Advertisement

Agricultural Nanotechnology: Concepts, Benefits, and Risks

  • Jeyabalan Sangeetha
  • Devarajan ThangaduraiEmail author
  • Ravichandra Hospet
  • Prathima Purushotham
  • Gururaja Karekalammanavar
  • Abhishek Channayya Mundaragi
  • Muniswamy David
  • Megha Ramachandra Shinge
  • Shivasharana Chandrabanda Thimmappa
  • Ram Prasad
  • Etigemane Ramappa Harish
Chapter

Abstract

Nanotechnology is one of the utmost significant tools in modern agriculture is predicted to become a driving cost-effective force in the near future. Nanotechnology in agriculture has gained drive in the last decade with an abundance of public funding, but the step of development is uncertain, even though many disciplines come under the agriculture system. This could be attributed to a unique nature of farm production whereby energy and matter are exchanged freely, the scale of demand of input materials constantly being enormous in contrast with industrial nanoproducts. The nanotechnologic intervention in farming has prospects for improving the efficiency of nutrient use through nanoformulations of fertilizers, surveillance and control of pests and diseases, improvement of new-generation pesticides, biosensors (which are exclusively used in remote sensing devices for precision farming), clay-based nanoresources for precision water management, and reclamation of salt-affected lands.

Keywords

Conventional farming Nanotools Nanoprocesses Nanomaterials Nanofertilizers Nanopesticides 

References

  1. Acharya S, Hill JP, Ariga K (2008) Soft Langmuir–Blodgett technique for hard nanomaterials. Adv Mater 21(29):2959–2981CrossRefGoogle Scholar
  2. Aggarwal PK, Joshi PK, Ingram JSI, Gupta RK (2004) Adapting food systems of the Indo-Gangetic plains to global environmental change: key information needs to improve policy formulation. Environ Sci Pol 7(6):487–498CrossRefGoogle Scholar
  3. Alagarasi A (2011) Introduction to nanomaterials. https://nccr.iitm.ac.in/2011.pdf. Accessed 3 Sep 2016
  4. Alessandrini A, Facci P (2005) AFM: a versatile tool in biophysics. Meas Sci Technol 16:R65–R92CrossRefGoogle Scholar
  5. Alivisatos AP, Andrews AM, Boyden ES, Chun M, Church GM, Deisseroth K, Donoghue JP, Fraser SE, Lippincott-Schwartz OJ, Looger LL, Masmanidis S, McEuen PL, Nurmikko AV, Park H, Peterka DS, Reid C, Roukes ML, Scherer A, Schnitzer M, Sejnowski TJ, Shepard KL, Tsao D, Turrigiano G, Weiss PS, Xu C, Yuste R, Zhuang X (2013) Nanotools for neuroscience and brain activity mapping. ACS Nano Focus 7(3):1850–1866CrossRefGoogle Scholar
  6. Ando Y, Miyake K, Mizuno A, Korenaga A, Nakano M, Mano H (2010) Fabrication of nano stripe surface structure by multilayer film deposition combined with micropatterning. Nanotechnology 21(9):095304. doi: 10.1088/0957-4484/21/9/095304 PubMedCrossRefGoogle Scholar
  7. Anker JN (2008) Biosensing with plasmonic nanosensors. Nat Mater 7:442–453PubMedCrossRefGoogle Scholar
  8. Ariga K, Hill JP, Ji Q (2007) Layer-by-layer assembly as a versatile bottom-up nanofabrication technique for exploratory research and realistic application. Phys Chem Chem Phys 9(19):2319–2340PubMedCrossRefGoogle Scholar
  9. Ariga K, Hill JP, Lee MV, Vinu A, Charvet R, Acharya S (2008) Challenges and breakthroughs in recent research on self-assembly. Sci Technol Adv Mater 9:014109PubMedPubMedCentralCrossRefGoogle Scholar
