Skip to main content

Agricultural Nanotechnology: Concepts, Benefits, and Risks

  • Chapter
  • First Online:
Nanotechnology

Abstract

Nanotechnology is one of the utmost significant tools in modern agriculture is predicted to become a driving cost-effective force in the near future. Nanotechnology in agriculture has gained drive in the last decade with an abundance of public funding, but the step of development is uncertain, even though many disciplines come under the agriculture system. This could be attributed to a unique nature of farm production whereby energy and matter are exchanged freely, the scale of demand of input materials constantly being enormous in contrast with industrial nanoproducts. The nanotechnologic intervention in farming has prospects for improving the efficiency of nutrient use through nanoformulations of fertilizers, surveillance and control of pests and diseases, improvement of new-generation pesticides, biosensors (which are exclusively used in remote sensing devices for precision farming), clay-based nanoresources for precision water management, and reclamation of salt-affected lands.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Acharya S, Hill JP, Ariga K (2008) Soft Langmuir–Blodgett technique for hard nanomaterials. Adv Mater 21(29):2959–2981

    Article  CAS  Google Scholar 

  • Aggarwal PK, Joshi PK, Ingram JSI, Gupta RK (2004) Adapting food systems of the Indo-Gangetic plains to global environmental change: key information needs to improve policy formulation. Environ Sci Pol 7(6):487–498

    Article  Google Scholar 

  • Alagarasi A (2011) Introduction to nanomaterials. https://nccr.iitm.ac.in/2011.pdf. Accessed 3 Sep 2016

  • Alessandrini A, Facci P (2005) AFM: a versatile tool in biophysics. Meas Sci Technol 16:R65–R92

    Article  CAS  Google Scholar 

  • Alivisatos AP, Andrews AM, Boyden ES, Chun M, Church GM, Deisseroth K, Donoghue JP, Fraser SE, Lippincott-Schwartz OJ, Looger LL, Masmanidis S, McEuen PL, Nurmikko AV, Park H, Peterka DS, Reid C, Roukes ML, Scherer A, Schnitzer M, Sejnowski TJ, Shepard KL, Tsao D, Turrigiano G, Weiss PS, Xu C, Yuste R, Zhuang X (2013) Nanotools for neuroscience and brain activity mapping. ACS Nano Focus 7(3):1850–1866

    Article  CAS  Google Scholar 

  • Ando Y, Miyake K, Mizuno A, Korenaga A, Nakano M, Mano H (2010) Fabrication of nano stripe surface structure by multilayer film deposition combined with micropatterning. Nanotechnology 21(9):095304. doi:10.1088/0957-4484/21/9/095304

    Article  CAS  PubMed  Google Scholar 

  • Anker JN (2008) Biosensing with plasmonic nanosensors. Nat Mater 7:442–453

    Article  CAS  PubMed  Google Scholar 

  • Ariga K, Hill JP, Ji Q (2007) Layer-by-layer assembly as a versatile bottom-up nanofabrication technique for exploratory research and realistic application. Phys Chem Chem Phys 9(19):2319–2340

    Article  CAS  PubMed  Google Scholar 

  • Ariga K, Hill JP, Lee MV, Vinu A, Charvet R, Acharya S (2008) Challenges and breakthroughs in recent research on self-assembly. Sci Technol Adv Mater 9:014109

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ariga K, Lee MV, Mori T, Yu X-Y, Hill JP (2010) Two-dimensional nanoarchitectonics based on self-assembly. Adv Colloid Interf Sci 154:20–29

    Article  CAS  Google Scholar 

  • Ariga K, Li M, Richards GJ, Hill JP (2011) Nanoarchitectonics: a conceptual paradigm for design and synthesis of dimension-controlled functional nanomaterials. J Nanosci Nanotechnol 11(1):1–13

    Article  CAS  PubMed  Google Scholar 

  • Arvizo RR, Bhattacharyya S, Kudgus RA, Giri K, Bhattacharya R, Mukherjee P (2012) Intrinsic therapeutic applications of noble metal nanoparticles: past, present and future. Chem Soc Rev 41:2943–2970

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Atwater HA, Polman A (2010) Plasmonics for improved photovoltaic devices. Nat Mater 9:205–213

    Article  CAS  PubMed  Google Scholar 

  • Aziz N, Faraz M, Pandey R, Sakir M, Fatma T, Varma A, Barman I, Prasad R (2015) Facile algae-derived route to biogenic silver nanoparticles: synthesis, antibacterial and photocatalytic properties. Langmuir 31:11605–11612

