Skip to main content

Introduction

  • Chapter
  • First Online:
  • 629 Accesses

Part of the book series: Springer Theses ((Springer Theses))

Abstract

Concrete is regarded as a key material to satisfy the requirements in the global housing and modern infrastructure. Currently, the annual global cement production has reached 4.0 billion tons and the corresponding concrete production is more than 10 billion cubic meters.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Aiad I (2003) Influence of time addition of superplasticizers on the rheological properties of fresh cement pastes. Cem Concr Res 33(8):1229–1234

    Article  Google Scholar 

  • Aïtcin PC (2000) Cements of yesterday and today: concrete of tomorrow. Cem Concr Res 30(9):1349–1359

    Article  Google Scholar 

  • Aïtcin PC (2011) High performance concrete. CRC Press, Boca Raton

    Google Scholar 

  • Allan ML (1997) Rheology of latex-modified grouts. Cem Concr Res 27(12):1875–1884

    Article  Google Scholar 

  • Anagnostopoulos CA, Anagnostopoulos AC (2002) Polymer-cement mortars for repairing ancient masonries mechanical properties. Constr Build Mater 16(7):379–384

    Article  Google Scholar 

  • Arandigoyen M, Alvarez JI (2007) Pore structure and mechanical properties of cement-lime mortars. Cem Concr Res 37(5):767–775

    Article  Google Scholar 

  • Assaad J, Khayat KH, Mesbah H (2003) Assessment of thixotropy of flowable and self-consolidating concrete. ACI Mater J 100(2):99–107

    Google Scholar 

  • Autier C, Azéma N, Boustingorry P (2014) Using settling behaviour to study mesostructural organization of cement pastes and superplasticizer efficiency. Colloids Surf A 450:36–45

    Article  Google Scholar 

  • Autier C, Azema N, Taulemesse JM et al (2013) Mesostructure evolution of cement pastes with addition of superplasticizers highlighted by dispersion indices. Powder Technol 249:282–289

    Article  Google Scholar 

  • Axelsson M, Gustafson G (2006) A robust method to determine the shear strength of cement-based injection grouts in the field. Tunn Undergr Space Technol 21(5):499–503

    Article  Google Scholar 

  • Banfill PFG (1994) Rheological methods for assessing the flow properties of mortar and related materials. Constr Build Mater 8(1):43–50

    Article  Google Scholar 

  • Banfill PFG (2003) The rheology of fresh cement and concrete—a review. In: Proceedings of 11th international cement chemistry congress, Durban, South Africa, pp 1–13

    Google Scholar 

  • Banfill PFG (2006) Rheology of fresh cement and concrete. Rheol Rev 2006:61

    Google Scholar 

  • Banfill PFG, Bowen P, Flatt RJ et al (2007) Improved superplasticisers for high performance concrete: the SUPERPLAST project. In: Abstract CD ROM of the twelfth international congress on the chemistry of cement

    Google Scholar 

  • Barluenga G, Hernández-Olivares F (2004) SBR latex modified mortar rheology and mechanical behaviour. Cem Concr Res 34(3):527–535

    Article  Google Scholar 

  • Barnes HA (1999) The yield stress—a review or ‘παντα ρει’—everything flows? J Nonnewton Fluid Mech 81(1):133–178

    Article  MATH  Google Scholar 

  • Barnes HA, Hutton JF (1989) An introduction to rheology. Elsevier, Amsterdam

    MATH  Google Scholar 

  • Barnes HA, Nguyen QD (2001) Rotating vane rheometry-a review. J Nonnewton Fluid Mech 98(1):1–14

    Article  MATH  Google Scholar 

  • Beeldens A, Van Gemert D, Schorn H et al (2005) From microstructure to macrostructure: an integrated model of structure formation in polymer-modified concrete. Mater Struct 38(6):601–607

    Article  Google Scholar 

  • Bellotto M (2013) Cement paste prior to setting: a rheological approach. Cem Concr Res 52:161–168

    Article  Google Scholar 

  • Bian R, Shen J (2006) Review of polycarboxylate superplasticizer: synthetic methods and research. Fine Chem 23(2):179–182

    Google Scholar 

  • Blair GWS (1966) The success of Casson’s equation. Rheol Acta 5(3):184–187

    Article  Google Scholar 

  • Borget P, Galmiche L, Le Meins JF et al (2005) Microstructural characterisation and behaviour in different salt solutions of sodium polymethacrylate-g-PEO comb copolymers. Colloids Surf A 260(1):173–182

    Article  Google Scholar 

  • Bremmell KE, Jameson GJ, Biggs S (1998) Polyelectrolyte adsorption at the solid/liquid interface: interaction forces and stability. Colloids Surf A 139(2):199–211

    Article  Google Scholar 

  • Brinkman HC (1952) The viscosity of concentrated suspensions and solutions. J Chem Phys 20(4):571

    Article  Google Scholar 

  • Burge TA, Krapf-Huber A, Sulser U et al (1999) Dispersing agent for high-flow or self-compacting concrete: U.S. Patent 5919300

    Google Scholar 

  • Burgos-Montes O, Palacios M, Rivilla P et al (2012) Compatibility between superplasticizer admixtures and cements with mineral additions. Constr Build Mater 31:300–309

