM, Yusop SM, Ahmad I (2014) Preparation and characterization of cellulose and nanocellulose from pomelo (Citrus grandis) albedo. J Nutr Food Sci 5(1):334. doi: 10.4172/2155-9600.1000334 Google Scholar
  210. Zavaglia CA, Prado da Silva MH (2016) Biomaterials. Ref Module Mater Sci Mater Eng. doi: 10.1016/B978-0-12-803581-8.04109-6 Google Scholar
  211. Zhang L, Fang M (2010) Nanomaterials in pollution trace detection and environmental improvement. Nano Today 5:128–142CrossRefGoogle Scholar
  212. Zhang L, Bai X, Tian H, Zhong L, Ma C, Zhou Y, Chen S, Li D (2012) Synthesis of antibacterial film CTS/PVP/TiO2/Ag for drinking water system. Carbohydr Polym 89(4):1060–1066PubMedCrossRefGoogle Scholar
  213. Zhao QL, Zhang ZL, Huang BH, Peng J, Zhang M, Pang DW (2008) Facile preparation of low cytotoxicity fluorescent carbon nanocrystals by electrooxidation of graphite. Chem Commun 7(41):5116–5118CrossRefGoogle Scholar
  214. Zheng B, Lu C, Gu G, Makarovski A, Finkelstein G, Liu J (2002) Efficient CVD growth of single-walled carbon nanotubes on surfaces using carbon monoxide precursor. Nano Lett 2:895–898CrossRefGoogle Scholar
  215. Zhou C, Lee S, Dooley K, Wu Q (2013a) A facile approach to fabricate porous nanocomposite gels based on partially hydrolyzed polyacrylamide and cellulose nanocrystals for adsorbing methylene blue at low concentrations. J Hazard Mater 263:334–341PubMedCrossRefGoogle Scholar
  216. Zhou Z, Lu C, Wu X, Zhang X (2013b) Cellulose nanocrystals as a novel support for CuO nanoparticles catalysts: facile synthesis and their application to 4-nitrophenol reduction. RSC Adv 3(48):26066–26073CrossRefGoogle Scholar
  217. Zuluaga R, Putaux JL, Cruz J, Velez J, Mondragon I, Ganan P (2009) Cellulose microfibrils from banana rachis: effect of alkaline treatments on structural and morphological features. Carbohydr Polym 76(1):51–59CrossRefGoogle Scholar
  218. Zyubin AS, Mebel AM, Hayashi M, Chang HC, Lin SHJ (2009) Quantum chemical modeling of photo adsorption properties of the nitrogen-vacancy point defect in diamond. J Comput Chem 30(1):119–131PubMedCrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2017

Authors and Affiliations

  • Jeyabalan Sangeetha
    • 1
    Email author
  • Devarajan Thangadurai
    • 2
  • Ravichandra Hospet
    • 2
  • Prathima Purushotham
    • 2
  • Kartheek Rajendra Manowade
    • 3
  • Mohammed Abdul Mujeeb
    • 4
  • Abhishek Channayya Mundaragi
    • 2
  • Sudisha Jogaiah
    • 4
  • Muniswamy David
    • 3
  • Shivasharana Chandrabanda Thimmappa
    • 4
  • Ram Prasad
    • 5
  • Etigemane Ramappa Harish
    • 3
  1. 1.Department of Environmental ScienceCentral University of KeralaKasaragodIndia
  2. 2.Department of BotanyKarnatak UniversityDharwadIndia
  3. 3.Department of ZoologyKarnatak UniversityDharwadIndia
  4. 4.Department of Microbiology and BiotechnologyKarnatak UniversityDharwadIndia
  5. 5.Amity Institute of Microbial TechnologyAmity UniversityNoidaIndia

Personalised recommendations