    Article  CAS  PubMed  Google Scholar 

  • Aziz N, Pandey R, Barman I, Prasad R (2016) Leveraging the attributes of Mucor hiemalis-derived silver nanoparticles for a synergistic broad-spectrum antimicrobial platform. Front Microbiol 7:1984. doi:10.3389/fmicb.2016.01984

  • Baruah S, Dutta J (2009) Nanotechnology applications in population sensing and degradation in agriculture: a review. Envioron Chem Lett 7:161–204

    Article  CAS  Google Scholar 

  • Bhattacharyya A, Duraisamy P, Govindarajan M, Buhroo AA, Prasad R (2016) Nano-biofungicides: emerging trend in insect pest control. In: Prasad R (ed) Advances and applications through fungal nanobiotechnology. Springer International Publishing, Cham, pp 307–319

    Chapter  Google Scholar 

  • Binnig G, Rohrer H (1982) Scanning tunneling microscopy. Helv Phys Acta 55:726–735

    CAS  Google Scholar 

  • Binnig G, Quate CF, Gerber CH (1986) Atomic force microscope. Phys Rev Lett 56:930–933

    Article  CAS  PubMed  Google Scholar 

  • Biswas A, Eilers H, Hidden F, Aktas OC, Kiran CVS (2006) Large broadband visible to infrared plasmonic absorption from Ag nanoparticles with a fractal structure embedded in a Teflon AF® matrix. Appl Phys Lett 88:013103. http://dx.doi.org/10.1063/1.2161401

    Article  CAS  Google Scholar 

  • Biswas A, Bayer IS, Biris AS, Wang T, Dervishi E, Faupel F (2012) Advances in top–down and bottom-up surface nanofabrication: techniques, applications and future prospects. Adv Colloid Interf Sci 170:2–27

    Article  CAS  Google Scholar 

  • Bouwmeester H, Dekkers S, Noordam M, Hagens W, Bulder A, de Heer C, ten Voorde S, Wijnhoven S, Sips A (2009) Health impact of nanotechnologies in food production. RIKILT Institute of Food Safety/RIVM National Institute for Public Health and the Environment, Wageningen. http://www.rivm.nl/bibliotheek/rapporten/000200704.pdf. Accessed 2 Sep 2016

    Google Scholar 

  • Cayuela A, Benítez-Martínez S, Soriano ML (2016) Carbon nanotools as sorbents and sensors of nanosized objects: the third way of analytical nanoscience and nanotechnology. Trends Anal Chem 84:172–180. http://dx.doi.org/10.1016/j.trac.2016.02.016

    Article  CAS  Google Scholar 

  • Chaudhari Q, Castle L (2011) Food applications of nanotechnologies: an overview of opportunities and challenges for developing countries. Trends Food Sci Technol 22:595–603

    Article  CAS  Google Scholar 

  • Chaudhary Q, Castle L, Watkins R (2010) Nanotechnologies in food. RSC Publishing, London

    Book  Google Scholar 

  • Childers DL, Corman J, Edwards M, Elser JJ (2011) Sustainability challenges of phosphorus and food: solutions from closing the human phosphorus cycle. Bioscience 61(2):117–124

    Article  Google Scholar 

  • Claridge SA, Schwartz JJ, Weiss PS (2011) Electrons, photons, and force: quantitative single-molecule measurements from physics to biology. ACS Nano 5:693–729

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Claridge SA, Liao WS, Thomas JC, Zhao Y, Cao H, Cheunkar S, Serino AC, Andrews AM, Weiss PS (2013) From the bottom up: dimensional control and characterization in molecular monolayers. Chem Soc Rev 42:2725–2745

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cursino L, Li Y, Zaini PA, De La Fuente L, Hoch HC, Burr TJ (2009) Twitching motility and biofilm formation are associated with tonB1 in Xylella fastidiosa. FEMS Microb Lett 299(2):193–199

    Article  CAS  Google Scholar 

  • De Rosa MC, Monreal C, Schnitzer M, Walsh R, Sultan Y (2010) Nanotechnology in fertilizers. Nat Nanotechnol 5:91. doi:10.1038/nnano.2010.2

    Article  CAS  Google Scholar 

  • Dhaliwal GS, Jindal V, Dhawan AK (2010) Insect pest problems and crop losses: changing trends. Indian J Ecol 37(1):1–7

