Advertisement

Nanotechnology pp 305-317 | Cite as

Modern Prospects of Nanotechnology in Plant Pathology

  • Massalimov Ismail
  • Ram Prasad
  • Amr I. M. Ibrahim
  • Ahmed I. S. AhmedEmail author
Chapter

Abstract

The most important applications of nanoparticle types and the common practices for control of plant diseases are described. The chapter will not include a description of all diseases that occur globally or a comprehensive report on the selected diseases and nanoparticles. We have tried to contain information on the impact of the disease and the role of nanotechnology to face these challenges as modern technology in plant control and also report a short, historical background for some nanoparticle types. We have attempted to include the newest literature and scientific research related to each nanoparticle type. We will focus on the synthesis of NPs of some compounds and their influence on plant diseases.

The chapter consisted of four sections. The first section will elucidate the meaning of nanotechnology and scientific progression. Section 15.2 covers major information about plant diseases as challenges in agriculture development. The third section will include important techniques that are used to detect and manipulate causal agents of plant diseases and the use of nanoparticle in disease control. The last part addresses a common nanoparticle that is used as control agent for some plant pathogens.

Keywords

plant pathogens nanoparticles diagnosis QDs risk assessments DNA damage 

Notes

Acknowledgment

The corresponding author gratefully acknowledge the support from Federation of Indian Chambers of Commerce & Industry (FICCI) and CV Raman International Fellowship for African Researchers Program.