    Article  Google Scholar 

  • Cao EX, Zhang YR, Kong XM (2012) Microstructure model of fresh cement paste with superplasticizer. Concrete 8:37–161 (in Chinese)

    Google Scholar 

  • Castro A, Bergenståhl B, Tornberg E (2013) Effect of heat treatment and homogenization on the rheological properties of aqueous parsnip suspensions. J Food Eng 117(3):383–392

    Article  Google Scholar 

  • China Cement Information Center. [EB/OL][20140731]. http://www.ccement.com/news/content/7538953450084.html (in Chinese)

  • Chandra S, Björnström J (2002) Influence of superplasticizer type and dosage on the slump loss of Portland cement mortars—part II. Cem Concr Res 32(10):1613–1619

    Article  Google Scholar 

  • Clayton S, Grice TG, Boger DV (2003) Analysis of the slump test for on-site yield stress measurement of mineral suspensions. Int J Miner Process 70(1):3–21

    Article  Google Scholar 

  • Cook RA, Hover KC (1999) Mercury porosimetry of hardened cement pastes. Cem Concr Res 29(6):933–943

    Article  Google Scholar 

  • Cyr M, Legrand C, Mouret M (2000) Study of the shear thickening effect of superplasticizers on the rheological behaviour of cement pastes containing or not mineral additives. Cem Concr Res 30(9):1477–1483

    Article  Google Scholar 

  • Cyr M, Mouret M (2003) Rheological characterization of superplasticized cement pastes containing mineral admixtures: consequences on self-compacting concrete design. ACI Spec Publ 217:241–256

    Google Scholar 

  • Czarnecki L, Schorn H (2007) Nanomonitoring of polymer cement concrete microstructure. Restor Build Monum 13(3):141–152

    Google Scholar 

  • Dai XN (2005) Rheological study on LDHs klaolinite suspensions. Shandong University, Shandong (in Chinese)

    Google Scholar 

  • Dimmig A (2002) Einflqsse von Polymeren auf die Mikrostruktur und die Dauerhaftigkeit kunststoffmodifizierter Mfrtel (PCC). Ph.D. thesis, Bauhaus-Universit, Weimar

    Google Scholar 

  • Domone PL, Thurairatnam H (1988) The effect of water/cement ratio, plasticizers and temperature on the rheology of cement grouts. Adv Cem Res 1(4):195–206

    Article  Google Scholar 

  • Einstein A (1956) Investigations on the theory of the Brownian movement. Courier Dover Publications, New York

    MATH  Google Scholar 

  • Faroug F, Szwabowski J, Wild S (1999) Influence of superplasticizers on workability of concrete. J Mater Civ Eng 11(2):151–157

    Article  Google Scholar 

  • Felekoğlu B, Türkel S, Baradan B (2007) Effect of water/cement ratio on the fresh and hardened properties of self-compacting concrete. Build Environ 42(4):1795–1802

    Article  Google Scholar 

  • Ferrandis JY, Leveque G (2003) In situ measurement of elastic properties of cement by an ultrasonic resonant sensor. Cem Concr Res 33(8):1183–1187

    Article  Google Scholar 

  • Ferrari G, Cerulli T, Clemente P et al (2000) Influence of carboxylic acid-carboxylic ester ratio of carboxylic acid ester superplasticizer on characteristics of cement mixtures. ACI Spec Publ 195:505–520

    Google Scholar 

  • Ferraris CF, Gaidis JM (1992) Connection between the rheology of concrete and rheology of cement paste. ACI Mater J 89(4):388–393

    Google Scholar 

  • Ferraris CF, Obla KH, Hill R (2001) The influence of mineral admixtures on the rheology of cement paste and concrete. Cem Concr Res 31(2):245–255

    Article  Google Scholar 

  • Flatt RJ, Bowen P (2006) Yodel: a yield stress model for suspensions. J Am Ceram Soc 89(4):1244–1256

    Article  Google Scholar 

  • Flatt RJ, Bowen P (2007) Yield stress of multimodal powder suspensions: an extension of the YODEL (Yield Stress YODEL). J Am Ceram Soc 90(4):1038–1044

    Article  Google Scholar 

  • Flatt RJ, Houst YF (2001) A simplified view on chemical effects perturbing the action of superplasticizers. Cem Concr Res 31(8):1169–1176

    Article  Google Scholar 

  • Flatt RJ, Martys N, Bergström L (2004) The rheology of cementitious materials. MRS Bull 29(05):314–318

    Article  Google Scholar 

  • Flatt RJ (2004) Towards a prediction of superplasticized concrete rheology. Mater Struct 37(5):289–300

    Article  Google Scholar 

  • Frankel NA, Acrivos A (1967) On the viscosity of a concentrated suspension of solid spheres. Chem Eng Sci 22(6):847–853

    Article  Google Scholar 

  • Gagn R, Boisvert A, Pigeon M (1996) Effect of superplasticizer dosage on mechanical properties, permeability, and freeze-thaw durability of high-strength concretes with and without silica fume. ACI Mater J 93(2):111–120

    Google Scholar 

  • Gao JM, Qian CX, Wang B et al (2002) Experimental study on properties of polymer-modified cement mortars with silica fume. Cem Concr Res 32(1):41–45