  10. Ariga K, Lee MV, Mori T, Yu X-Y, Hill JP (2010) Two-dimensional nanoarchitectonics based on self-assembly. Adv Colloid Interf Sci 154:20–29CrossRefGoogle Scholar
  11. Ariga K, Li M, Richards GJ, Hill JP (2011) Nanoarchitectonics: a conceptual paradigm for design and synthesis of dimension-controlled functional nanomaterials. J Nanosci Nanotechnol 11(1):1–13PubMedCrossRefGoogle Scholar
  12. Arvizo RR, Bhattacharyya S, Kudgus RA, Giri K, Bhattacharya R, Mukherjee P (2012) Intrinsic therapeutic applications of noble metal nanoparticles: past, present and future. Chem Soc Rev 41:2943–2970PubMedPubMedCentralCrossRefGoogle Scholar
  13. Atwater HA, Polman A (2010) Plasmonics for improved photovoltaic devices. Nat Mater 9:205–213PubMedCrossRefGoogle Scholar
  14. Aziz N, Faraz M, Pandey R, Sakir M, Fatma T, Varma A, Barman I, Prasad R (2015) Facile algae-derived route to biogenic silver nanoparticles: synthesis, antibacterial and photocatalytic properties. Langmuir 31:11605–11612PubMedCrossRefGoogle Scholar
  15. Aziz N, Pandey R, Barman I, Prasad R (2016) Leveraging the attributes of Mucor hiemalis-derived silver nanoparticles for a synergistic broad-spectrum antimicrobial platform. Front Microbiol 7:1984. doi: 10.3389/fmicb.2016.01984
  16. Baruah S, Dutta J (2009) Nanotechnology applications in population sensing and degradation in agriculture: a review. Envioron Chem Lett 7:161–204CrossRefGoogle Scholar
  17. Bhattacharyya A, Duraisamy P, Govindarajan M, Buhroo AA, Prasad R (2016) Nano-biofungicides: emerging trend in insect pest control. In: Prasad R (ed) Advances and applications through fungal nanobiotechnology. Springer International Publishing, Cham, pp 307–319CrossRefGoogle Scholar
  18. Binnig G, Rohrer H (1982) Scanning tunneling microscopy. Helv Phys Acta 55:726–735Google Scholar
  19. Binnig G, Quate CF, Gerber CH (1986) Atomic force microscope. Phys Rev Lett 56:930–933PubMedCrossRefGoogle Scholar
  20. Biswas A, Eilers H, Hidden F, Aktas OC, Kiran CVS (2006) Large broadband visible to infrared plasmonic absorption from Ag nanoparticles with a fractal structure embedded in a Teflon AF® matrix. Appl Phys Lett 88:013103. http://dx.doi.org/10.1063/1.2161401 CrossRefGoogle Scholar
  21. Biswas A, Bayer IS, Biris AS, Wang T, Dervishi E, Faupel F (2012) Advances in top–down and bottom-up surface nanofabrication: techniques, applications and future prospects. Adv Colloid Interf Sci 170:2–27CrossRefGoogle Scholar
  22. Bouwmeester H, Dekkers S, Noordam M, Hagens W, Bulder A, de Heer C, ten Voorde S, Wijnhoven S, Sips A (2009) Health impact of nanotechnologies in food production. RIKILT Institute of Food Safety/RIVM National Institute for Public Health and the Environment, Wageningen. http://www.rivm.nl/bibliotheek/rapporten/000200704.pdf. Accessed 2 Sep 2016Google Scholar
  23. Cayuela A, Benítez-Martínez S, Soriano ML (2016) Carbon nanotools as sorbents and sensors of nanosized objects: the third way of analytical nanoscience and nanotechnology. Trends Anal Chem 84:172–180. http://dx.doi.org/10.1016/j.trac.2016.02.016 CrossRefGoogle Scholar
  24. Chaudhari Q, Castle L (2011) Food applications of nanotechnologies: an overview of opportunities and challenges for developing countries. Trends Food Sci Technol 22:595–603CrossRefGoogle Scholar
