Nanotechnology pp 263-278 | Cite as

Nanomaterial-Based Biosensors in Agriculture Application and Accessibility in Rural Smallholding Farms: Food Security

  • M. S. MufamadiEmail author
  • P. R. Sekhejane


In the absence of inexpensive screening tools, food contamination poses immense threat to food safety and security and ultimately inclines burden on the public health, particularly for the populace in low- and middle-income countries, e.g. sub-Sahara Africa (SSA) countries. Current traditional methods for detection of contaminants in food and to ensure food quality and safety are associated with time-consuming procedures that are expensive and not accessible to those in rural areas. This chapter reviews the latest development and highlights the impact of various nanomaterials used during constructing biological sensors for screening each of these above food contaminants, in detail. The presence of nanomaterials is promising to offer device that is affordable, highly sensitive, specific and user-friendly. This chapter also highlights the accessibility of this technology, particularly to those in the rural and smallholder farmers. Furthermore, also try to address the potential contributions that nanotechnology can have in food safety and security.


Biosensor Nanotechnology Nanomaterials Agriculture Food safety Security 


  1. Adanyi N, Levkovets IA, Rodriguez-Gil S, Ronald A, Váradi M, Szendro I (2007) Development of immunosensor based on OWLS technique for determining aflatoxin B1 and ochratoxin A. Biosens Bioelectron 22(6):797–802CrossRefPubMedGoogle Scholar
  2. Afonso AS, Perez-Lopez FRC, Mattoso LHC, Hernandez M (2013) Electrochemical detection of Salmonella using gold nanoparticles. Biosens Bioelectron 40(1):121–126CrossRefPubMedGoogle Scholar
  3. Akbas M, Ozdemir M (2006) Effect of different ozone treatments on aflatoxin degradation and physicochemical properties of pistachios. J Sci Food Agric 86(13):2099–2104CrossRefGoogle Scholar
  4. Aziz N, Pandey R, Barman I, Prasad R (2016) Leveraging the attributes of Mucor hiemalis-derived silver nanoparticles for a synergistic broad-spectrum antimicrobial platform. Front Microbiol (in press)Google Scholar
  5. Bonel L, Vidal J, Duato P, Castillo J (2010) Ochratoxin A nanostructured electrochemical immunosensors based on polyclonal antibodies and gold nanoparticles coupled to the antigen. Anal Methods 2:335–341CrossRefGoogle Scholar
  6. Courvalin P (2008) Predictable and unpredictable evolution of antibiotic resistance. J Intern Med 264:4–16CrossRefPubMedGoogle Scholar
  7. Cozzini P, Ingletto G, Singh R, Asta CD (2008) Mycotoxin detection plays “cops and robbers”: Cyclodextrin chemosensors as specialized police? Int J Mol Sci 9(12):2474–2494CrossRefPubMedPubMedCentralGoogle Scholar
  8. Eldin TAS, Elshoky HA, Ali MA (2014) Nanobiosensor based on gold nanoparticles probe for aflatoxin B1 detection in food. Int J Curr Microbiol App Sci 3(8):219–230Google Scholar
  9. FAO (1996) Rome Declaration on World Food Security and World Food Summit Plan of Action. World Food Summit 13–17 November 1996Google Scholar
  10. FAO (2002) The State of Food Insecurity in the World 2001. RomeGoogle Scholar
  11. Gregory PJ, Ingram JSI, Brklacich (2005) Climate change and food security. Philos Trans R Soc B 360(1463):2139–2148CrossRefGoogle Scholar
  12. Guan H, Zhang F, Yu J, Chi D (2012) The novel acetylcholinesterase biosensors based on liposome bioreactors-chitosan nanocomposites film for detection of organophosphates pesticides. Food Res Int 49(1):15–21CrossRefGoogle Scholar
  13. Haddaoui M, Raouafi N (2015) Chlortoluron-induced enzymatic activity inhibition in tyrosinase/ZnO NPs/SPCE biosensor for the detection of ppb levels of herbicide. Sensors Actuators B Chem 219:171–178CrossRefGoogle Scholar