    Article  Google Scholar 

  • Gao PW, Deng M, Feng NQ (2001) The influence of superplasticizer and superfine mineral powder on the flexibility, strength and durability of HPC. Cem Concr Res 31(5):703–706

    Article  Google Scholar 

  • Giraudeau C, D’Espinose De Lacaillerie JB, Souguir Z et al (2009) Surface and intercalation chemistry of polycarboxylate copolymers in cementitious systems. J Am Ceram Soc 92(11):2471–2488

    Article  Google Scholar 

  • Golaszewski J, Szwabowski J (2004) Influence of superplasticizers on rheological behavior of fresh cement mortars. Cem Concr Res 34(2):235–248

    Article  Google Scholar 

  • Goowin JW (1975) The rheology of dispersion. Colloid Sci 2:246–293

    Article  Google Scholar 

  • Grasley ZC, Lange DA (2007) Constitutive modeling of the aging viscoelastic properties of portland cement paste. Mech Time Depend Mater 11(3–4):175–198

    Article  Google Scholar 

  • Griesser A (2002) Cement-superplasticizer interactions at ambient temperatures. Swiss Federal Institute of Technology, Zürich

    Google Scholar 

  • Gu P, Xie P, Beaudoin JJ et al (1994) Investigation of the retarding effect of superplasticizers on cement hydration by impedance spectroscopy and other methods. Cem Concr Res 24(3):433–442

    Article  Google Scholar 

  • Gu PY, Pan QM (1994) Study on rheological properties of viscoelastic fluids. J Zhejiang Univ (Eng Sci) 28(1):88–93 (in Chinese)

    Google Scholar 

  • Håkansson U, Hässler L, Stille H (1992) Rheological properties of microfine cement grouts with additives. In: Grouting, soil improvement and geosynthetics, ASCE, pp 551–563

    Google Scholar 

  • Han S (2012) The influencing mechanism of gypsum and alkali sulfate on the compatibility of cement with superplasticizers. Tsinghua University, Beijing (in Chinese)

    Google Scholar 

  • Heywood NI, Cheng DCH (1984) Comparison of methods for predicting head loss in turbulent pipe flow of non-Newtonian fluids. Trans Inst Meas Control 6(1):33–45

    Article  Google Scholar 

  • Houst YF, Bowen P, Perche F (2005) Towards tailored superplasticizers. In: Global construction: ultimate concrete opportunities: proceedings of the international conference, Scotland, UK

    Google Scholar 

  • Houst YF, Bowen P, Perche F et al (2008) Design and function of novel superplasticizers for more durable high performance concrete (superplastic project). Cem Concr Res 38(10):1197–1209

    Article  Google Scholar 

  • Houst YF, Flatt R J, Bowen P et al (1999) New superplasticizers: from research to application. In: Proceedings of international conference on modern concrete materials: binders, additions and admixtures, London, UK, pp 445–456

    Google Scholar 

  • Hsu KC, Chiu JJ, Chen SD et al (1999) Effect of addition time of a superplasticizer on cement adsorption and on concrete workability. Cem Concr Compos 21(5):425–430

    Article  Google Scholar 

  • Hu C, de Larrard F (1996) The rheology of fresh high-performance concrete. Cem Concr Res 26(2):283–294

    Article  Google Scholar 

  • Hu SG, Zhang YH, Wang FZ (2012) Effect of temperature and pressure on the degradation of cement asphalt mortar exposed to water. Constr Build Mater 34:570–574

    Article  Google Scholar 

  • Huang DN (1980) Rheology and application science of cement. J Chin Ceram Soc 3:1–10 (in Chinese)

    Google Scholar 

  • Huang DN, Xie YS (1984) Rheological concepts of fresh concrete. J Chin Ceram Soc 3:35–39 (in Chinese)

    Google Scholar 

  • Huang Z, Thiagarajan VS, Lyngberg OK et al (1999) Microstructure evolution in polymer latex coatings for whole-cell biocatalyst application. J Colloid Interface Sci 215(2):226–243

    Article  Google Scholar 

  • Jiang TQ (2004) Rheology of chemical engineering. East China University of Science and Technology Press, Shanghai (in Chinese)

    Google Scholar 

  • Jin RG, Hua YQ (1991) Polymer physics, 1st edn. Chemical Industry Press, Beijing (in Chinese)

    Google Scholar 

  • Jolicoeur C, Simard MA (1998) Chemical admixture-cement interactions: phenomenology and physico-chemical concepts. Cem Concr Compos 20(2):87–101

    Article  Google Scholar 

  • Kauppi A, Banfill PFG, Bowen P et al (2003) Improved superplasticizers for high performance concrete. In: Proceedings of the 11th international congress on the chemistry of cement, New Delhi, India, 2(LTP-CONF-2003-001), p 8

    Google Scholar 

  • Kapur PC, Scales PJ, Boger DV et al (1997) Yield stress of suspensions loaded with size distributed particles. AIChE J 43(5):1171–1179

    Article  Google Scholar 

  • Kasami H, Ikeda T, Yamane S (1979) On workability and pumpability of superplasticized concrete-experience in Japan. ACI Spec Publ 62:67–86

    Google Scholar 

  • Khatib JM, Mangat PS (1999) Influence of superplasticizer and curing on porosity and pore structure of cement paste. Cem Concr Compos 21(5):431–437