    Google Scholar 

  • Dinarelli S, Girasole M, Kasas S, Longo G (2016) Nanotools and molecular techniques to rapidly identify and fight bacterial infections. Journal of Microbiological Methods. doi:10.1016/j.mimet.2016.01.005

    PubMed  Google Scholar 

  • Ditta A (2012) How helpful is nanotechnology in agriculture? Adv Nat Sci Nanosci Nanotechnol 3(3):033002. doi:10.1088/2043-6262/3/3/033002

    Article  CAS  Google Scholar 

  • Ducker WA, Senden TJ, Pashley RM (1991) Direct measurement of colloidal forces using an atomic force microscope. Nature 353(6341):239–241

    Article  CAS  Google Scholar 

  • Eigler D, Schweizer EK (1990) Positioning single atoms with a scanning tunneling microscope. Nature 344:524–526

    Article  CAS  Google Scholar 

  • Ericksen PJ (2009) Conceptualizing food systems for global environmental change research. Glob Environ Chang 18(1):234–245

    Article  Google Scholar 

  • Fontes EMG, Pires CSS, Sujii ER, Panizzi AR (2002) The environmental effects of genetically modified crops resistant to insects neotrop. Entomologiste 31(4):497–513

    Google Scholar 

  • Garg A, Balodi R (2014) Recent trends in agriculture: vertical farming and organic farming. Adv Plants Agric Res 1(4):00023. doi:10.15406/apar.2014.01.00023

    Google Scholar 

  • Gates BD, Xu Q, Stewart M, Ryan D, Willson CG, Whitesides GM (2005) New approaches to nanofabrication: molding, printing, and other techniques. Chem Rev 105:1171–1196

    Article  CAS  PubMed  Google Scholar 

  • Ghosh P (2009) Colloid and interface science. PHI Learning, New Delhi

    Google Scholar 

  • Ginger DS, Zhang H, Mirkin CA (2004) The evolution of dip-pen nanolithography. Angew Chem Int Ed 43(1):30–45

    Article  CAS  Google Scholar 

  • Gleick PH (1993) Water and conflict: fresh water resources and international security. Int Secur 18(1):79–112

    Article  Google Scholar 

  • Gomiero T, Paoletti MG, Pimentel D (2008) Energy and environmental issues in organic and conventional agriculture. Crit Rev Plant Sci 27(4):239–254

    Article  Google Scholar 

  • Gosling P, Shepherd M (2005) Long-term changes in soil fertility in organic arable farming systems in England, with particular reference to phosphorus and potassium. Agric Ecosyst Environ 105(1):425–432

    Article  CAS  Google Scholar 

  • Health Research Funding (2015) Pros and cons of conventional farming. http://healthresearchfunding.org/6-pros-and-cons-of-conventional-farming/. Accessed 2 Sep 2016

  • Heiz U, Landman U (2007) Nanocatalysis. Springer-Verlag, Berlin

    Book  Google Scholar 

  • Hobbs PR, Sayre K, Gupta R (2008) The role of conservation agriculture in sustainable agriculture. Philos Trans R Soc Lond Ser B Biol Sci 363:543–555

    Article  Google Scholar 

  • Hochella MF Jr, Lower SK, Maurice PA, Penn RL, Sahai N, Sparks DL, Twining BS (2008) Nanominerals, mineral nanoparticles, and earth systems. Science 319:1631–1635

    Article  CAS  PubMed  Google Scholar 

  • Hoenlein W, Duesberg GS, Graham AP, Kreupl F, Liebau M, Pamler W, Seidel R, Unger E (2006) Nanoelectronics beyond silicon. Microelectron Eng 83(4):619–623

    Article  CAS  Google Scholar 

  • Horwith B (1985) A role for intercropping in modern agriculture. Bioscience 35(5):286–291

    Article  Google Scholar 

  • Huang J, Li Q, Sun D, Lu Y, Su Y, Yang X, Wang H, Wang Y, Shao W, He N, Hong J, Chen C (2007) Biosynthesis of silver and gold nanoparticles by novel sundried Cinnamomum camphora leaf. Nanotechnology 18:105–104

    Google Scholar 

  • IFPRI (2002) Green revolution: curse or blessing? International Food Policy Research Institute, Washington, DC. http://oregonstate.edu/instruct/css/330/three/Green.pdf. Accessed 2 Sep 2016

