Skip to main content

Application of Nanotechnology in Enhancement of Crop Productivity and Integrated Pest Management

  • Chapter
  • First Online:
Nanotechnology

Abstract

In recent times, there has been an emergence of conventional research approaches supplemented by new science and intermediate technology to resolve current challenges in agriculture like declining farm profitability, reduction in natural resources, resurgence of the new pest and diseases, global warming, rising population, and climate change. Major chemical companies are now trying to make potential pesticides at nanoscale as nanopesticides to increase the effectiveness of pesticides. Nanoencapsulation is a potent carrier for carrying these nanopesticides to the target position. One of the most efficient nanomaterial is aluminosilicate nanotube. The spread of aluminosilicate nanotubes on plant surface is taken up by insect hairs. Insects consume pesticide-filled nanotubes and get killed. The nanoparticles are also used to prepare the strain-resistant plants and eco-friendly pesticide development. Silicon nanoparticles are absorbed by plants, and they lead to increased disease and stress resistance. Nanoparticles not only play a crucial role in killing of pathogens but also its early detection through the application of nanobiosensor. Another area where nanotechnology has shown promising result is delivery of DNA into plant cells to alter the expression profile of plants. Mesoporous silica nanoparticle has ability to deliver DNA and drugs into plant. Nanohomeopathic drug can significantly increase plant growth, chlorophyll, and water content of the leaves as compared to untreated plants. The application of nanotechnology in agriculture ranges from crop production to protection of produced crop against insects and other pests. Nanoparticles have shown to have profound implication on entomology, for example, the insecticidal activity of stored grain pests because of loaded nanoformulated allelochemicals. Some common examples of nanoparticles having antimicrobial effect are silver nanoparticles and TiO2 nanoparticles. Hence, an early embracing of this nanotechnological feat will have major say in ameliorating the worsening condition of food scarcity of ever-increasing population.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ahmad N, Sharma S, Ra R (2013) Rapid green synthesis of silver and gold nano-particles from pomegranate. Int J Future Biotechnol 2(2):1–11

    Google Scholar 

  • Ali MA, Rehman I, Iqbal A, Din S, Rao AQ, Latif A, Samiullah TR, Azam S, Husnain T (2014) Nanotechnology, a new frontier in agriculture. Adv Life Sci 1(3):129–138

    Google Scholar 

  • Allen R (1994) Agriculture during the industrial revolution. In: The economic history of Britain since 1700. (3). Cambridge University Press, Cambridge, pp 96–123

    Google Scholar 

  • Anderson CB (2009) Regulating nanosilver as a pesticide. Environmental Defense Fund, 12 Feb 2009

    Google Scholar 

  • Babu PJ, Sharma P, Saranya S, Tamuli R, Bora U (2013) Green synthesis and characterization of biocompatible gold nanoparticles using Solanum indicum fruits. Nanomater Nanotechnol 3:1–7

    Article  Google Scholar 

  • Barik TK, Sahu B, Swain V (2008) Nanosilica-from medicine to pest control. Parasitol Res 103(2):253–258

    Article  CAS  PubMed  Google Scholar 

  • Bhattacharyya A (2009) Nanoparticles from drug delivery to insect pest control. Akshar 1(1):1–7

    Google Scholar 

  • Bhattacharyya A, Debnath N (2008) Nano particles-A futuristic approach in insect population. In: Proceedings on UGC Sponsored National Seminar on Recent Advances in Genetics and Molecular Biology, Biotechnology and Bioinformatics, 21st and 22nd November, 2008

    Google Scholar 

  • Bhattacharyya A, Bhaumik A, UshaRani P, Mandal S, Epidi TT (2010) Nanoparticles – a recent approach to insect pest control. Afr J Biotechnol 9(24):3489–3493

    CAS  Google Scholar 

  • Bhattacharyya A, Nandi M, Bhaumik A, Ghosh M, Prakasham RS, Das SK, Mandal S (2012) Nano-meso-allelochemicals influence in silk production by Bombyx moro L. In: International conference on entomology, 17–19 Feb 2012

    Google Scholar 

  • Bhattacharyya A, Prasad R, Buhroo AA, Duraisamy P, Yousuf I, Umadevi M, Bindhu MR, Govindarajan M, Khanday AL (2016a) One-pot fabrication and characterization of silver nanoparticles using Solanum lycopersicum: an eco-friendly and potent control tool against rose aphid, Macrosiphum rosae. J Nanosci 7. Article ID 4679410, 2016. http://dx.doi.org/10.1155/2016/4679410

  • Bhattacharyya A, Duraisamy P, Govindarajan M, Buhroo AA, Prasad R (2016b) Nano-biofungicides: emerging trend in insect pest control. In: Prasad R (ed) Advances and applications through fungal nanobiotechnology. Springer, Cham, pp 307–319

    Chapter  Google Scholar 

  • Binhi VN (2004) Stochastic dynamics of magnetic nanoparticles and a mechanism of biological orientation in the geomagnetic field. arxiv: physics/0412158v1 (physics biol-ph) 27 Dec