    Article  Google Scholar 

  • Kim BG, Jiang S, Jolicoeur C et al (2000) The adsorption behavior of PNS superplasticizer and its relation to fluidity of cement paste. Cem Concr Res 30(6):887–893

    Article  Google Scholar 

  • Knapen E, Van Gemert D (2009) Cement hydration and microstructure formation in the presence of water-soluble polymers. Cem Concr Res 39(1):6–13

    Article  Google Scholar 

  • Kodama K, Okazawa S (1992) Development of a superplasticizer for high strength concrete. Semento Konkurito 546:24–32

    Google Scholar 

  • Kong XM, Cao EX, Hou SS (2010a) Research progress of polycarboxylate superplasticizer. China Concr 5:28–37 (in Chinese)

    Google Scholar 

  • Kong XM, Liu YL, Yan PY (2010b) Temperature sensitivity of mechanical properties of cement asphalt mortars. J Chin Ceram Soc 4:553–558 (in Chinese)

    Google Scholar 

  • Kong XM, Wu CC, Zhang YR et al (2013a) Polymer-modified mortar with a gradient polymer distribution: preparation, permeability, and mechanical behaviour. Constr Build Mater 38:195–203

    Article  Google Scholar 

  • Kong XM, Zhang YR, Hou SS (2013b) Study on the rheological properties of Portland cement pastes with polycarboxylate superplasticizers. Rheol Acta 52(7):707–718

    Article  Google Scholar 

  • Kong XM, Zhang YR, Zhang JY et al (2011) Investigation on flowability and microstructure of fresh cement asphalt binder. J Build Mater 14(4):569–575 (in Chinese)

    Google Scholar 

  • Krieger IM, Dougherty TJ (1959) A mechanism for non-Newtonian flow in suspensions of rigid spheres. Trans Soc Rheol (1957–1977) 3(1):137–152

    Article  MATH  Google Scholar 

  • Krstulović R, Žmikić A, Dabić P (1994) Examination of reaction between the NSF superplasticizer and cement. Cem Concr Res 24(5):948–958

    Article  Google Scholar 

  • Labouret S, Looten-Baquet I, Bruneel C et al (1998) Ultrasound method for monitoring rheology properties evolution of cement. Ultrasonics 36(1):205–208

    Article  Google Scholar 

  • Li QH, Kong XM (2009) Properties and microstructure of polymer modified mortar based on different acrylate latexes. J Chin Ceram Soc 1:107–114

    Google Scholar 

  • Liu CC (2005) Copolymerization of polycarboxylic superplasticizer. Green Build 21(4):41–42 (in Chinese)

    Google Scholar 

  • Liu YL, Kong XM, Yan PY (2011) Investigation on dynamical mechanical behaviours of cement-asphalt binders. Eng Mech 28(7):53–58 (in Chinese)

    Google Scholar 

  • Liu YL, Kong XM, Zhang JY et al (2012a) Effect of curing temperature on strength development of cement asphalt mortars. J Build Mater 15(2):211–217 (in Chinese)

    Article  Google Scholar 

  • Liu YL, Kong XM, Zhang YR et al (2012b) Static and dynamic mechanical properties of cement-asphalt composites. J Mater Civ Eng 25(10):1489–1497

    Google Scholar 

  • Liu YL, Kong XM, Zou Y et al (2009) Static and dynamic mechanical behaviour of cement asphalt mortars. J Railw Sci Eng 6(3):1–7 (in Chinese)

    Google Scholar 

  • Malhotra VM (1989) Superplasticizers: a global review with emphasis on durability and innovative concretes. ACI Spec Publ 119:1–18

    Google Scholar 

  • Malhotra VM (1999) Innovative applications of superplasticizers in concrete: a review. Roles Admix High Perform Concr 5:421–460

    Google Scholar 

  • Martini SA, Nehdi M (2009) Coupled effects of time and high temperature on rheological properties of cement pastes incorporating various superplasticizers. J Mater Civ Eng 21(8):392–401

    Article  Google Scholar 

  • Mewis J, Wagner NJ (2009) Current trends in suspension rheology. J Nonnewton Fluid Mech 157(3):147–150

    Article  MATH  Google Scholar 

  • Miao CW, Ran QP, Hong JX et al (2009) Present situation and development trends of polycar-boxylate-type superplasticizers. Mater China 28(11):36–45 (in Chinese)

    Google Scholar 

  • Mollah MYA, Adams WJ, Schennach R et al (2000) A review of cement-superplasticizer interactions and their models. Adv Cem Res 12(4):153–161

    Article  Google Scholar 

  • Morris JF (2009) A review of microstructure in concentrated suspensions and its implications for rheology and bulk flow. Rheol Acta 48(8):909–923

    Article  Google Scholar 

  • Murray BS (2011) Rheological properties of protein films. Curr Opin Colloid Interface Sci 16(1):27–35

    Article  Google Scholar 

  • Nachbaur L, Mutin JC, Nonat A et al (2001) Dynamic mode rheology of cement and tricalcium silicate pastes from mixing to setting. Cem Concr Res 31(2):183–192

    Article  Google Scholar 

  • Nehdi M, Al Martini S (2009) Estimating time and temperature dependent yield stress of cement paste using oscillatory rheology and genetic algorithms. Cem Concr Res 39(11):1007–1016