    Google Scholar 

  • Illuminato IS (2009) Binding particle to patience-nanotechnology in a true context of sustainability. https://www.oecd.org/science/nanosafety/44029701.pdf. Accessed 2 Sep 2016

  • Jackman JA, Cho D-J, Lee J, Chen JM, Besenbacher F, Bonnell DA, Hersam MC, Weiss PS, Joon N (2016) Nanotechnology education for the global world: training the leaders of tomorrow. ACS Nano 10:5595–5599

    Article  CAS  PubMed  Google Scholar 

  • Jackson NB, Chaurand PR, Fulghum JE, Hernandez R, Higgins DA, Hwang R, Kneipp K, Koretsky AP, Larabell CA, Stranick SJ, Webb WW, Weiss PS, Woodbury N, Xie XS, Yeung ES (2006) Visualizing chemistry: the progress and promise of advanced chemical imaging. National Academies Press, Washington, DC

    Google Scholar 

  • Jampílek J, Kráľová K (2015) Application of nanotechnology in agriculture and food industry, its prospects and risks. Ecol Chem Eng S22(3):321–361

    Google Scholar 

  • Jensen PK (2015) Target precision and biological efficacy of two nozzles used for precision weed control. Precis Agric 16(6):705–717

    Article  Google Scholar 

  • Jin R, Cao C, Hao E, Métraux GS, Schatz GC1, Mirkin CA (2003) Controlling anisotropic nanoparticle growth through plasmon excitation. Nature 425:487–490

    Article  CAS  PubMed  Google Scholar 

  • Johnston CT (2010) Probing the nanoscale architecture of clay minerals. Clay Miner 45:245–279

    Article  CAS  Google Scholar 

  • Knorr W, Prentice IC, House JI, Holland EA (2005) Long-term sensitivity of soil carbon turnover to warming. Nature 433:298–302

    Article  CAS  PubMed  Google Scholar 

  • Knowler D, Bradshaw B (2007) Farmers’ adoption of conservation agriculture: a review and synthesis of recent research. Food Policy 32:25–48

    Article  Google Scholar 

  • Kraemer S, Fuierer RR, Gorman CB (2009) Scanning probe lithography using self-assembled monolayers. Chem Rev 103:4367–4418

    Article  CAS  Google Scholar 

  • Lav RK, Sindhuja S, Joe MM, Reza E, Edmund WS (2012) Applications of nanomaterials in agricultural production and crop protection: a review. Crop Prot 35:64–70

    Article  CAS  Google Scholar 

  • Lee KB, Lim JH, Mirkin CA (2003) Protein nanostructures formed via direct-write dip-pen nanolithography. J Am Chem Soc 125:5588–5589

    Article  CAS  PubMed  Google Scholar 

  • Leistritz FL, Hodur NM, Senechal DM, Stowers MD, Calla D, Saffron CM (2007) Biorefineries using agricultural residue feedstock in the great plains. http://ageconsearch.umn.edu/bitstream/7323/2/ae070001.pdf. Accessed 2 Sep 2016

  • Li L, Rafael RG, Gershgoren E, Hwang H, Fourkas JT (2009) Achieving lambda/20 resolution by one-color initiation and deactivation of polymerization. Science 324:910–913

    Article  CAS  PubMed  Google Scholar 

  • Liddle JA, Gallatin GM (2009) Lithography, metrology and nanomanufacturing. Nano Scale 3(7):2679–2688

    Google Scholar 

  • Liebig MA, Doran JW (1999) Impact of organic production practices on soil quality indicators. J Environ Qual 28(5):1601–1609

    Article  CAS  Google Scholar 

  • López-Lorente ÁI, Valcárcel M (2016) The third way in analytical nanoscience and nanotechnology: involvement of nanotools and nanoanalytes in the same analytical process. Trends Anal Chem 75:1–9

    Article  CAS  Google Scholar 

  • Lotter DW, Seidel R, Liebhardt W (2003) The performance of organic and conventional cropping systems in an extreme climate year. Am J Altern Agric 18(2):1–9

    Google Scholar 

  • Lue JT (2007) Physical properties of nanomaterials. In: Nalwa HS (ed) Encyclopedia of nanoscience and nanotechnology. American Scientific Publishers, Stevenson Ranch, pp 1–46

    Google Scholar 

  • Magonov SN (2001) Visualization of polymers at surfaces and interfaces with atomic force microscopy. In: Nalwa HR (ed) Handbook of surfaces and interfaces of materials, 2nd edn. Academic, Cambridge, pp 393–429