  25. Chaudhary Q, Castle L, Watkins R (2010) Nanotechnologies in food. RSC Publishing, LondonCrossRefGoogle Scholar
  26. Childers DL, Corman J, Edwards M, Elser JJ (2011) Sustainability challenges of phosphorus and food: solutions from closing the human phosphorus cycle. Bioscience 61(2):117–124CrossRefGoogle Scholar
  27. Claridge SA, Schwartz JJ, Weiss PS (2011) Electrons, photons, and force: quantitative single-molecule measurements from physics to biology. ACS Nano 5:693–729PubMedPubMedCentralCrossRefGoogle Scholar
  28. Claridge SA, Liao WS, Thomas JC, Zhao Y, Cao H, Cheunkar S, Serino AC, Andrews AM, Weiss PS (2013) From the bottom up: dimensional control and characterization in molecular monolayers. Chem Soc Rev 42:2725–2745PubMedPubMedCentralCrossRefGoogle Scholar
  29. Cursino L, Li Y, Zaini PA, De La Fuente L, Hoch HC, Burr TJ (2009) Twitching motility and biofilm formation are associated with tonB1 in Xylella fastidiosa. FEMS Microb Lett 299(2):193–199CrossRefGoogle Scholar
  30. De Rosa MC, Monreal C, Schnitzer M, Walsh R, Sultan Y (2010) Nanotechnology in fertilizers. Nat Nanotechnol 5:91. doi: 10.1038/nnano.2010.2 CrossRefGoogle Scholar
  31. Dhaliwal GS, Jindal V, Dhawan AK (2010) Insect pest problems and crop losses: changing trends. Indian J Ecol 37(1):1–7Google Scholar
  32. Dinarelli S, Girasole M, Kasas S, Longo G (2016) Nanotools and molecular techniques to rapidly identify and fight bacterial infections. Journal of Microbiological Methods. doi: 10.1016/j.mimet.2016.01.005 PubMedGoogle Scholar
  33. Ditta A (2012) How helpful is nanotechnology in agriculture? Adv Nat Sci Nanosci Nanotechnol 3(3):033002. doi: 10.1088/2043-6262/3/3/033002 CrossRefGoogle Scholar
  34. Ducker WA, Senden TJ, Pashley RM (1991) Direct measurement of colloidal forces using an atomic force microscope. Nature 353(6341):239–241CrossRefGoogle Scholar
  35. Eigler D, Schweizer EK (1990) Positioning single atoms with a scanning tunneling microscope. Nature 344:524–526CrossRefGoogle Scholar
  36. Ericksen PJ (2009) Conceptualizing food systems for global environmental change research. Glob Environ Chang 18(1):234–245CrossRefGoogle Scholar
  37. Fontes EMG, Pires CSS, Sujii ER, Panizzi AR (2002) The environmental effects of genetically modified crops resistant to insects neotrop. Entomologiste 31(4):497–513Google Scholar
  38. Garg A, Balodi R (2014) Recent trends in agriculture: vertical farming and organic farming. Adv Plants Agric Res 1(4):00023. doi: 10.15406/apar.2014.01.00023 Google Scholar
  39. Gates BD, Xu Q, Stewart M, Ryan D, Willson CG, Whitesides GM (2005) New approaches to nanofabrication: molding, printing, and other techniques. Chem Rev 105:1171–1196PubMedCrossRefGoogle Scholar
  40. Ghosh P (2009) Colloid and interface science. PHI Learning, New DelhiGoogle Scholar
  41. Ginger DS, Zhang H, Mirkin CA (2004) The evolution of dip-pen nanolithography. Angew Chem Int Ed 43(1):30–45CrossRefGoogle Scholar
  42. Gleick PH (1993) Water and conflict: fresh water resources and international security. Int Secur 18(1):79–112CrossRefGoogle Scholar
  43. Gomiero T, Paoletti MG, Pimentel D (2008) Energy and environmental issues in organic and conventional agriculture. Crit Rev Plant Sci 27(4):239–254CrossRefGoogle Scholar