    Article  Google Scholar 

  • Nehdi M, Mindess S, Aïtcin PC (1997) Statistical modelling of the microfiller effect on the rheology of composite cement pastes. Adv Cem Res 9(33):37–46

    Article  Google Scholar 

  • Nguyen QD, Boger DV (1992) Measuring the flow properties of yield stress fluids. Annu Rev Fluid Mech 24(1):47–88

    Article  MATH  Google Scholar 

  • Ohama Y (1987) Principle of latex modification and some typical properties of latex-modified mortars and concretes adhesion; binders (materials); bond (paste to aggregate); carbonation; chlorides; curing; diffusion. ACI Mater J 84(6):511–518

    Google Scholar 

  • Ohama Y (1997) Recent progress in concrete-polymer composites. Adv Cem Based Mater 5(2):31–40

    Article  Google Scholar 

  • Ohama Y, Demura K, Kobayashi K et al (1991) Pore size distribution and oxygen diffusion resistance of polymer-modified mortars. Cem Concr Res 21(2):309–315

    Article  Google Scholar 

  • Ohta A, Sugiyama T, Uomoto T (2000) Study of dispersing effects of polycarboxylate-based dispersant on fine particles. ACI Spec Publ 195:211–228

    Google Scholar 

  • Papo A (1988) Rheological models for cement pastes. Mater Struct 21(1):41–46

    Article  Google Scholar 

  • Papo A, Piani L (2004a) Effect of various superplasticizers on the rheological properties of Portland cement pastes. Cem Concr Res 34(11):2097–2101

    Article  Google Scholar 

  • Papo A, Piani L (2004b) Flow behavior of fresh Portland cement pastes. Part Sci Technol 22(2):201–212

    Article  Google Scholar 

  • Peng J, Qu J, Zhang J et al (2005) Adsorption characteristics of water-reducing agents on gypsum surface and its effect on the rheology of gypsum plaster. Cem Concr Res 35(3):527–531

    Article  Google Scholar 

  • Petit JY, Khayat KH, Wirquin E (2006) Coupled effect of time and temperature on variations of yield value of highly flowable mortar. Cem Concr Res 36(5):832–841

    Article  Google Scholar 

  • Petit JY, Khayat KH, Wirquin E (2009) Coupled effect of time and temperature on variations of plastic viscosity of highly flowable mortar. Cem Concr Res 39(3):165–170

    Article  Google Scholar 

  • Petit JY, Wirquin E, Duthoit B (2005) Influence of temperature on yield value of highly flowable micromortars made with sulfonate-based superplasticizers. Cem Concr Res 35(2):256–266

    Article  Google Scholar 

  • Petit JY, Wirquin E, Khayat KH (2010) Effect of temperature on the rheology of flowable mortars. Cem Concr Compos 32(1):43–53

    Article  Google Scholar 

  • Petit JY, Wirquin E, Vanhove Y et al (2007) Yield stress and viscosity equations for mortars and self-consolidating concrete. Cem Concr Res 37(5):655–670

    Article  Google Scholar 

  • Plank J, Dai Z, Andres PR (2006) Preparation and characterization of new Ca–Al–polycarboxylate layered double hydroxides. Mater Lett 60(29):3614–3617

    Article  Google Scholar 

  • Plank J, Gretz M (2008) Study on the interaction between anionic and cationic latex particles and Portland cement. Colloids Surf A 330(2):227–233

    Article  Google Scholar 

  • Plank J, Hirsch C (2007) Impact of zeta potential of early cement hydration phases on superplasticizer adsorption. Cem Concr Res 37(4):537–542

    Article  Google Scholar 

  • Plank J, Sachsenhauser B (2006) Impact of molecular structure on zeta potential and adsorbed conformation of α-allyl-ω-methoxypolyethylene glycol-maleic anhydride superplasticizers. J Adv Concr Technol 4(2):233–239

    Article  Google Scholar 

  • Plank J, Sachsenhauser B (2009) Experimental determination of the effective anionic charge density of polycarboxylate superplasticizers in cement pore solution. Cem Concr Res 39(1):1–5

    Article  Google Scholar 

  • Pourchet S, Comparet C, Nicoleau L et al (2007) Influence of PC superplasticizers on tricalcium silicate hydration. In: Proceedings of the 12th international congress on the chemistry of cement-ICCC

    Google Scholar 

  • Pourchet S, Comparet C, Nonat A et al (2006) Influence of three types of superplasticizers on tricalciumaluminate hydration in presence of gypsum. In: Proceedings of the 8th CANMET/ACI international conference on superplasticizers and other chemical admixtures in concrete, Sorrento, October 20–23, 2006, pp 151–158

    Google Scholar 

  • Pourchet S, Liautaud S, Rinaldi D et al (2012) Effect of the repartition of the PEG side chains on the adsorption and dispersion behaviors of PCP in presence of sulfate. Cem Concr Res 42(2):431–439

    Article  Google Scholar 

  • Probstein RF, Sengun MZ, Tseng TC (1994) Bimodal model of concentrated suspension viscosity for distributed particle sizes. J Rheol (1978-Present) 38(4):811–829

    Article  Google Scholar 

  • Puertas F, Santos H, Palacios M et al (2005) Polycarboxylate superplasticiser admixtures: effect on hydration, microstructure and rheological behaviour in cement pastes. Adv Cem Res 17(2):77–89