    Chapter  Google Scholar 

  • Maier SA, Brongersma ML, Kik PG, Meltzer S, Requicha AAG, Atwater HA (2001) Plasmonics – a route to nanoscale optical devices. Adv Mater 13:1501–1505

    Article  CAS  Google Scholar 

  • Mailly D (2009) Nanofabrication techniques. Eur Phys J Special Topics 172:333–342

    Article  Google Scholar 

  • Mamalis AG, Markopoulos A, Manolakos DE (2005) Micro and nanoprocessing techniques and applications. Nanotechnology Perceptions 1:31–52

    Article  CAS  Google Scholar 

  • Manne S, Cleveland JP, Gaub HE, Stucky GD, Hansma PK (1994) Direct visualization of surfactant hemimicelles by force microscopy of the electric double layer. Langmuir 10(12):4409–4413

    Article  CAS  Google Scholar 

  • Marrian CRK, Tennant DM (2009) Nanofabrication. J Vac Sci Technol A 21:S207–S215

    Article  CAS  Google Scholar 

  • Maurice PA, Hochella MF (2008) Nanoscale particles and processes: a new dimension in soil science. Adv Agron 100:123–153

    Article  CAS  Google Scholar 

  • Nel AE, Mädler L, Velegol D, Xia T, Hoek EMV, Somasundaran P, Klaessig F, Castranova V, Thompson M (2009) Understanding biophysicochemical interactions at the nano–bio interface nature materials. Nat Mater 8(7):543–557

    Article  CAS  PubMed  Google Scholar 

  • NIOSH (2009) Approaches to safe nanotechnology: managing the health and safety concerns associated with engineered nanomaterials. https://www.cdc.gov/niosh/docs/2009-125/pdfs/2009-125.pdf. Accessed 2 Sep 2016

  • Noginov MA, Zhu G, Belgrave AM, Bakker R, Shalaev VM, Narimanov EE, Stout S, Herz E, Suteewong T, Wiesner U (2009) Demonstration of a spaser-based nanolaser. Nature 460(7259):1110–1112

    Article  CAS  PubMed  Google Scholar 

  • Ortiz Escobar ME, Hue NV (2007) Current developments in organic farming. Recent Res Devel Soil Sci 2:29–62

    Google Scholar 

  • Österholm P, Åström M (2004) Quantification of current and future leaching of sulfur and metals from boreal acid sulfate soils, western Finland. Aust J Soil Res 42:547–551

    Article  CAS  Google Scholar 

  • Pacini C, Wossink A, Giesen G, Vazzana C, Huirne R (2003) Evaluation of sustainability of organic, integrated and conventional farming systems: a farm and field-scale analysis. Agric Ecosyst Environ 95:273–288

    Article  Google Scholar 

  • Pandey RR, Saini KK, Dhayal M (2010) Using nano-arrayed structures in Sol-Gel delivered Mn2+ doped TiO2 for high sensitivity urea biosensor. J Biosen Bioelectr 1:1–4

    Article  CAS  Google Scholar 

  • Parra-Lopez C, Calatrava-Requena J, de Haro-Gimenez T (2006) A multi-criteria evaluation of environmental performances of conventional, organic and integrated olive-growing systems in the south spain based on experts knowledge. Ren Agr Food Sys 22(3):189–203

    Article  Google Scholar 

  • Penon O, Marín MJ, Amabilino DB, Russell DA, Pérez-García L (2016) Iron oxide nanoparticles functionalized with novel hydrophobic and hydrophilic porphyrins as potential agents for photodynamic therapy. J Colloid Interface Sci 462. (2016):154–165

    Article  CAS  PubMed  Google Scholar 

  • Pimentel D (2009) Pesticide and pest control. In: Pshin P, Dhawan AK (eds) Integrated pest management: innovation-development process. Springer, Dordrecht, pp 83–87

    Chapter  Google Scholar 

  • Pimentel DS, Raven PH (2000) Bt corn pollen impacts on non-target Lepidoptera: assessment of effects in nature. Proc Natl Acad Sci 97:8198–8199

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Piner RD, Zhu J, Xu F, Hong SH, Mirkin CA (1999) “Dip-Pen” nanolithography. Science 283:661–663

    Article  CAS  PubMed  Google Scholar 

  • Ponti T, Rijk B, Van Ittersum MK (2012) The crop yield gap between organic and conventional agriculture. Agric Syst 108:1–9

    Article  Google Scholar 

  • Postel SL, Daily GC, Ehrlich PR (1996) Human appropriation of renewable fresh water. Science 271:785–788

    Article  CAS  Google Scholar 

  • Prasad R (2014) Synthesis of silver nanoparticles in photosynthetic plants. J Nanopart Article ID 963961. http://dx.doi.org/10.1155/2014/963961

  • Prasad R (2016) Advances and applications through fungal nanobiotechnology. Springer, International Publishing, Cham

    Book  Google Scholar 

  • Prasad R, Kumar V, Prasad KS (2014) Nanotechnology in sustainable agriculture: present concerns and future aspects. Afr J Biotechnol 13(6):705–713

    Article  CAS  Google Scholar 

  • Prasad R, Pandey R, Barman I (2016) Engineering tailored nanoparticles with microbes: quo vadis. WIREs Nanomed Nanobiotechnol 8:316–330. doi:10.1002/wnan.1363

    Article  Google Scholar 

  • Prasad R, Bhattacharyya A, Nguyen QD (2017) Nanotechnology in sustainable agriculture: recent developments, challenges, and perspectives. Front Microbiol 8:1014. doi:10.3389/fmicb.2017.01014

  • Presley DR, Ransom MD, Kluitenberg GJ, Finnell PR (2004) Effect of thirty years of irrigation on the genesis and morphology of two semi-arid soils in Kansas. Soil Sci Soc Am J 68:1916–1926

    Article  CAS  Google Scholar 

  • Pretty J (1997) The sustainable intensification of agriculture. Nat Resour Forum 21:247–256

    Article  Google Scholar 

  • Pretty J, Bharucha ZP (2014) Sustainable intensification of agriculture systems. Ann Bot 114(8):1571–1596

    Article  PubMed  PubMed Central  Google Scholar 

  • Rafati A, Gill P (2016) Ultrastructural characterizations of DNA nanotubes using scanning tunneling and atomic force microscopes. J Microscop Ultrastruct 4:1–5

    Article  Google Scholar 

  • Rai M, Ingle A (2012) Role of nanotechnology in agriculture with special reference to management of insect pests. Appl Microbiol Biotechnol 94(2):287–293

    Article  CAS  PubMed  Google Scholar 

  • Rai V, Acharya S, Dey N (2012) Implications of nanobiosensors in agriculture. J Biomater Nanobiotechnol 3:315–324

    Article  CAS  Google Scholar 

  • Rameshaiah GN, Pallavi J, Shabnam S (2015) Nano fertilizers and nano sensors – an attempt for developing smart agriculture. Int J Eng Res Gen Sci 3(1):313–320

    Google Scholar 

  • Revenko I (2000) Probing the life sciences with atomic force microscopy. In: Proceedings of 1st symposium on micro and nanostructures of biological systems. Martin Luther University Halle-Wittenberg at Halle, pp 1–51

    Google Scholar 

  • Roco MC, Mirkin CA, Hersam MC (2011) Nanotechnology research directions for societal needs in 2020: retrospective and outlook. Springer, Berlin

    Book  Google Scholar 

  • Rodell M, Velicogna I, Famiglietti JS (2009) Satellite-based estimates of groundwater depletion in India. Nature 460:999–1002

    Article  CAS  PubMed  Google Scholar 

  • Rogers JA, Lee HH (2008) Unconventional nanopatterning techniques and applications. Wiley, Weinheim

    Book  Google Scholar 

  • Rolf M (1996) The role of agriculture in the economy and society. http://www.fao.org/docrep/W7440E/w7440e03.htm. Accessed 2 Sep 2016

  • Sakakibara K, Hill JP, Ariga K (2011) Thin-film-based nanoarchitectures for soft matter: controlled assemblies into two-dimensional worlds. Small 7(10):1288–1308

    Article  CAS  PubMed  Google Scholar 

  • Schäffer E, Thurn-Albrecht T, Russell TP, Sakakibara K, Hill JP, Ariga K (2000) Electrically induced structure formation and pattern transfer. Let Nat 403:874–877

    Article  Google Scholar 

  • Schmid GM, Miller M, Brooks C, Khusnatdinov N, La Brake D, Resnick DJ, Sreenivasan SV, Gauzner G, Lee K, Kuo D, Weller D, Yang XM (2009) Step and flash imprint lithography for manufacturing patterned media. J Vac Sci Technol B 27:573