  14. Hogue A, White P, Petter JG, Schlosser N, Gast R, Ebel E et al (1997) Epidemiology and control of egg-associated with Salmonella enteritidis in the United States of America. Rev Sci Tech 16:542–553CrossRefPubMedGoogle Scholar
  15. Hou H, Bai X, Xing C, Gu N, Zhang B, Tang J, Bai X, Xing C, Gu N, Zhang B et al (2013) Aptamer-based cantilever array sensors for oxytetracycline detection. Anal Chem 85:2010–2014CrossRefPubMedGoogle Scholar
  16. Huet A, Fodey T, Haughey SA, Weigel S, Elliott C, Delahaut P (2010) Advances in biosensor-based analysis for antimicrobial residues in food. Trends Anal Chem 29(11):1281–1294CrossRefGoogle Scholar
  17. Hussein HS, Brasel JM (2001) Toxicity, metabolism, and impact of mycotoxins on humans and animals. Toxicology 167(2):101–134CrossRefPubMedGoogle Scholar
  18. Idowu F, Junaid K, Paul A, Gabriel O, Paul A, Sati N, Maryam M, Jarlath U (2010) Antimicrobial screening of commercial eggs and determination of tetracycline residue using two microbiological methods. Int J Poult Sci 9(10):959–962CrossRefGoogle Scholar
  19. Inbaraj BS, Chen BH (2016) Nanomaterial-based sensors for detection of foodborne bacterial pathogens and toxins as well as pork adulteration in meat products. J Food Drug Anal 24(1):15–28CrossRefGoogle Scholar
  20. Kaushnik A, Solanski P, Ansari A, Ahmad S, Malhorta B (2008) Chitosan-iron oxide nanobiocomposite based immunosensor for ochratoxin-a. Electrochem Commun 10(9):1364–1368CrossRefGoogle Scholar
  21. Khanna VK (2008) New-generation nano-engineered bio-sensors, enabling nanotechnologies and nanomaterials. Sens Rev 28(1):39–45CrossRefGoogle Scholar
  22. Kiaya V (2014) Post-harvest losses and strategies to reduce them. Technical Paper on Postharvest Losses, Action Contre la Faim (ACF).Google Scholar
  23. Kim G, Park SB, Moon J, Lee S (2013) Detection of pathogenic Salmonella with nanobiosensors. Anal Methods 5:5717–5723CrossRefGoogle Scholar
  24. Koedrith P, Thasiphu T, Tuitemwong K, Boonprasert R, Tuitemwong P (2014) Recent advances in potential nanoparticles and nanotechnology for sensing foodborne pathogens and their toxin in food and crops: current technologies and limitations. Sensor and Materials 26(10):711–736Google Scholar
  25. Kumar S, Dilbaghi N, Barnela M, Bhanjana G, Kumar R (2012) Biosensors as novel platforms for detection of food pathogens and allergens. BioNanoSci 2(4):196–217CrossRefGoogle Scholar
  26. Landers TF, Cohen B, Wittum TE, Larson EL (2012) A review of antibiotic use in food animals: perspective, policy and potential. Public Health Reports January–February 127:1–22Google Scholar
  27. Levy SB, Marshall B (2004) Antibacterial resistance worldwide: causes, challenges and responses. Nat Med 10:122–129CrossRefGoogle Scholar
  28. Li Y, Schluesener HJ, Xu S (2010) Gold nanoparticle-based biosensors. Gold Bull 43(1):29–41CrossRefGoogle Scholar
  29. Lin X, Guo X (2016) Advances in biosensors, chemosensors and assays for the determination of Fusarium mycotoxins. Toxins 8(6):161CrossRefPubMedCentralGoogle Scholar
  30. Madhuri S, Ajoy KC, Kumar R (2010) Nanotechnology in agricultural diseases and food safety. J Phytology 2(4):83–92Google Scholar
  31. Maragos CM, Thompson VS (1999) Fiber-optic immunosensor for mycotoxins. Nat Toxins 7(6):371–376Google Scholar
  32. Masikini M, Mailu SN, Tsegaye A et al (2015) A fumonisins immunosensor based on polyanilino-carbon nanotubes doped with palladium telluride quantum dots. Sensors 15:529–546CrossRefGoogle Scholar
  33. McEwen SA, Fedorka-Cray PJ (2002) Antimicrobial use and resistance in animals. Clin Infect Dis 34(3):93–106CrossRefGoogle Scholar
  34. McGrath TF, Elliott CT, Fodey TL (2012) Biosensors for the analysis of microbiological and chemical contaminants in food. Anal Bioanal Chem 403:75–92CrossRefPubMedGoogle Scholar
  35. Mead GC (2004) Microbiological quality of poultry meat: a review. Braz J Poult Sci 6(3):135–142Google Scholar