    Article  Google Scholar 

  • Qian XL, Zhao SL, Zhang XB et al (2002) The working mechanisms and property of high range water-reducers. J Nanjing Tech Univ 24(2):61–64 (in Chinese)

    Google Scholar 

  • Rahman MK, Baluch MH, Malik MA (2014) Thixotropic behavior of self-compacting concrete with different mineral admixtures. Constr Build Mater 50:710–717

    Article  Google Scholar 

  • Ran QP (2007) Structure, adsorption, dispersion and mechanism of comb-shaped copolymers. Nanjing University, Jiangsu (in Chinese)

    Google Scholar 

  • Ran QP, Miao CW, Liu JP et al (2009a) Mechanism and effects of side chain length of comb-like copolymer dispersant on the dispersion of cement paste. J Chin Ceram Soc 37(7):1153–1159 (in Chinese)

    Google Scholar 

  • Ran Q, Somasundaran P, Miao C et al (2009b) Effect of the length of the side chains of comb-like copolymer dispersants on dispersion and rheological properties of concentrated cement suspensions. J Colloid Interface Sci 336(2):624–633

    Article  Google Scholar 

  • Ran Q, Somasundaran P, Miao C et al (2010) Adsorption mechanism of comb polymer dispersants at the cement/water interface. J Dispers Sci Technol 31(6):790–798

    Article  Google Scholar 

  • Rao MA (2014) Flow and functional models for rheological properties of fluid foods. In: Rheology of fluid, semisolid, and solid foods. Springer US, pp 27–61

    Google Scholar 

  • Ravi KM, Sutton DL (1990) New rheological correlation for cement slurries as a function of temperature. In: SPE annual technical conference and exhibition, society of petroleum engineers

    Google Scholar 

  • Rößler C, Eberhardt A, Kučerová H et al (2008) Influence of hydration on the fluidity of normal Portland cement pastes. Cem Concr Res 38(7):897–906

    Article  Google Scholar 

  • Romano RCDO, Pileggi RG (2012) Temperature’s role in the rheological behaviour of cementitious pastes prepared with air-entraining admixtures. Appl Rheol 22:24333–24338

    Google Scholar 

  • Roussel N (2006) A thixotropy model for fresh fluid concretes: theory, validation and applications. Cem Concr Res 36(10):1797–1806

    Article  Google Scholar 

  • Roussel N (2007) Rheology of fresh concrete: from measurements to predictions of casting processes. Mater Struct 40(10):1001–1012

    Article  Google Scholar 

  • Roussel N, Geiker MR, Dufour F et al (2007) Computational modeling of concrete flow: general overview. Cem Concr Res 37(9):1298–1307

    Article  Google Scholar 

  • Roussel N, Stefani C, Leroy R (2005) From mini-cone test to Abrams cone test: measurement of cement-based materials yield stress using slump tests. Cem Concr Res 35(5):817–822

    Article  Google Scholar 

  • Rubio-Hernández FJ, Velázquez-Navarro JF, Ordóñez-Belloc LM (2013) Rheology of concrete: a study case based upon the use of the concrete equivalent mortar. Mater Struct 46(4):587–605

    Article  Google Scholar 

  • Rumpf H (1962) The strength of granules and agglomerates. Interscience, New York

    Google Scholar 

  • Saija LM (1995) Waterproofing of portland cement mortars with a specially designed polyacrylic latex. Cem Concr Res 25(3):503–509

    Article  Google Scholar 

  • Sakai E, Kasuga T, Sugiyama T et al (2006) Influence of superplasticizers on the hydration of cement and the pore structure of hardened cement. Cem Concr Res 36(11):2049–2053

    Article  Google Scholar 

  • Sarkar SL, Aimin X (1992) Preliminary study of very early hydration of superplasticized C3A+ gypsum by environmental SEM. Cem Concr Res 22(4):605–608

    Article  Google Scholar 

  • Scales PJ, Johnson SB, Healy TW et al (1998) Shear yield stress of partially flocculated colloidal suspensions. AIChE J 44(3):538–544

    Article  Google Scholar 

  • Schmidt W, Brouwers HJH, Kühne HC et al (2014) Influences of superplasticizer modification and mixture composition on the performance of self-compacting concrete at varied ambient temperatures. Cem Concr Compos 49:111–126

    Article  Google Scholar 

  • Schultz MA, Struble LJ (1993) Use of oscillatory shear to study flow behavior of fresh cement paste. Cem Concr Res 23(2):273–282

    Article  Google Scholar 

  • Schwartzentruber LDA, Le Roy R, Cordin J (2006) Rheological behaviour of fresh cement pastes formulated from a Self-Compacting Concrete (SCC). Cem Concr Res 36(7):1203–1213

    Article  Google Scholar 

  • Shen Z, Wang GT (1991) Colloid and surface chemistry. Chemical Industry Press, Beijing (in Chinese)

    Google Scholar 

  • Sheinn AMM, Ho DWS, Tam CT (2002) Rheological model for self-compacting concrete-paste rheology. In: Proceedings of the 27th conference on our world in concrete and structures, Singapore, pp 28–29

    Google Scholar 

  • Shi TJ, Wu DF (2009) Foundation of polymer rheology. Chemical Industry Press, Beijing (in Chinese)