References

  1. Aisnworth GC (1981) Introduction to the history of plant pathology. Cambridge University Press, Cambridge. ISBN:0-521-23032-2Google Scholar
  2. Anonymous (2009) Nanotechnology and nanoscience applications: revolution in India and beyond. Strateg Appl Integrating Nano SciGoogle Scholar
  3. Aziz N, Faraz M, Pandey R, Sakir M, Fatma T, Varma A, Barman I, Prasad R (2015) Facile algae-derived route to biogenic silver nanoparticles: synthesis, antibacterial and photocatalytic properties. Langmuir 31:11605–11612CrossRefPubMedGoogle Scholar
  4. Aziz N, Pandey R, Barman I, Prasad R (2016) Leveraging the attributes of mucor hiemalis-derived silver nanoparticles for a synergistic broad-spectrum antimicrobial platform. Front Microbiol 7:1984. doi:  10.3389/fmicb.2016.01984
  5. Baldauf SL, Roger AJ, Wenk-Siefert I, Doolittle WF (2000) A kingdom-level phylogeny of eukaryotes based on combined protein data. Science 290(5493):972–977CrossRefPubMedGoogle Scholar
  6. Bhattacharyya A, Duraisamy P, Govindarajan M, Buhroo AA, Prasad R (2016) Nano-biofungicides: emerging trend in insect pest control. In: Prasad R (ed) Advances and applications through fungal nanobiotechnology. Springer International Publishing, Switzerland, pp 307–319CrossRefGoogle Scholar
  7. Bragg PD, Rannie DJ (1974) The effect of silver ions on the respiratory chain of Escherichia coli. Can J Microbiol 20:883–889Google Scholar
  8. Chaloupka K, Malam Y, Seifalian AM (2010) Nanosilver as a new generation of nanoproduct in biomedical applications. Trends Biotechnol 28(11):580–588Google Scholar
  9. Cioffi N, Torsi L, Ditaranto N, Tantillo G, Ghibelli L, Sabbatini L, Bleve-Zacheo T, D’Alessio M, Zambonin PG, Traversa E (2005) Copper nanoparticle/polymer composites with antifungal and bacteriostatic properties. Chem Mater 17:5255–5262CrossRefGoogle Scholar
  10. Clement JL, Jarret PS (1994) Antimicrobial silver. Metal-Based Drugs 1:467–482CrossRefPubMedPubMedCentralGoogle Scholar
  11. Elchiguerra JL, Burt JL, Morones JR, Camacho Bragado A, Gao X, Lara HH, Yacaman MJ (2005) Interaction of silver nanoparticles with HIV-1. J Nanobiotechnol 3:6CrossRefGoogle Scholar
  12. Feng QL, Wu J, Chen GQ, Cui FZ, Kim TN, Kim JO (2000) A mechanistic study of the antibacterial effect of silver ions on Escherichia coli and Staphylococcus aureus. J Biomed Mater Res 52(4):662–668CrossRefPubMedGoogle Scholar
  13. Gajjar P, Pettee B, Britt DW, Huang W, Johnson WP, Anderson AJ (2009) Antimicrobial activities of commercial nanoparticles against an environmental soil microbe, Pseudomonas putida KT2440. J Biol Eng 3:9. doi: 10.1186/1754-1611-3-9 CrossRefPubMedPubMedCentralGoogle Scholar
  14. Garg J, Poudel B, Chiesa M (2008) Enhanced thermal conductivity and viscosity of copper nanoparticles in ethylene glycol nanofluid. J Appl Phys 103:074301CrossRefGoogle Scholar
  15. Gong P, Li H, He X, Wang K, Hu J, Zhang S, Yang X (2007) Preparation and antibacterial activity of Fe3O4@Ag nanoparticles. Nanotechnology 18:604–611Google Scholar
  16. Gopal M, Gogoi R, Srivastava C, Kumar R, Singh PK, Nair KK, Yadav S, Goswami A (2011) Nanotechnology and its application in plant protection. Plant Pathol India: Vision 2030:224–232Google Scholar
  17. Guzman M, Dille J, Godet S (2012) Synthesis and antibacterial activity of silver nanoparticles against gram positive and gram-negative bacteria. Nanomed Nanotechnol Biol Med 8(1):37–45CrossRefGoogle Scholar
  18. Heinlaan M, Ivask A, Blinova I, Dubourguier HC, Kahru A (2008) Toxicity of nanosized and bulk ZnO, CuO and TiO(2) to bacteria Vibrio fischeri and crustaceans Daphnia magna and Thamnocephalus platyurus. Chemosphere 71(7):1308–1316CrossRefPubMedGoogle Scholar
  19. Islam N, Miyazaki K (2009) Nanotechnnology innovation system: understanding hidden dynamics of nanoscience fusion trajectories. Technol Forecast Soc Chang 76:128–140CrossRefGoogle Scholar
  20. Jo Y, Kim K, Jung G (2009) Antifungal activity of silver ions and nanoparticles on phytopathogenic fungi. Plant Dis 93:1037–1043CrossRefGoogle Scholar
  21. Jung JH, Kim SW, Min JS, Kim YJ, Lamsal K, Kim KS, Lee YS (2010) The effect of nano-silver liquid against the white rot of the green onion caused by Sclerotium cepivorum. Mycobiology 38(1):39–45CrossRefPubMedPubMedCentralGoogle Scholar
  22. Khan MR, Rizvi TF (2014) Nanotechnology: scope and application in plant disease management. Plant Pathol J 13(3):214–231CrossRefGoogle Scholar
  23. Kim TN, Feng QL, Kim JO, Wu J, Wang H, Chen GC, Cui FZ (1998) Antimicrobial effects of metal ions (Ag+,Cu2+,Zn2+) in hydroxyapatite. J Mater Sci Mater Med 9:129–134CrossRefPubMedGoogle Scholar
  24. Kim SW, Kim KS, Lamsal K, Kim YJ, Kim SB, Jung M, Sim SJ, Kim HS, Chang SJ, Kim JK (2009) An in vitro study of the antifungal effect of silver nanoparticles on oak wilt pathogen Raffaelea sp. J Microbiol Biotechnol 19:760–764PubMedGoogle Scholar
  25. Lara HH, Ayala-Núñez NV, Turrent LCI, Padilla CR (2010) Bactericidal effect of silver nanoparticles against multi drug resistant bacteria. World J Microbiol Biotechnol 26:615–621CrossRefGoogle Scholar
  26. Lee J, Kim KJ, Woo SS, Kim JG, Lee DG (2010) The silver nanoparticle (Nano-Ag): a new model for antifungal agents, silver nanoparticles. David Pozo Perez (ed), InTech. doi: 10.5772/8510. Available at: http://www.intechopen.com/books/silver-nanoparticles/the-silver-nanoparticle-nano-ag-a-new-model-for-antifungal-agents