  44. Gosling P, Shepherd M (2005) Long-term changes in soil fertility in organic arable farming systems in England, with particular reference to phosphorus and potassium. Agric Ecosyst Environ 105(1):425–432CrossRefGoogle Scholar
  45. Health Research Funding (2015) Pros and cons of conventional farming. http://healthresearchfunding.org/6-pros-and-cons-of-conventional-farming/. Accessed 2 Sep 2016
  46. Heiz U, Landman U (2007) Nanocatalysis. Springer-Verlag, BerlinCrossRefGoogle Scholar
  47. Hobbs PR, Sayre K, Gupta R (2008) The role of conservation agriculture in sustainable agriculture. Philos Trans R Soc Lond Ser B Biol Sci 363:543–555CrossRefGoogle Scholar
  48. Hochella MF Jr, Lower SK, Maurice PA, Penn RL, Sahai N, Sparks DL, Twining BS (2008) Nanominerals, mineral nanoparticles, and earth systems. Science 319:1631–1635PubMedCrossRefGoogle Scholar
  49. Hoenlein W, Duesberg GS, Graham AP, Kreupl F, Liebau M, Pamler W, Seidel R, Unger E (2006) Nanoelectronics beyond silicon. Microelectron Eng 83(4):619–623CrossRefGoogle Scholar
  50. Horwith B (1985) A role for intercropping in modern agriculture. Bioscience 35(5):286–291CrossRefGoogle Scholar
  51. Huang J, Li Q, Sun D, Lu Y, Su Y, Yang X, Wang H, Wang Y, Shao W, He N, Hong J, Chen C (2007) Biosynthesis of silver and gold nanoparticles by novel sundried Cinnamomum camphora leaf. Nanotechnology 18:105–104Google Scholar
  52. IFPRI (2002) Green revolution: curse or blessing? International Food Policy Research Institute, Washington, DC. http://oregonstate.edu/instruct/css/330/three/Green.pdf. Accessed 2 Sep 2016Google Scholar
  53. Illuminato IS (2009) Binding particle to patience-nanotechnology in a true context of sustainability. https://www.oecd.org/science/nanosafety/44029701.pdf. Accessed 2 Sep 2016
  54. Jackman JA, Cho D-J, Lee J, Chen JM, Besenbacher F, Bonnell DA, Hersam MC, Weiss PS, Joon N (2016) Nanotechnology education for the global world: training the leaders of tomorrow. ACS Nano 10:5595–5599PubMedCrossRefGoogle Scholar
  55. Jackson NB, Chaurand PR, Fulghum JE, Hernandez R, Higgins DA, Hwang R, Kneipp K, Koretsky AP, Larabell CA, Stranick SJ, Webb WW, Weiss PS, Woodbury N, Xie XS, Yeung ES (2006) Visualizing chemistry: the progress and promise of advanced chemical imaging. National Academies Press, Washington, DCGoogle Scholar
  56. Jampílek J, Kráľová K (2015) Application of nanotechnology in agriculture and food industry, its prospects and risks. Ecol Chem Eng S22(3):321–361Google Scholar
  57. Jensen PK (2015) Target precision and biological efficacy of two nozzles used for precision weed control. Precis Agric 16(6):705–717CrossRefGoogle Scholar
  58. Jin R, Cao C, Hao E, Métraux GS, Schatz GC1, Mirkin CA (2003) Controlling anisotropic nanoparticle growth through plasmon excitation. Nature 425:487–490PubMedCrossRefGoogle Scholar
  59. Johnston CT (2010) Probing the nanoscale architecture of clay minerals. Clay Miner 45:245–279CrossRefGoogle Scholar
  60. Knorr W, Prentice IC, House JI, Holland EA (2005) Long-term sensitivity of soil carbon turnover to warming. Nature 433:298–302PubMedCrossRefGoogle Scholar
  61. Knowler D, Bradshaw B (2007) Farmers’ adoption of conservation agriculture: a review and synthesis of recent research. Food Policy 32:25–48CrossRefGoogle Scholar
