Skip to main content

Modern Prospects of Nanotechnology in Plant Pathology

  • Chapter
  • First Online:

Abstract

The most important applications of nanoparticle types and the common practices for control of plant diseases are described. The chapter will not include a description of all diseases that occur globally or a comprehensive report on the selected diseases and nanoparticles. We have tried to contain information on the impact of the disease and the role of nanotechnology to face these challenges as modern technology in plant control and also report a short, historical background for some nanoparticle types. We have attempted to include the newest literature and scientific research related to each nanoparticle type. We will focus on the synthesis of NPs of some compounds and their influence on plant diseases.

The chapter consisted of four sections. The first section will elucidate the meaning of nanotechnology and scientific progression. Section 15.2 covers major information about plant diseases as challenges in agriculture development. The third section will include important techniques that are used to detect and manipulate causal agents of plant diseases and the use of nanoparticle in disease control. The last part addresses a common nanoparticle that is used as control agent for some plant pathogens.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Aisnworth GC (1981) Introduction to the history of plant pathology. Cambridge University Press, Cambridge. ISBN:0-521-23032-2

    Google Scholar 

  • Anonymous (2009) Nanotechnology and nanoscience applications: revolution in India and beyond. Strateg Appl Integrating Nano Sci

    Google Scholar 

  • Aziz N, Faraz M, Pandey R, Sakir M, Fatma T, Varma A, Barman I, Prasad R (2015) Facile algae-derived route to biogenic silver nanoparticles: synthesis, antibacterial and photocatalytic properties. Langmuir 31:11605–11612

    Article  CAS  PubMed  Google Scholar 

  • Aziz N, Pandey R, Barman I, Prasad R (2016) Leveraging the attributes of mucor hiemalis-derived silver nanoparticles for a synergistic broad-spectrum antimicrobial platform. Front Microbiol 7:1984. doi: 10.3389/fmicb.2016.01984

  • Baldauf SL, Roger AJ, Wenk-Siefert I, Doolittle WF (2000) A kingdom-level phylogeny of eukaryotes based on combined protein data. Science 290(5493):972–977

    Article  CAS  PubMed  Google Scholar 

  • Bhattacharyya A, Duraisamy P, Govindarajan M, Buhroo AA, Prasad R (2016) Nano-biofungicides: emerging trend in insect pest control. In: Prasad R (ed) Advances and applications through fungal nanobiotechnology. Springer International Publishing, Switzerland, pp 307–319

    Chapter  Google Scholar 

  • Bragg PD, Rannie DJ (1974) The effect of silver ions on the respiratory chain of Escherichia coli. Can J Microbiol 20:883–889

    Google Scholar 

  • Chaloupka K, Malam Y, Seifalian AM (2010) Nanosilver as a new generation of nanoproduct in biomedical applications. Trends Biotechnol 28(11):580–588

    Google Scholar 

  • Cioffi N, Torsi L, Ditaranto N, Tantillo G, Ghibelli L, Sabbatini L, Bleve-Zacheo T, D’Alessio M, Zambonin PG, Traversa E (2005) Copper nanoparticle/polymer composites with antifungal and bacteriostatic properties. Chem Mater 17:5255–5262

    Article  CAS  Google Scholar 

  • Clement JL, Jarret PS (1994) Antimicrobial silver. Metal-Based Drugs 1:467–482

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Elchiguerra JL, Burt JL, Morones JR, Camacho Bragado A, Gao X, Lara HH, Yacaman MJ (2005) Interaction of silver nanoparticles with HIV-1. J Nanobiotechnol 3:6

    Article  Google Scholar 

  • Feng QL, Wu J, Chen GQ, Cui FZ, Kim TN, Kim JO (2000) A mechanistic study of the antibacterial effect of silver ions on Escherichia coli and Staphylococcus aureus. J Biomed Mater Res 52(4):662–668

    Article  CAS  PubMed  Google Scholar 

  • Gajjar P, Pettee B, Britt DW, Huang W, Johnson WP, Anderson AJ (2009) Antimicrobial activities of commercial nanoparticles against an environmental soil microbe, Pseudomonas putida KT2440. J Biol Eng 3:9. doi:10.1186/1754-1611-3-9

    Article  PubMed  PubMed Central  Google Scholar 

  • Garg J, Poudel B, Chiesa M (2008) Enhanced thermal conductivity and viscosity of copper nanoparticles in ethylene glycol nanofluid. J Appl Phys 103:074301

    Article  Google Scholar 

  • Gong P, Li H, He X, Wang K, Hu J, Zhang S, Yang X (2007) Preparation and antibacterial activity of Fe3O4@Ag nanoparticles. Nanotechnology 18:604–611

    Google Scholar 

  • Gopal M, Gogoi R, Srivastava C, Kumar R, Singh PK, Nair KK, Yadav S, Goswami A (2011) Nanotechnology and its application in plant protection. Plant Pathol India: Vision 2030:224–232

    Google Scholar 

  • Guzman M, Dille J, Godet S (2012) Synthesis and antibacterial activity of silver nanoparticles against gram positive and gram-negative bacteria. Nanomed Nanotechnol Biol Med 8(1):37–45

    Article  CAS  Google Scholar 

  • Heinlaan M, Ivask A, Blinova I, Dubourguier HC, Kahru A (2008) Toxicity of nanosized and bulk ZnO, CuO and TiO(2) to bacteria Vibrio fischeri and crustaceans Daphnia magna and Thamnocephalus platyurus. Chemosphere 71(7):1308–1316

    Article  CAS  PubMed  Google Scholar 

  • Islam N, Miyazaki K (2009) Nanotechnnology innovation system: understanding hidden dynamics of nanoscience fusion trajectories. Technol Forecast Soc Chang 76:128–140

    Article  Google Scholar 

  • Jo Y, Kim K, Jung G (2009) Antifungal activity of silver ions and nanoparticles on phytopathogenic fungi. Plant Dis 93:1037–1043

    Article  CAS  Google Scholar 

  • Jung JH, Kim SW, Min JS, Kim YJ, Lamsal K, Kim KS, Lee YS (2010) The effect of nano-silver liquid against the white rot of the green onion caused by Sclerotium cepivorum. Mycobiology 38(1):39–45

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Khan MR, Rizvi TF (2014) Nanotechnology: scope and application in plant disease management. Plant Pathol J 13(3):214–231

    Article  Google Scholar 

  • Kim TN, Feng QL, Kim JO, Wu J, Wang H, Chen GC, Cui FZ (1998) Antimicrobial effects of metal ions (Ag+,Cu2+,Zn2+) in hydroxyapatite. J Mater Sci Mater Med 9:129–134

    Article  PubMed  Google Scholar 

  • Kim SW, Kim KS, Lamsal K, Kim YJ, Kim SB, Jung M, Sim SJ, Kim HS, Chang SJ, Kim JK (2009) An in vitro study of the antifungal effect of silver nanoparticles on oak wilt pathogen Raffaelea sp. J Microbiol Biotechnol 19:760–764

    PubMed  Google Scholar 

  • Lara HH, Ayala-Núñez NV, Turrent LCI, Padilla CR (2010) Bactericidal effect of silver nanoparticles against multi drug resistant bacteria. World J Microbiol Biotechnol 26:615–621

    Article  CAS  Google Scholar 

  • Lee J, Kim KJ, Woo SS, Kim JG, Lee DG (2010) The silver nanoparticle (Nano-Ag): a new model for antifungal agents, silver nanoparticles. David Pozo Perez (ed), InTech. doi:10.5772/8510. Available at: http://www.intechopen.com/books/silver-nanoparticles/the-silver-nanoparticle-nano-ag-a-new-model-for-antifungal-agents

  • Liu WT (2006) Nanoparticles and their biological and environmental applications. J Biosci Bioeng 102(1):1–7

    Article  CAS  PubMed  Google Scholar 

  • Martinelli F, Scalenghe R, Davino S, Panno S, Scuderi G, Ruisi P, Villa P, Stroppiana D, Boschetti M, Goulart LR, Davis CE, Dandekar AM (2014) Advanced methods of plant disease detection:a review. Agron Sustain Dev 35:1–25

    Article  Google Scholar 

  • McNeil SE (2005) Nanotechnology for the biologist. J Leukoc Biol 78:585–594

    Article  CAS  PubMed  Google Scholar 

  • Min JS, Kim KS, Kim SW, Jung JH, Lamsal K, Kim SB, Jung M, Lee YS (2009) Effects of colloidal silver nanoparticles on sclerotium-forming phytopathogenic fungi. Plant Pathol J 25(4):376–380

    Article  CAS  Google Scholar 

  • Morones JR, Elechiguerra JL, Camacho A, Holt K, Kouri JB, Ramirez JT, Yacaman MJ (2005) The bactericidal effect of silver nanoparticles. NanoBiotechnology 16:2346–2353

    Article  CAS  Google Scholar 

  • Nowack B (2010) Nanosilver revisited downstream. Science 330:1054–1055

    Article  CAS  PubMed  Google Scholar 

  • Nugaeva N, Gfeller KY, Backmann N, Lang HP, Duggelin M, Hegner M (2005) Micromechanical cantilever array sensors for selective fungal immobilization and fast growth detection. Biosens Bioelectron 21(6):849–856

    Article  CAS  PubMed  Google Scholar 

  • Nweke CO, Alisi CS, Okolo JC, Nwanyanwu CE (2007) Toxicity of zinc to heterotrophic bacteria from a tropical river sediment. Appl Ecol Environ Res 5(1):123–132