  36. Mungroo NA, Neethirajan S (2014) Biosensors for the detection of antibiotics in poultry industry-a review. Biosensors 4:472–493CrossRefPubMedPubMedCentralGoogle Scholar
  37. Norouzi P, Pirali-Hamedani M, Ganjal MR, Faridbod F (2010) A novel acetylcholinesterase biosensor for determination of monocrotophos using FFT continuous cyclic voltammetry. Int J Electrochem Sci 5:1434–1446Google Scholar
  38. Nowak B, Müffling T, Chaunchom S, Hartung J (2007) Salmonella contamination in pigs at slaughter and on the farm: a field study using an antibody ELISA test and a PCR technique. Int J Food Microbiol 115(3):259–267CrossRefPubMedGoogle Scholar
  39. Otles S, Yalcin B (2012) Review on the application of nanobiosensors in food analysis. Acta Sci Pol Technol Aliment 11(1):7–18PubMedGoogle Scholar
  40. Owino J, Arotiba O, Hendricks N, Songa E, Jahed N, Waryo TT, Ngece R, Baker P, Iwuoha E (2008) Electrochemical immunosensor based on polythionine/gold nanoparticles for the determination of aflatoxin B1. Sensors 8(12):8262–8274CrossRefPubMedPubMedCentralGoogle Scholar
  41. Paddle B (1996) Biosensors for chemical and biological agents of defence interest. Biosens Bioelectron 11(11):1079–1113CrossRefPubMedGoogle Scholar
  42. Parisi C, Vigani M, Rodriguez-Cerezo (2015) Agricultural nanotechnologies: what are the current possibilities? NanoToday 10(2):124–127CrossRefGoogle Scholar
  43. Parker CO, Tothill IE (2009) Development of an electrochemical immunosensor for aflatoxin M (1) in milk with focus on matrix interference. Biosens Bioelectron 24(8):2452–2457CrossRefPubMedGoogle Scholar
  44. Prasad R (2014) Synthesis of silver nanoparticles in photosynthetic plants. J Nanopart Article ID 963961.
  45. Prasad R, Kumar V, Prasad KS (2014) Nanotechnology in sustainable agriculture: present concerns and future aspects. Afr J Biotechnol 13(6):705–713CrossRefGoogle Scholar
  46. Prasad R, Pandey R, Barman I (2016) Engineering tailored nanoparticles with microbes: quo vadis. WIREs Nanomed Nanobiotechnol 8:316–330. doi: 10.1002/wnan.1363 CrossRefGoogle Scholar
  47. Prasad R, Bhattacharyya A, Nguyen QD (2017) Nanotechnology in sustainable agriculture: recent developments, challenges, and perspectives. Front Microbiol 8:1014. doi: 10.3389/fmicb.2017.01014
  48. Radoi A, Targa M, Prieto-Simon B, Marty JL (2008) Enzyme-linked immunosorbent assay (ELISA) based on superparamagnetic nanoparticles for aflatoxin M1 detection. Talanta 77(1):138–143CrossRefPubMedGoogle Scholar
  49. Rai V, Acharya S, Dey N (2012) Implications of nanobiosensors in agriculture. J Biomaterials and Nanobiotechnology 3:315–324CrossRefGoogle Scholar
  50. Sastry RK, Rashmi HB, Rao NH (2011) Nanotechnology for enhancing food security in India. Food Policy 36:391–400CrossRefGoogle Scholar
  51. Song KM, Jeong E, Jeon W, Cho M, Ban C (2012) Aptasensor for ampicillin using gold nanoparticle based dual fluorescence-colorimetric methods. Anal Bioanal Chem 402(6):2153–2161Google Scholar
  52. Song Y, Chen J, Wang LA (2015) Simple electrochemical biosensor based on AuNPs/MPS/Au electrode sensing layer for monitoring carbamate pesticides in real samples. J hazardous 304:103–109CrossRefGoogle Scholar
  53. Songa EA, Somerset S, Waryo T, Baker PG, Iwuoha EI (2009a) Amperometric nanobiosensor for quantitative determination of glyphosate and glufosinate residues in corn samples. Pure Appl Chem 81(1):123CrossRefGoogle Scholar
  54. Songa EA, Waryo T, Jahed N, Baker PGL, Kgarebe B, Iwuoha EI (2009b) Electrochemical nanobiosensor for glyphosate herbicide and its metabolite. Electroanalysis 21(3–5):671–674CrossRefGoogle Scholar
  55. Songa EA, Arotiba OA, Owino JH, Jahed N, Baker PG, Iwuoha EI (2009c) Electrochemical detection of glyphosate herbicide using horseradish peroxidase immobilized on sulfonated polymer matrix. Bioelectrochemistry 75(2):117–123CrossRefPubMedGoogle Scholar
  56. Tarafdar JC, Sharma S, Raliya R (2013) Nanotechnology: interdisciplinary science of applications. Afr J Biotechnol 12(3):219–226CrossRefGoogle Scholar
  57. Teodoro S, Micaela B, David KW (2010) Novel use of nano-structured alumina as an insecticide. Pest Manag Sci 66(6):577–579Google Scholar
  58. Turan E, Sahin F (2016) Molecularly imprinted biocompatible magnetic nanoparticles for specific recognition of Ochratoxin A. Sensors Actuators B Chem 227:668–676CrossRefGoogle Scholar
  59. Ventura M, Gomez A, Anaya I, Diaz J, Broto F, Agut M, Comellas L (2004) Determination of aflatoxins B1, G1, B2 and G2 in medicinal herbs by liquid chromatography-tandem mass spectrometry. J Chromatography A 1048(1):25–29Google Scholar
  60. Vimala V, Clarke SK, Urvinder Kaur S (2016) Pesticides detection using acetylcholinesterase nanobiosensor. Biosens J 5:1–4Google Scholar
  61. Viswanathan S, Radecki J (2008) Nanomaterials in electrochemical biosensors for food analysis. Pol J Food Nutrition Sci 58(2):157–164Google Scholar
  62. Viswanathan S, Wu L, Huang M, Ho J (2006) Electrochemical immunosensor for cholera toxin using liposomes and poly(3,4-ethylenedioxythiophene)-coated carbon nanotubes. Anal Chem 78(4):1115–1121CrossRefPubMedGoogle Scholar
  63. Vo-Dinh T (2005) Optical nanosensors for detecting proteins and biomarkers in individual living cells. Methods Mol Biol 300:383–402PubMedGoogle Scholar
  64. Wang J (2005) Nanomaterial-based amplified transduction of biomolecular interactions. Small 1(11):1036–1043CrossRefPubMedGoogle Scholar
  65. Wang Y, Alocijia EC (2015) Gold nanoparticle-labeled biosensor for rapid and sensitive detection of bacterial pathogens. J Biol Eng 9:16CrossRefPubMedPubMedCentralGoogle Scholar
  66. Wu Y, Tang L, Huang L, Han Z, Wang J, Pan H (2014) A low detection limit penicillin biosensor based on single graphene nanosheets preadsorbed with hematein-ionic liquids-penicillinase. Mater Sci Eng C Mater Biol Appl 1(39):92–99CrossRefGoogle Scholar
  67. Wu S, Zhang H, Duan S, Fang CC, Dai WZ (2015) Aptamer-based fluorescence biosensor for chloramphenicol determination using upconversion nanoparticles. Food Control 50:597–604CrossRefGoogle Scholar
  68. Xu S, Han X (2004) A novel method to construct a third-generation biosensor: self-assembling gold nanoparticles on thiol-functionalized poly (styrene-coacrylic acid) nanospheres. Biosens Bioelectron 19(9):1117–1120CrossRefPubMedGoogle Scholar
  69. Xu X, Liu X, Li Y, Ying Y (2013) A simple and rapid optical biosensor for detection of aflatoxin B1 based on competitive dispersion of gold nanorods. Biosens Bioelectron 47:361–367CrossRefPubMedGoogle Scholar
  70. Zhang S, Shan L, Tian Z, Zheng Y, Shi L et al (2008) Study of enzyme biosensor based on carbon nanotubes modified electrode for detection of pesticides residue. Chin Chem Lett 19:592–594CrossRefGoogle Scholar
  71. Zhao G, Wang H, Liu G (2015) Advances in biosensor-based instruments for pesticide residues rapid detection. Int J Electrochem Sci 10:9790–9807Google Scholar
  72. Zheng Z, Zhoub Y, Li X, Liua S, Tangb Z (2011) Highly-sensitive organophosphorous pesticide biosensors based on nanostructured films of acetylcholinesterase and CdTe quantum dots. Biosens Bioelectron 26:3081–3085CrossRefPubMedGoogle Scholar
  73. Zhilong G, Zhujun Z (1997) Cyclodextrin-based optosensor for determination of tryptophan. Microchim Acta 126(3):325–328CrossRefGoogle Scholar
  74. Zimmerli B, Dick R (1996) Ochratoxin A in table wine and grape juice: occurrence and risk assessment. Food Addit Contam 13(6):655–668CrossRefPubMedGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2017

Authors and Affiliations

  1. 1.Nanotechnology and Biotechnology, NABIO Consulting (Pty) LtdPretoria EastSouth Africa
  2. 2.Africa Institute of South Africa, Human Sciences Research CouncilPretoriaSouth Africa

Personalised recommendations