  62. Kraemer S, Fuierer RR, Gorman CB (2009) Scanning probe lithography using self-assembled monolayers. Chem Rev 103:4367–4418CrossRefGoogle Scholar
  63. Lav RK, Sindhuja S, Joe MM, Reza E, Edmund WS (2012) Applications of nanomaterials in agricultural production and crop protection: a review. Crop Prot 35:64–70CrossRefGoogle Scholar
  64. Lee KB, Lim JH, Mirkin CA (2003) Protein nanostructures formed via direct-write dip-pen nanolithography. J Am Chem Soc 125:5588–5589PubMedCrossRefGoogle Scholar
  65. Leistritz FL, Hodur NM, Senechal DM, Stowers MD, Calla D, Saffron CM (2007) Biorefineries using agricultural residue feedstock in the great plains. http://ageconsearch.umn.edu/bitstream/7323/2/ae070001.pdf. Accessed 2 Sep 2016
  66. Li L, Rafael RG, Gershgoren E, Hwang H, Fourkas JT (2009) Achieving lambda/20 resolution by one-color initiation and deactivation of polymerization. Science 324:910–913PubMedCrossRefGoogle Scholar
  67. Liddle JA, Gallatin GM (2009) Lithography, metrology and nanomanufacturing. Nano Scale 3(7):2679–2688Google Scholar
  68. Liebig MA, Doran JW (1999) Impact of organic production practices on soil quality indicators. J Environ Qual 28(5):1601–1609CrossRefGoogle Scholar
  69. López-Lorente ÁI, Valcárcel M (2016) The third way in analytical nanoscience and nanotechnology: involvement of nanotools and nanoanalytes in the same analytical process. Trends Anal Chem 75:1–9CrossRefGoogle Scholar
  70. Lotter DW, Seidel R, Liebhardt W (2003) The performance of organic and conventional cropping systems in an extreme climate year. Am J Altern Agric 18(2):1–9Google Scholar
  71. Lue JT (2007) Physical properties of nanomaterials. In: Nalwa HS (ed) Encyclopedia of nanoscience and nanotechnology. American Scientific Publishers, Stevenson Ranch, pp 1–46Google Scholar
  72. Magonov SN (2001) Visualization of polymers at surfaces and interfaces with atomic force microscopy. In: Nalwa HR (ed) Handbook of surfaces and interfaces of materials, 2nd edn. Academic, Cambridge, pp 393–429CrossRefGoogle Scholar
  73. Maier SA, Brongersma ML, Kik PG, Meltzer S, Requicha AAG, Atwater HA (2001) Plasmonics – a route to nanoscale optical devices. Adv Mater 13:1501–1505CrossRefGoogle Scholar
  74. Mailly D (2009) Nanofabrication techniques. Eur Phys J Special Topics 172:333–342CrossRefGoogle Scholar
  75. Mamalis AG, Markopoulos A, Manolakos DE (2005) Micro and nanoprocessing techniques and applications. Nanotechnology Perceptions 1:31–52CrossRefGoogle Scholar
  76. Manne S, Cleveland JP, Gaub HE, Stucky GD, Hansma PK (1994) Direct visualization of surfactant hemimicelles by force microscopy of the electric double layer. Langmuir 10(12):4409–4413CrossRefGoogle Scholar
  77. Marrian CRK, Tennant DM (2009) Nanofabrication. J Vac Sci Technol A 21:S207–S215CrossRefGoogle Scholar
  78. Maurice PA, Hochella MF (2008) Nanoscale particles and processes: a new dimension in soil science. Adv Agron 100:123–153CrossRefGoogle Scholar
  79. Nel AE, Mädler L, Velegol D, Xia T, Hoek EMV, Somasundaran P, Klaessig F, Castranova V, Thompson M (2009) Understanding biophysicochemical interactions at the nano–bio interface nature materials. Nat Mater 8(7):543–557PubMedCrossRefGoogle Scholar
  80. NIOSH (2009) Approaches to safe nanotechnology: managing the health and safety concerns associated with engineered nanomaterials. https://www.cdc.gov/niosh/docs/2009-125/pdfs/2009-125.pdf. Accessed 2 Sep 2016
  81. Noginov MA, Zhu G, Belgrave AM, Bakker R, Shalaev VM, Narimanov EE, Stout S, Herz E, Suteewong T, Wiesner U (2009) Demonstration of a spaser-based nanolaser. Nature 460(7259):1110–1112PubMedCrossRefGoogle Scholar
  82. Ortiz Escobar ME, Hue NV (2007) Current developments in organic farming. Recent Res Devel Soil Sci 2:29–62Google Scholar
  83. Österholm P, Åström M (2004) Quantification of current and future leaching of sulfur and metals from boreal acid sulfate soils, western Finland. Aust J Soil Res 42:547–551CrossRefGoogle Scholar
  84. Pacini C, Wossink A, Giesen G, Vazzana C, Huirne R (2003) Evaluation of sustainability of organic, integrated and conventional farming systems: a farm and field-scale analysis. Agric Ecosyst Environ 95:273–288CrossRefGoogle Scholar
  85. Pandey RR, Saini KK, Dhayal M (2010) Using nano-arrayed structures in Sol-Gel delivered Mn2+ doped TiO2 for high sensitivity urea biosensor. J Biosen Bioelectr 1:1–4CrossRefGoogle Scholar
  86. Parra-Lopez C, Calatrava-Requena J, de Haro-Gimenez T (2006) A multi-criteria evaluation of environmental performances of conventional, organic and integrated olive-growing systems in the south spain based on experts knowledge. Ren Agr Food Sys 22(3):189–203CrossRefGoogle Scholar
  87. Penon O, Marín MJ, Amabilino DB, Russell DA, Pérez-García L (2016) Iron oxide nanoparticles functionalized with novel hydrophobic and hydrophilic porphyrins as potential agents for photodynamic therapy. J Colloid Interface Sci 462. (2016):154–165PubMedCrossRefGoogle Scholar
  88. Pimentel D (2009) Pesticide and pest control. In: Pshin P, Dhawan AK (eds) Integrated pest management: innovation-development process. Springer, Dordrecht, pp 83–87CrossRefGoogle Scholar
  89. Pimentel DS, Raven PH (2000) Bt corn pollen impacts on non-target Lepidoptera: assessment of effects in nature. Proc Natl Acad Sci 97:8198–8199PubMedPubMedCentralCrossRefGoogle Scholar
  90. Piner RD, Zhu J, Xu F, Hong SH, Mirkin CA (1999) “Dip-Pen” nanolithography. Science 283:661–663PubMedCrossRefGoogle Scholar
  91. Ponti T, Rijk B, Van Ittersum MK (2012) The crop yield gap between organic and conventional agriculture. Agric Syst 108:1–9CrossRefGoogle Scholar
  92. Postel SL, Daily GC, Ehrlich PR (1996) Human appropriation of renewable fresh water. Science 271:785–788CrossRefGoogle Scholar
  93. Prasad R (2014) Synthesis of silver nanoparticles in photosynthetic plants. J Nanopart Article ID 963961. http://dx.doi.org/10.1155/2014/963961
  94. Prasad R (2016) Advances and applications through fungal nanobiotechnology. Springer, International Publishing, ChamCrossRefGoogle Scholar
  95. Prasad R, Kumar V, Prasad KS (2014) Nanotechnology in sustainable agriculture: present concerns and future aspects. Afr J Biotechnol 13(6):705–713CrossRefGoogle Scholar
  96. Prasad R, Pandey R, Barman I (2016) Engineering tailored nanoparticles with microbes: quo vadis. WIREs Nanomed Nanobiotechnol 8:316–330. doi: 10.1002/wnan.1363 CrossRefGoogle Scholar
  97. Prasad R, Bhattacharyya A, Nguyen QD (2017) Nanotechnology in sustainable agriculture: recent developments, challenges, and perspectives. Front Microbiol 8:1014. doi: 10.3389/fmicb.2017.01014