    Google Scholar 

  • Chakravarthy AK, Chandrashekharaiah B, Kandakoor SB, Bhattacharya A, Dhanabala K, Gurunatha K, Ramesh P (2012a) Bioefficacy of inorganic nanoparticles CdS, nano-Ag and nano-TiO2 against Spodoptera litura (Fabricius) (Lepidoptera: Noctuidae). Curr Biotica 6(3):271–281

    Google Scholar 

  • Chakravarthy AK, Bhattacharya A, Shashank PR, Doddabasappa B, Chandrashekharaiah B, Epidi TT (2012b) Effect of two ecdysteroid analogues (Tebufenozide – RH 5992 and Halofenozide- RH 0345) on the development of Corcyra cephalonica (Stainton) [Lepidoptera: Pyralidae]. Curr Biotica 6(2):131–140

    Google Scholar 

  • Chakravarthy AK, Bhattacharyya A, Shashank PR, Epidi TT, Doddabasappa B, Mandal SK (2012c) DNA-tagged nano gold: a new tool for the control of the armyworm, Spodoptera litura Fab. (Lepidoptera: Noctuidae). Afr J Biotechnol 11(38):9295–9930

    Article  CAS  Google Scholar 

  • Chinnamuthu C, Boopathi PM (2009) Nanotechnology and agroecosystem. Madras Agric J 96(1–6):17–31

    Google Scholar 

  • Datnoff LE (2004, July) Silicon suppresses leaf spotting on bermudagrass. Turfgrass Trend:58–61

    Google Scholar 

  • De Rosa MC, Monreal C, Schnitzer M, Walsh R, Sultan Y (2010) Nanotechnology in fertilizers. Nat Nanotechnol 5(2):91–91

    Article  Google Scholar 

  • Ding WK, Shah NP (2009) Effect of various encapsulating materials on the stability of probiotic bacteria. J Food Sci 74(2):M100–M107

    Article  CAS  PubMed  Google Scholar 

  • Ehrlich H, Janussen D, Simon P, Bazhenov VV, Shapkin NP, Erler C, Mertig M, Born RE, Heinemann S, Hanke T, Worch H, Vournakis JN (2008) Nanostructural organization of naturally occurring composites-Part II: silica-chitin-based biocomposites. J Nanomater 2008 (2008): 1–8

    Google Scholar 

  • Gha-Young K, Joonmok S, Min-Su K, Seung-Hyeon M (2008) Preparation of a highly sensitive enzyme electrode using gold nanoparticles for measurement of pesticides at the ppt level. J Environ Monit 10:632–637

    Article  Google Scholar 

  • Gruère G, Narrod C, Abbott L (2011) Agriculture, food, and water nanotechnologies for the poor: opportunities and constraints policy brief 19. International Food Policy Research Institute, Washington, DC

    Google Scholar 

  • Hong F, Zhou J, Liu C, Yang F, Wu C et al (2005) Effect of nano-TiO2 on photochemical reaction of chloroplasts of spinach. Biol Trace Elem Res 105:269–279

    Article  CAS  PubMed  Google Scholar 

  • Isha JS, Barkay Z, Eliaz N, Plotkin M, Volynchik S, Bergman DJ (2008) Gravity orientation in social wasp comb cells (Vespinae) and the possible role of embedded minerals. Naturwissenschaften 95:333–342

    Article  Google Scholar 

  • Joseph T, Morrison M (2006) Nanotechnology in agriculture and food. Nanoforum report, European Nanotechnology Gateway

    Google Scholar 

  • Kanto T, Miyoshi A, Ogawa T, Maekawa K, Aino M (2004) Suppressive effect of potassium silicate on powdery mildew of strawberry in hydroponics. J Gen Plant Pathol 70:207–211

    Article  CAS  Google Scholar 

  • Khodakovskaya M, Dervishi E, Mahmood M, Xu Y, Li Z et al (2009) Carbon nanotubes are able to penetrate plant seed coat and dramatically affect seed germination and plant growth. ACS Nano 3(10):3221–3227

    Article  CAS  PubMed  Google Scholar 

  • Khodakovsky A, Schroder, P, Sweldens W (2009) Progressive geometry compression. In: Siggraph (ed) Computer graphics proceedings. ACM Press/Addison Wesley Longman, Reading, pp 271–278

    Google Scholar 

  • Kim H, Kang H, Chu G, Byun H (2008) Antifungal effectiveness of nanosilver colloid against rose powdery mildew in greenhouses. Solid State Phenom 135:15–18

    Article  CAS  Google Scholar 

  • Liu F, Wen L-X, Li Z-Z, Yu W, Sun H-Y et al (2006) Porous hollow silica nanoparticles as controlled delivery system for water-soluble pesticide. Mater Res Bull 41(12):2268–2275

    Article  CAS  Google Scholar 

  • McLamore ES, Diggs A, Marzal PC, Shi J, Blakeslee JJ, Peer WA, Murphy AS, Porterfield DM (2010) Non-invasive quantification of endogenous root auxin transport using an integrated flux. Microsensor Technique. doi:10.111/j.1365-313x.2010.04300.x