    Google Scholar 

  • Shin JY, Hong JS, Suh JK et al (2008) Effects of polycarboxylate-type superplasticizer on fluidity and hydration behavior of cement paste. Korean J Chem Eng 25(6):1553–1561

    Article  Google Scholar 

  • Shroff AV, Joshi NH, Shah DL (1996) Rheological properties of micro fine cement dust grouts. Grouting and Deep Mixing Balkema

    Google Scholar 

  • Song H, Do J, Soh Y (2006) Feasibility study of asphalt-modified mortars using asphalt emulsion. Constr Build Mater 20(5):332–337

    Article  Google Scholar 

  • Struble LJ, Lei WG (1995) Rheological changes associated with setting of cement paste. Adv Cem Based Mater 2(6):224–230

    Article  Google Scholar 

  • Struble L, Sun GK (1995) Viscosity of Portland cement paste as a function of concentration. Adv Cem Based Mater 2(2):62–69

    Article  Google Scholar 

  • Struble L, Szecsy R, Lei WG et al (1998) Rheology of cement paste and concrete. Cem Concr Aggreg 20(2):269–277

    Article  Google Scholar 

  • Su Z (1995) Microstructure of polymer cement concrete. Ph.D. thesis, Material Sciences Group, Delft University of Technology, Delft, Netherlands

    Google Scholar 

  • Su Z, Sujata K, Bijen JM et al (1996) The evolution of the microstrcture styrene acrylate polymer-modified cement pastes at the early stage of cement hydration. Adv Cem Base Mater 3:87–93

    Article  Google Scholar 

  • Subramaniam KV, Lee J, Christensen BJ (2005) Monitoring the setting behavior of cementitious materials using one-sided ultrasonic measurements. Cem Concr Res 35(5):850–857

    Article  Google Scholar 

  • Subramaniam KV, Wang X (2010) An investigation of microstructure evolution in cement paste through setting using ultrasonic and rheological measurements. Cem Concr Res 40(1):33–44

    Article  Google Scholar 

  • Sun Z, Voigt T, Shah SP (2006) Rheometric and ultrasonic investigations of viscoelastic properties of fresh Portland cement pastes. Cem Concr Res 36(2):278–287

    Article  Google Scholar 

  • Swamy RN (1989) Superplasticizers and concrete durability. ACI Special Publication, vol 119

    Google Scholar 

  • Thomas DG (1965) Transport characteristics of suspension: VIII. A note on the viscosity of Newtonian suspensions of uniform spherical particles. J Colloid Sci 20(3):267–277

    Article  Google Scholar 

  • Uchikawa H, Hanehara S, Shirasaka T et al (1992) Effect of admixture on hydration of cement, adsorptive behavior of admixture and fluidity and setting of fresh cement paste. Cem Concr Res 22(6):1115–1129

    Article  Google Scholar 

  • Umlauf R (1993) Rheological characterization of microfine cement suspension-examination with a shear stress controller rheometer Grouting in Rock and Concrete. Balkenra 91–95

    Google Scholar 

  • Valič MI (2000) Hydration of cementitious materials by pulse echo USWR: method, apparatus and application examples. Cem Concr Res 30(10):1633–1640

    Article  Google Scholar 

  • Vand V (1948) Viscosity of solutions and suspensions. II. Experimental determination of the viscosity–concentration function of spherical suspensions. J Phys Chem 52(2):300–314

    Article  Google Scholar 

  • Wallevik JE (2006) Relationship between the Bingham parameters and slump. Cem Concr Res 36(7):1214–1221

    Article  Google Scholar 

  • Wang DM, Zhang LR, Zhang WL et al (2013) Effects of superplasticizers on multi-level flocculation structure of fresh cement paste. J Build Mater 15(6):755–759 (in Chinese)

    Google Scholar 

  • Wang F, Liu Z, Wang T et al (2008a) A novel method to evaluate the setting process of cement and asphalt emulsion in CA mortar. Mater Struct 41(4):643–647

    Article  MathSciNet  Google Scholar 

  • Wang FZ, Wang T, Hu SG et al (2008b) Rheological behavior of cement asphalt mortar. Eng J Wuhan Univ 41(4):69–72 (in Chinese)

    Google Scholar 

  • Wang LJ, Huang FY, Ma XC (2008c) Experimental research on the saturation point of superplasticizers in cement based on fractal dimension. J Wuhan Univ Technol 30(2):28–31 (in Chinese)

    Google Scholar 

  • Wang LJ, Tan XQ, Cao ML (2008d) Study on flocculated cement based on fractal theory. J Shenyang Jianzhu Univ (Nat Sci) 23(1):82–84 (in Chinese)

    Google Scholar 

  • Wang Q, Yan PY, Ruhan A et al (2011) Strength mechanism of cement-asphalt mortar. J Mater Civil Eng 23(9):1353–1359

    Article  Google Scholar 

  • Wang R, Wang PM (2008) Application of polyacrylic ester latex to cement mortar. J Chin Ceram Soc 36(7):946–949

    Google Scholar 

  • Wang R, Wang PM, Li XG (2005) Physical and mechanical properties of styrene-butadiene rubber emulsion modified cement mortars. Cem Concr Res 35(5):900–906