  98. Presley DR, Ransom MD, Kluitenberg GJ, Finnell PR (2004) Effect of thirty years of irrigation on the genesis and morphology of two semi-arid soils in Kansas. Soil Sci Soc Am J 68:1916–1926CrossRefGoogle Scholar
  99. Pretty J (1997) The sustainable intensification of agriculture. Nat Resour Forum 21:247–256CrossRefGoogle Scholar
  100. Pretty J, Bharucha ZP (2014) Sustainable intensification of agriculture systems. Ann Bot 114(8):1571–1596PubMedPubMedCentralCrossRefGoogle Scholar
  101. Rafati A, Gill P (2016) Ultrastructural characterizations of DNA nanotubes using scanning tunneling and atomic force microscopes. J Microscop Ultrastruct 4:1–5CrossRefGoogle Scholar
  102. Rai M, Ingle A (2012) Role of nanotechnology in agriculture with special reference to management of insect pests. Appl Microbiol Biotechnol 94(2):287–293PubMedCrossRefGoogle Scholar
  103. Rai V, Acharya S, Dey N (2012) Implications of nanobiosensors in agriculture. J Biomater Nanobiotechnol 3:315–324CrossRefGoogle Scholar
  104. Rameshaiah GN, Pallavi J, Shabnam S (2015) Nano fertilizers and nano sensors – an attempt for developing smart agriculture. Int J Eng Res Gen Sci 3(1):313–320Google Scholar
  105. Revenko I (2000) Probing the life sciences with atomic force microscopy. In: Proceedings of 1st symposium on micro and nanostructures of biological systems. Martin Luther University Halle-Wittenberg at Halle, pp 1–51Google Scholar
  106. Roco MC, Mirkin CA, Hersam MC (2011) Nanotechnology research directions for societal needs in 2020: retrospective and outlook. Springer, BerlinCrossRefGoogle Scholar
  107. Rodell M, Velicogna I, Famiglietti JS (2009) Satellite-based estimates of groundwater depletion in India. Nature 460:999–1002PubMedCrossRefGoogle Scholar
  108. Rogers JA, Lee HH (2008) Unconventional nanopatterning techniques and applications. Wiley, WeinheimCrossRefGoogle Scholar
  109. Rolf M (1996) The role of agriculture in the economy and society. http://www.fao.org/docrep/W7440E/w7440e03.htm. Accessed 2 Sep 2016
  110. Sakakibara K, Hill JP, Ariga K (2011) Thin-film-based nanoarchitectures for soft matter: controlled assemblies into two-dimensional worlds. Small 7(10):1288–1308PubMedCrossRefGoogle Scholar
  111. Schäffer E, Thurn-Albrecht T, Russell TP, Sakakibara K, Hill JP, Ariga K (2000) Electrically induced structure formation and pattern transfer. Let Nat 403:874–877CrossRefGoogle Scholar
  112. Schmid GM, Miller M, Brooks C, Khusnatdinov N, La Brake D, Resnick DJ, Sreenivasan SV, Gauzner G, Lee K, Kuo D, Weller D, Yang XM (2009) Step and flash imprint lithography for manufacturing patterned media. J Vac Sci Technol B 27:573CrossRefGoogle Scholar
  113. Sekhon BS (2014) Nanotechnology in agri-food production: an overview. Nanotechnol Sci Appl 7:31–53PubMedPubMedCentralCrossRefGoogle Scholar
  114. Sharon M, Choudhary KA, Kumar R (2010) Nanotechnology in agricultural diseases and food safety. J Phytology 2(4):83–92Google Scholar
  115. Smith JC, Lee KB, Wang Q, Finn MG, Johnson JE, Mrksich M, Mirkin CA (2003) Nanopatterning the chemospecific immobilization of cowpea mosaic virus capsid. Nano Lett 3(7):883–886CrossRefGoogle Scholar
  116. Strausser YE, Schroth M, Sweeney JJ (1997) Characterization of the low-pressure chemical vapor deposition grown rugged polysilicon surface using atomic force microscopy. J Vac Sci Technol A 15:1007. http://dx.doi.org/10.1116/1.580507 CrossRefGoogle Scholar
  117. Swezey SL, Goldman P, Bryer J, Nieto D (2007) Six-year comparison between organic, IPM and conventional cotton production systems in the Northern San Joaquin Valley, California. Ren Agr Food Sys 22(1):30–40CrossRefGoogle Scholar
  118. Takami T, Ye T, Pathem BK, Arnold DP, Sugiura KI, Bian Y, Jiang J, Weiss PS (2010) Manipulating double-decker molecules at the liquid solid interface. J Am Chem Soc 132:16460–16466PubMedCrossRefGoogle Scholar
  119. Tillman D, Cassman KG, Matson PA, Naylor R, Polasky S (2002) Agricultural sustainability and intensive production practices. Nature 418:671–677CrossRefGoogle Scholar
  120. Valcárcel M, López-Lorente ÁI (2016) Recent advances and trends in analytical nanoscience and nanotechnology. Trends Anal Chem. doi: 10.1016/j.trac.2016.05.010 Google Scholar
  121. Van Alphen BJ, Stoorvogel JJ (2000) A methodology for precision nitrogen fertilization in high-input farming systems. Precis Agric 2(4):319–322CrossRefGoogle Scholar
  122. Van Landingham MR, Mc Knight SH, Palmese GR, Elings JR, Huang X, Bogetti TA, Eduljee RF, Gillespie JW (1997) Nanoscale indentation of polymer systems using the atomic force microscopy. J Adhes 64(1–4):31–59CrossRefGoogle Scholar
  123. Verena S, Navin R, Jonathan AF (2012) Comparing the yields of organic and conventional agriculture. Nature 485:229–230CrossRefGoogle Scholar
  124. Waychunas GA, Kim CS, Banfield JA (2005) Nanoparticulate iron oxide minerals in soils and sediments: unique properties and contaminant scavenging mechanisms. J Nanopart Res 7:409–433CrossRefGoogle Scholar
  125. Weiss PS (2007) A conversation with Dr. Heinrich Rohrer: STM co-inventor and one of the founding fathers of nanoscience. ACS Nano 1(1):3–5CrossRefGoogle Scholar
  126. Wells AT, Chan KY, Cornish PS (2000) Comparison of conventional and alternative vegetable farming systems on the properties of a yellow earth in New South Wales. Agric Ecosyst Environ 80(1–2):47–60CrossRefGoogle Scholar
  127. Yaman M, Khudiyev T, Ozgur E, Kanik M, Aktas O, Ozgur EO, Deniz H, Korkut E, Bayindir M (2011) Arrays of indefinitely long uniform nanowires and nanotubes. Nat Mater 10:494–591PubMedCrossRefGoogle Scholar
  128. Yogesh B, Gangadhara K, Chidanand R, Gaurav C, Padmabhushan U (2015) Nanotechnology in agriculture: a review. J Pure App Microbiol 9(1):1–11Google Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2017

Authors and Affiliations

  • Jeyabalan Sangeetha
    • 1
  • Devarajan Thangadurai
    • 2
    Email author
  • Ravichandra Hospet
    • 2
  • Prathima Purushotham
    • 2
  • Gururaja Karekalammanavar
    • 3
  • Abhishek Channayya Mundaragi
    • 2
  • Muniswamy David
    • 3
  • Megha Ramachandra Shinge
    • 4
  • Shivasharana Chandrabanda Thimmappa
    • 4
  • Ram Prasad
    • 5
  • Etigemane Ramappa Harish
    • 3
  1. 1.Department of Environmental ScienceCentral University of KeralaKasaragodIndia
  2. 2.Department of BotanyKarnatak UniversityDharwadIndia
  3. 3.Department of ZoologyKarnatak UniversityDharwadIndia
  4. 4.Department of Microbiology and BiotechnologyKarnatak UniversityDharwadIndia
  5. 5.Amity Institute of Microbial TechnologyAmity UniversityNoidaIndia

Personalised recommendations