  • Nair R, Varghese SH, Nair BG, Maekawa T, Yoshida Y et al (2010) Nanoparticulate material delivery to plants. Plant Sci 179(3):154–163

    Article  CAS  Google Scholar 

  • Parida UK, Bindhani KB, Nayak P (2011) Green synthesis and characterization of gold nanoparticles using onion (Allium cepa) extract. World J Nano Sci Eng 1:93–98

    Article  CAS  Google Scholar 

  • Patil SA (2009) Economics of agriculture poverty: nano-bio solutions. Indian Agricultural Research Institute, New Delhi

    Google Scholar 

  • Pérez-de-Luque A, Rubiales D (2009) Nanotechnology for parasitic plant control. Pest Manag Sci 65(5):540–545

    Article  PubMed  Google Scholar 

  • Prasad R, Kumar V, Prasad KS (2014) Nanotechnology in sustainable agriculture: present concerns and future aspects. Afr J Biotechnol 13(6):705–713

    Article  CAS  Google Scholar 

  • Prasad R, Bhattacharyya A, Nguyen QD (2017) Nanotechnology in sustainable agriculture: recent developments, challenges, and perspectives. Front Microbiol 8:1014. doi:10.3389/fmicb.2017.01014

  • Predicala B (2009) Nanotechnology: potential for agriculture. Prairie Swine Centre, University of Saskatchewan, Saskatoon, pp 123–134

    Google Scholar 

  • Sharon M, Choudhary AK, Kumar R (2010) Nanotechnology in agricultural diseases and food safety. J Phytology 2(4):83–92

    Google Scholar 

  • Sugunan A, Dutta J (2008) Pollution treatment, remediation and sensing. Nanotechnology 2(4):125–146

    CAS  Google Scholar 

  • Sukul NC, Singh RK, Sukul (Chunari) S, Sen P, Bhattacharyya A, Sukul A, Chakrabarty R (2009) Potentized drugs enhance growth of pigeon pea. Environ Ecol 26(3):1115–1118

    Google Scholar 

  • Torney F (2009) Nanoparticle mediated plant transformation. Emerging technologies in plant science research. Interdepartmental Plant Physiol Major Fall Seminar Series Physics. UBC Press, Vancouver, p 696

    Google Scholar 

  • Torney F, Trewyn B, Lin V, Wang K (2007) Mesoporous silica nanoparticles deliver DNA and chemicals into plants. Nat Nanotechnol 2:295–300

    Article  CAS  PubMed  Google Scholar 

  • Ulrichs C, Mewis I, Goswami A (2005) Crop diversification aiming nutritional security in West Bengal- biotechnology of stinging capsules in nature’s water-blooms. Ann Tech Issue State Agric Technol Serv Assoc 1–18

    Google Scholar 

  • Vidhyalakshmi R, Bhakyaraj R, Subhasree RS (2009) Encapsulation the future of probiotics – a review. Adv Biol Res 3(3–4):96–103

    CAS  Google Scholar 

  • Wheeler S (2005) Factors influencing agricultural professionals’ attitudes towards organic agriculture and biotechnology. ANU, Canber

    Google Scholar 

  • Yang F, Hong F, You W, Liu C, Gao F et al (2006) Influence of nano-anatase TiO2 on the nitrogen metabolism of growing spinach. Biol Trace Elem Res 110(2):179–190

    Article  CAS  PubMed  Google Scholar 

  • Yang F, Liu C, Gao F, Su M, Wu X et al (2007) The improvement of spinach growth by nano-anatase TiO2 treatment is related to nitrogen photoreduction. Biol Trace Elem Res 119(1):77–88

    Article  CAS  PubMed  Google Scholar 

  • Yang FL, Li XG, Zhu F, Lei CL (2009) Structural characterization of nanoparticles loaded with garlic essential oil and their insecticidal activity against Tribolium castaneum (Herbst) (Coleoptera: Tenebrionidae). J Agric Food Chem 57(21):10156–10162

    Article  CAS  PubMed  Google Scholar 

  • Yao KS, Li SJ, Tzeng KC, Cheng TC, Chang CY et al (2009) Fluorescence silica nanoprobe as a biomarker for rapid detection of plant pathogens. Adv Mater Res 79–82:513–516

    Article  Google Scholar 

Download references

Acknowledgment

We sincerely thank DBT, India, for fellowship and Dr. Rakesh Khatri, NCBS, Bangalore, India for thei valuable suggestions and fruitful discussion on related subject.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sadaf Fatima .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Nature Singapore Pte Ltd.

About this chapter

Cite this chapter

Kumar, M., Shamsi, T.N., Parveen, R., Fatima, S. (2017). Application of Nanotechnology in Enhancement of Crop Productivity and Integrated Pest Management. In: Prasad, R., Kumar, M., Kumar, V. (eds) Nanotechnology. Springer, Singapore. https://doi.org/10.1007/978-981-10-4573-8_17

Download citation

Publish with us

Policies and ethics