    Article  CAS  Google Scholar 

  • Sekhon BS (2014) Nanotechnology in agri-food production: an overview. Nanotechnol Sci Appl 7:31–53

    Article  PubMed  PubMed Central  Google Scholar 

  • Sharon M, Choudhary KA, Kumar R (2010) Nanotechnology in agricultural diseases and food safety. J Phytology 2(4):83–92

    Google Scholar 

  • Smith JC, Lee KB, Wang Q, Finn MG, Johnson JE, Mrksich M, Mirkin CA (2003) Nanopatterning the chemospecific immobilization of cowpea mosaic virus capsid. Nano Lett 3(7):883–886

    Article  CAS  Google Scholar 

  • Strausser YE, Schroth M, Sweeney JJ (1997) Characterization of the low-pressure chemical vapor deposition grown rugged polysilicon surface using atomic force microscopy. J Vac Sci Technol A 15:1007. http://dx.doi.org/10.1116/1.580507

    Article  CAS  Google Scholar 

  • Swezey SL, Goldman P, Bryer J, Nieto D (2007) Six-year comparison between organic, IPM and conventional cotton production systems in the Northern San Joaquin Valley, California. Ren Agr Food Sys 22(1):30–40

    Article  Google Scholar 

  • Takami T, Ye T, Pathem BK, Arnold DP, Sugiura KI, Bian Y, Jiang J, Weiss PS (2010) Manipulating double-decker molecules at the liquid solid interface. J Am Chem Soc 132:16460–16466

    Article  CAS  PubMed  Google Scholar 

  • Tillman D, Cassman KG, Matson PA, Naylor R, Polasky S (2002) Agricultural sustainability and intensive production practices. Nature 418:671–677

    Article  CAS  Google Scholar 

  • Valcárcel M, López-Lorente ÁI (2016) Recent advances and trends in analytical nanoscience and nanotechnology. Trends Anal Chem. doi:10.1016/j.trac.2016.05.010

    Google Scholar 

  • Van Alphen BJ, Stoorvogel JJ (2000) A methodology for precision nitrogen fertilization in high-input farming systems. Precis Agric 2(4):319–322

    Article  Google Scholar 

  • Van Landingham MR, Mc Knight SH, Palmese GR, Elings JR, Huang X, Bogetti TA, Eduljee RF, Gillespie JW (1997) Nanoscale indentation of polymer systems using the atomic force microscopy. J Adhes 64(1–4):31–59

    Article  Google Scholar 

  • Verena S, Navin R, Jonathan AF (2012) Comparing the yields of organic and conventional agriculture. Nature 485:229–230

    Article  CAS  Google Scholar 

  • Waychunas GA, Kim CS, Banfield JA (2005) Nanoparticulate iron oxide minerals in soils and sediments: unique properties and contaminant scavenging mechanisms. J Nanopart Res 7:409–433

    Article  CAS  Google Scholar 

  • Weiss PS (2007) A conversation with Dr. Heinrich Rohrer: STM co-inventor and one of the founding fathers of nanoscience. ACS Nano 1(1):3–5

    Article  CAS  Google Scholar 

  • Wells AT, Chan KY, Cornish PS (2000) Comparison of conventional and alternative vegetable farming systems on the properties of a yellow earth in New South Wales. Agric Ecosyst Environ 80(1–2):47–60

    Article  Google Scholar 

  • Yaman M, Khudiyev T, Ozgur E, Kanik M, Aktas O, Ozgur EO, Deniz H, Korkut E, Bayindir M (2011) Arrays of indefinitely long uniform nanowires and nanotubes. Nat Mater 10:494–591

    Article  CAS  PubMed  Google Scholar 

  • Yogesh B, Gangadhara K, Chidanand R, Gaurav C, Padmabhushan U (2015) Nanotechnology in agriculture: a review. J Pure App Microbiol 9(1):1–11

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Devarajan Thangadurai .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Nature Singapore Pte Ltd.

About this chapter

Cite this chapter

Sangeetha, J. et al. (2017). Agricultural Nanotechnology: Concepts, Benefits, and Risks. In: Prasad, R., Kumar, M., Kumar, V. (eds) Nanotechnology. Springer, Singapore. https://doi.org/10.1007/978-981-10-4573-8_1

Download citation

Publish with us

Policies and ethics