  27. Liu WT (2006) Nanoparticles and their biological and environmental applications. J Biosci Bioeng 102(1):1–7CrossRefPubMedGoogle Scholar
  28. Martinelli F, Scalenghe R, Davino S, Panno S, Scuderi G, Ruisi P, Villa P, Stroppiana D, Boschetti M, Goulart LR, Davis CE, Dandekar AM (2014) Advanced methods of plant disease detection:a review. Agron Sustain Dev 35:1–25CrossRefGoogle Scholar
  29. McNeil SE (2005) Nanotechnology for the biologist. J Leukoc Biol 78:585–594CrossRefPubMedGoogle Scholar
  30. Min JS, Kim KS, Kim SW, Jung JH, Lamsal K, Kim SB, Jung M, Lee YS (2009) Effects of colloidal silver nanoparticles on sclerotium-forming phytopathogenic fungi. Plant Pathol J 25(4):376–380CrossRefGoogle Scholar
  31. Morones JR, Elechiguerra JL, Camacho A, Holt K, Kouri JB, Ramirez JT, Yacaman MJ (2005) The bactericidal effect of silver nanoparticles. NanoBiotechnology 16:2346–2353CrossRefGoogle Scholar
  32. Nowack B (2010) Nanosilver revisited downstream. Science 330:1054–1055CrossRefPubMedGoogle Scholar
  33. Nugaeva N, Gfeller KY, Backmann N, Lang HP, Duggelin M, Hegner M (2005) Micromechanical cantilever array sensors for selective fungal immobilization and fast growth detection. Biosens Bioelectron 21(6):849–856CrossRefPubMedGoogle Scholar
  34. Nweke CO, Alisi CS, Okolo JC, Nwanyanwu CE (2007) Toxicity of zinc to heterotrophic bacteria from a tropical river sediment. Appl Ecol Environ Res 5(1):123–132CrossRefGoogle Scholar
  35. Park HJ, Kim SH, Kim HJ, Choi SH (2006) A new composition of nanosized silica-silver for control of various plant diseases. Plant Pathol J 22:295–302CrossRefGoogle Scholar
  36. Prasad R (2014) Synthesis of silver nanoparticles in photosynthetic plants. J Nanoparticles, Article ID 963961, http://dx.doi.org/10.1155/2014/963961
  37. Prasad R, Kumar V, Prasad KS (2014) Nanotechnology in sustainable agriculture: present concerns and future aspects. Afr J Biotechnol 13(6):705–713CrossRefGoogle Scholar
  38. Prasad R, Pandey R, Barman I (2016) Engineering tailored nanoparticles with microbes: quo vadis. WIREs Nanomed Nanobiotechnol 8:316–330. doi: 10.1002/wnan.1363 CrossRefGoogle Scholar
  39. Prasad R, Bhattacharyya A, Nguyen QD (2017) Nanotechnology in sustainable agriculture: recent developments, challenges, and perspectives. Front Microbiol 8:1014. doi: 10.3389/fmicb.2017.01014
  40. Prasanna BM (2007) Nanotechnology in agriculture. ICAR National Fellow, Division of Genetics, IARI, New Delhi, pp 111–118Google Scholar
  41. Rai M, Yadav A, Gade A (2009) Silver nanoparticles as a new generation of antimicrobials. Biotechnol Adv 27:76–83CrossRefPubMedGoogle Scholar
  42. Richard NS (2003) The detection and diagnosis of plant pathogens and the diseases they cause. In: Introduction to plant pathology. Wiley, pp 33–60Google Scholar
  43. Russell AD, Hugo WB (1994) Antimicrobial activity and action of silver. Prog Med Chem 31:351–370CrossRefPubMedGoogle Scholar
  44. Samuel U, Guggenbichler JP (2004) Prevention of catheter-related infections: the potential of a new nano-silver impregnated catheter. Int J Antimicrob Agents 23S1:S75–S78CrossRefGoogle Scholar
  45. Sharon M, Sharon M (2008) Carbon nanomaterials: applications in physico-chemical & bio-systems. Def Sci J 58(4):5491–5516CrossRefGoogle Scholar
  46. Sharon M, Choudhary AK, Kumar R (2010) Nanotechnology in agricultural diseases and food safety. J Phytology 2(4):83–92Google Scholar
  47. Shrestha S, Yeung CMY, Nunnerley C, Tsang SC (2007) Comparison of morphology and electrical conductivity of various thin films containing nano-crystalline praseodymium oxide particles. Sens Actuators A Phys 136:191–198CrossRefGoogle Scholar
  48. Simgh S, Singh BK, Yadav SM, Gupta AK (2014) Applications of nanotechnology in agricultural and their role in disease management. Res J Nanosci Nanotechnol. doi: 10.3923/rjnn.2014 Google Scholar
  49. Stewart GR, Press MC (1990) The physiology and biochemistry of parasitic angiosperms. Ann Rev Plant Physiol Plant Mol Biol 41:127–151CrossRefGoogle Scholar
  50. Stohs SJ, Bagchi D (1995) Oxidative mechanisms in the toxicity of metal ions. Radic Biol Med 18(2):321–336CrossRefGoogle Scholar
  51. Thurman KG, Gerba CHP (1989) The molecular mechanisms of copper and silver ion disinfection of bacteria and viruses. Crit Rev Environ Control 18:295–315CrossRefGoogle Scholar
  52. Wainwright M, Grayston SJ, deJong P (1986) Adsorption of insoluble compounds by mycelium of the fungus Mucor flavus. Enzym Microb Technol 8:597–600CrossRefGoogle Scholar
  53. Yamanaka M, Hara K, Kudo J (2005) Bactericidal actions of a silver ion solution on Escherichia coli, studied by energy-filtering transmission electron microscopy and proteomic analysis. Appl Environ Microbiol 71:7589–7593CrossRefPubMedPubMedCentralGoogle Scholar
  54. Yeo SY, Lee HJ, Jeong SH (2003) Preparation of nanocomposite fibers for permanent antibacterial effect. J Mater Sci 38:2143–2147CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2017

Authors and Affiliations

  • Massalimov Ismail
    • 1
  • Ram Prasad
    • 2
  • Amr I. M. Ibrahim
    • 3
  • Ahmed I. S. Ahmed
    • 3
    Email author
  1. 1.Bashkir State UniversityUfaRussia
  2. 2.Amity Institute of Microbial TechnologyAmity UniversityNoidaIndia
  3. 3.Plant Pathology Unit, Plant Protection DepartmentDesert Research CenterCairoEgypt

Personalised recommendations