    Article  Google Scholar 

  • Park HJ, Kim SH, Kim HJ, Choi SH (2006) A new composition of nanosized silica-silver for control of various plant diseases. Plant Pathol J 22:295–302

    Article  Google Scholar 

  • Prasad R (2014) Synthesis of silver nanoparticles in photosynthetic plants. J Nanoparticles, Article ID 963961, http://dx.doi.org/10.1155/2014/963961

  • Prasad R, Kumar V, Prasad KS (2014) Nanotechnology in sustainable agriculture: present concerns and future aspects. Afr J Biotechnol 13(6):705–713

    Article  CAS  Google Scholar 

  • Prasad R, Pandey R, Barman I (2016) Engineering tailored nanoparticles with microbes: quo vadis. WIREs Nanomed Nanobiotechnol 8:316–330. doi:10.1002/wnan.1363

    Article  Google Scholar 

  • Prasad R, Bhattacharyya A, Nguyen QD (2017) Nanotechnology in sustainable agriculture: recent developments, challenges, and perspectives. Front Microbiol 8:1014. doi:10.3389/fmicb.2017.01014

  • Prasanna BM (2007) Nanotechnology in agriculture. ICAR National Fellow, Division of Genetics, IARI, New Delhi, pp 111–118

    Google Scholar 

  • Rai M, Yadav A, Gade A (2009) Silver nanoparticles as a new generation of antimicrobials. Biotechnol Adv 27:76–83

    Article  CAS  PubMed  Google Scholar 

  • Richard NS (2003) The detection and diagnosis of plant pathogens and the diseases they cause. In: Introduction to plant pathology. Wiley, pp 33–60

    Google Scholar 

  • Russell AD, Hugo WB (1994) Antimicrobial activity and action of silver. Prog Med Chem 31:351–370

    Article  CAS  PubMed  Google Scholar 

  • Samuel U, Guggenbichler JP (2004) Prevention of catheter-related infections: the potential of a new nano-silver impregnated catheter. Int J Antimicrob Agents 23S1:S75–S78

    Article  Google Scholar 

  • Sharon M, Sharon M (2008) Carbon nanomaterials: applications in physico-chemical & bio-systems. Def Sci J 58(4):5491–5516

    Article  Google Scholar 

  • Sharon M, Choudhary AK, Kumar R (2010) Nanotechnology in agricultural diseases and food safety. J Phytology 2(4):83–92

    Google Scholar 

  • Shrestha S, Yeung CMY, Nunnerley C, Tsang SC (2007) Comparison of morphology and electrical conductivity of various thin films containing nano-crystalline praseodymium oxide particles. Sens Actuators A Phys 136:191–198

    Article  CAS  Google Scholar 

  • Simgh S, Singh BK, Yadav SM, Gupta AK (2014) Applications of nanotechnology in agricultural and their role in disease management. Res J Nanosci Nanotechnol. doi:10.3923/rjnn.2014

    Google Scholar 

  • Stewart GR, Press MC (1990) The physiology and biochemistry of parasitic angiosperms. Ann Rev Plant Physiol Plant Mol Biol 41:127–151

    Article  CAS  Google Scholar 

  • Stohs SJ, Bagchi D (1995) Oxidative mechanisms in the toxicity of metal ions. Radic Biol Med 18(2):321–336

    Article  CAS  Google Scholar 

  • Thurman KG, Gerba CHP (1989) The molecular mechanisms of copper and silver ion disinfection of bacteria and viruses. Crit Rev Environ Control 18:295–315

    Article  Google Scholar 

  • Wainwright M, Grayston SJ, deJong P (1986) Adsorption of insoluble compounds by mycelium of the fungus Mucor flavus. Enzym Microb Technol 8:597–600

    Article  CAS  Google Scholar 

  • Yamanaka M, Hara K, Kudo J (2005) Bactericidal actions of a silver ion solution on Escherichia coli, studied by energy-filtering transmission electron microscopy and proteomic analysis. Appl Environ Microbiol 71:7589–7593

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yeo SY, Lee HJ, Jeong SH (2003) Preparation of nanocomposite fibers for permanent antibacterial effect. J Mater Sci 38:2143–2147

    Article  CAS  Google Scholar 

Download references

Acknowledgment

The corresponding author gratefully acknowledge the support from Federation of Indian Chambers of Commerce & Industry (FICCI) and CV Raman International Fellowship for African Researchers Program.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ahmed I. S. Ahmed .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Nature Singapore Pte Ltd.

About this chapter

Cite this chapter

Ismail, M., Prasad, R., Ibrahim, A.I.M., Ahmed, A.I.S. (2017). Modern Prospects of Nanotechnology in Plant Pathology. In: Prasad, R., Kumar, M., Kumar, V. (eds) Nanotechnology. Springer, Singapore. https://doi.org/10.1007/978-981-10-4573-8_15

Download citation

Publish with us

Policies and ethics