    Article  Google Scholar 

  • Wang T (2008) Research and application on CA mortar in Ballastless slab track of high speed railway. Wuhan University of Technology, Wuhan (in Chinese)

    Google Scholar 

  • Wang X, Subramaniam KV, Lin FB (2010) Ultrasonic measurement of viscoelastic shear modulus development in hydrating cement paste. Ultrasonics 50(7):726–738

    Article  Google Scholar 

  • Wang ZM (2006) The interface chemistry phenomena and rheological properties of “cement-water-superplasticizer” system. Beijing University of Technology, Beijing (in Chinese)

    Google Scholar 

  • Winnefeld F, Becker S, Pakusch J et al (2007) Effects of the molecular architecture of comb-shaped superplasticizers on their performance in cementitious systems. Cem Concr Compos 29(4):251–262

    Article  Google Scholar 

  • Wu ZW, Lian HZ (1999) High performance concrete. China Railway Publishing Press, Beijing (in Chinese)

    Google Scholar 

  • Xu G, Beaudoin JJ, Jolicoeur C et al (2000) Interfacial transition zone characterization of Portland cement mortars containing relatively high dosages of polynaphthalene sulfonate superplasticizers. Concr Sci Eng (Fr) 2(7):150–157

    Google Scholar 

  • Xu YM (1989) A unified rheological model for non-dilatancy viscoplastic fluids. J Wuhan Univ Technol 11(4):431–436 (in Chinese)

    Google Scholar 

  • Yahia A, Khayat KH (2001) Analytical models for estimating yield stress of high performance pseudoplastic grout. Cem Concr Res 31(5):731–738

    Article  Google Scholar 

  • Yamada K, Takahashi T, Hanehara S et al (2000) Effects of the chemical structure on the properties of polycarboxylate-type superplasticizer. Cem Concr Res 30(2):197–207

    Article  Google Scholar 

  • Yamada K, Yanagisawa T, Hanehara S (1999) Influence of temperature on the dispersibility of polycarboxylate type superplasticizer for highly fluid concrete. In: International RILEM symposium on self-compacting concrete, pp 437–448

    Google Scholar 

  • Yang JB, Yan PY, Kong XM et al (2010) Study on the hardening mechanism of cement asphalt binder. Sci China Technol Sci 53(5):1406–1412

    Article  Google Scholar 

  • Yang Z, Shi X, Creighton AT et al (2009) Effect of styrene–butadiene rubber latex on the chloride permeability and microstructure of Portland cement mortar. Constr Build Mater 23(6):2283–2290

    Article  Google Scholar 

  • Ye DM, Sun ZP, Zhen BC et al (2012) Current research status and development of polymer modified cementitious repair material. Mater Rev 7:028 (in Chinese)

    Google Scholar 

  • Yoshioka K, Sakai E, Daimon M et al (1997) Role of steric hindrance in the performance of superplasticizers for concrete. J Am Ceram Soc 80(10):2667–2671

    Article  Google Scholar 

  • Yoshioka K, Tazawa E, Kawai K et al (2002) Adsorption characteristics of superplasticizers on cement component minerals. Cem Concr Res 32(10):1507–1513

    Article  Google Scholar 

  • Zhang DY (2001) Study on the preparation of architectural latex coatings and its dispersion, rheology mechanism. South China University of Technology, Guangzhou (in Chinese)

    Google Scholar 

  • Zhang LR, Wang DM, Zhang WL et al (2013) Observation of multi-level flocculation structure of fresh paste using laser scanning confocal microscopy. J Chin Electron Microsc Soc 32(3):231–236 (in Chinese)

    MathSciNet  Google Scholar 

  • Zhang YR, Kong XM, Cao EX (2010) Influence of temperature on flowability and hydration rate of fresh cement asphalt binder. J Chin Ceram Soc 38(11):156–161 (in Chinese)

    Google Scholar 

  • Zhang YR, Kong XM, Hou SS et al (2012) Study on the rheological properties of fresh cement asphalt paste. Constr Build Mater 27(1):534–544

    Article  Google Scholar 

  • Zhang YR, Kong XM, Zhang ZL et al (2011) Impermeability of polymer modified mortar with different acrylate latexes. Science and Technology of Commercial Mortar (in Chinese)

    Google Scholar 

  • Zhong S, Chen Z (2002) Properties of latex blends and its modified cement mortars. Cem Concr Res 32(10):1515–1524

    Article  Google Scholar 

  • Zhou Z, Solomon MJ, Scales PJ et al (1999) The yield stress of concentrated flocculated suspensions of size distributed particles. J Rheol (1978-Present) 43(3):651–671

    Article  Google Scholar 

  • Zingg A, Holzer L, Kaech A et al (2008) The microstructure of dispersed and non-dispersed fresh cement pastes-new insight by cryo-microscopy. Cem Concr Res 38(4):522–529

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yanrong Zhang .

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Singapore Pte Ltd.

About this chapter

Cite this chapter

Zhang, Y. (2018). Introduction. In: Study on Microstructure and Rheological Properties of Cement-Chemical Admixtures-Water Dispersion System at Early Stage. Springer Theses. Springer, Singapore. https://doi.org/10.1007/978-981-10-4570-7_1

Download citation

  • DOI: https://doi.org/10.1007/978-981-10-4570-7_1

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-10-4569-1

  • Online ISBN: 978-981-10-4570-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics