Skip to main content

Endoplasmic Reticulum-Plasma Membrane Contacts Regulate Cellular Excitability

  • Chapter
  • First Online:
Organelle Contact Sites

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 997))

Abstract

Cells that have intrinsic electrical excitability utilize changes in membrane potential to communicate with neighboring cells and initiate cellular cascades. Excitable cells like neurons and myocytes have evolved highly specialized subcellular architectures to translate these electrical signals into cellular events. One such structural specialization is sarco-/endoplasmic reticulum-plasma membrane contact sites. These membrane contact sites are positioned by specific membrane-membrane tethering proteins and contain an ever-expanding list of additional proteins that organize information transfer across the junctional space (~ 15–25 nm distance) to shape membrane identity and control cellular excitability. In this chapter we discuss how contacts between the sarco-/endoplasmic reticulum and plasma membrane are essential for regulated excitation-contraction coupling in striated muscle and control of lipid-dependent ion channels.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Amarilio R, Ramachandran S, Sabanay H, Lev S (2005) Differential regulation of endoplasmic reticulum structure through VAP-Nir protein interaction. J Biol Chem 280:5934–5944

    Article  CAS  PubMed  Google Scholar 

  • Armstrong CM, Bezanilla FM, Horowicz P (1972) Twitches in the presence of ethylene glycol bis( β-aminoethyl ether)-N,N′-tetracetic acid. Biochim Biophys Acta 267:605-608

    Google Scholar 

  • Balla T (2013) Phosphoinositides: tiny lipids with giant impact on cell regulation. Physiol Rev 93:1019–1137

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bennett HJ, Davenport JB, Collins RF, Trafford AW, Pinali C, Kitmitto A (2013) Human junctophilin-2 undergoes a structural rearrangement upon binding PtdIns(3,4,5)P3 and the S101R mutation identified in hypertrophic cardiomyopathy obviates this response. Biochem J 456:205–217

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Berridge MJ (2008) Smooth muscle cell calcium activation mechanisms. J Physiol 586:5047–5061

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bers DM (2002) Cardiac excitation-contraction coupling. Nature 415:198–205

    Article  CAS  PubMed  Google Scholar 

  • Bers DM, Guo T (2005) Calcium signaling in cardiac ventricular myocytes. Ann N Y Acad Sci 1047:86–98

    Article  CAS  PubMed  Google Scholar 

  • Beurg M, Ahern CA, Vallejo P, Conklin MW, Powers PA, Gregg RG, Coronado R (1999) Involvement of the carboxy-terminus region of the dihydropyridine receptor β1a subunit in excitation-contraction coupling of skeletal muscle. Biophys J 77:2953–2967

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Block BA, Imagawa T, Campbell KP, Franzini-Armstrong C (1988) Structural evidence for direct interaction between the molecular components of the transverse tubule/sarcoplasmic reticulum junction in skeletal muscle. J Cell Biol 107:2587–2600

    Article  CAS  PubMed  Google Scholar 

  • Brown DA, Adams PR (1980) Muscarinic suppression of a novel voltage-sensitive K+ current in a vertebrate neurone. Nature 283:673–676

    Article  CAS  PubMed  Google Scholar 

  • Chang CL, Hsieh TS, Yang TT, Rothberg KG, Azizoglu DB, Volk E, Liao JC, Liou J (2013) Feedback regulation of receptor-induced Ca2+ signaling mediated by E-Syt1 and Nir2 at endoplasmic reticulum-plasma membrane junctions. Cell Rep 5:813–825

    Article  PubMed  Google Scholar 

  • Cheng H, Lederer WJ (2008) Calcium sparks. Physiol Rev 88:1491–1545

    Article  CAS  PubMed  Google Scholar 

  • Cheng H, Lederer WJ, Cannell MB (1993) Calcium sparks: elementary events underlying excitation-contraction coupling in heart muscle. Science 262:740–744

    Article  CAS  PubMed  Google Scholar 

  • Chung J, Nakatsu F, Baskin JM, De Camilli P (2015a) Plasticity of PI4KIIIα interactions at the plasma membrane. EMBO Rep 16:312–320

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chung J, Torta F, Masai K, Lucast L, Czapla H, Tanner LB, Narayanaswamy P, Wenk MR, Nakatsu F, De Camilli P (2015b) PI4P/phosphatidylserine countertransport at ORP5- and ORP8-mediated ER-plasma membrane contacts. Science 349:428–432

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Di Paolo G, De Camilli P (2006) Phosphoinositides in cell regulation and membrane dynamics. Nature 443:651–657

    Article  PubMed  Google Scholar 

  • Dickson EJ, Jensen JB, Hille B (2014) Golgi and plasma membrane pools of PI(4)P contribute to plasma membrane PI(4,5)P2 and maintenance of KCNQ2/3 ion channel current. Proc Natl Acad Sci USA 111:E2281–E2290

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dickson EJ, Jensen JB, Vivas O, Kruse M, Traynor-Kaplan AE, Hille B (2016) Dynamic formation of ER-PM junctions presents a lipid phosphatase to regulate phosphoinositides. J Cell Biol 213:33–48

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dixon RE, Yuan C, Cheng EP, Navedo MF, Santana LF (2012) Ca2+ signaling amplification by oligomerization of L-type Cav1.2 channels. Proc Natl Acad Sci USA 109:1749–1754

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dixon RE, Moreno CM, Yuan C, Opitz-Araya X, Binder MD, Navedo MF, Santana LF (2015) Graded Ca2+/calmodulin-dependent coupling of voltage-gated CaV1.2 channels. Elife 4

    Google Scholar 

  • Fabiato A (1983) Calcium-induced release of calcium from the cardiac sarcoplasmic reticulum. Am J Physiol 245:C1–14

    CAS  PubMed  Google Scholar 

  • Feske S, Giltnane J, Dolmetsch R, Staudt LM, Rao A (2001) Gene regulation mediated by calcium signals in T lymphocytes. Nat Immunol 2:316–324

    Article  CAS  PubMed  Google Scholar 

  • Franzini-Armstrong C, Protasi F (1997) Ryanodine receptors of striated muscles: a complex channel capable of multiple interactions. Physiol Rev 77:699–729

    CAS  PubMed  Google Scholar 

  • Giordano F, Saheki Y, Idevall-Hagren O, Colombo SF, Pirruccello M, Milosevic I, Gracheva EO, Bagriantsev SN, Borgese N, De Camilli P (2013) PI(4,5)P2-dependent and Ca2+-regulated ER-PM interactions mediated by the extended synaptotagmins. Cell 153:1494–1509

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gomez AM, Guatimosim S, Dilly KW, Vassort G, Lederer WJ (2001) Heart failure after myocardial infarction: altered excitation-contraction coupling. Circulation 104:688–693

    Article  CAS  PubMed  Google Scholar 

  • Hansen SB, Tao X, MacKinnon R (2011) Structural basis of PIP2 activation of the classical inward rectifier K+ channel Kir2.2. Nature 477:495–498

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hilgemann DW, Ball R (1996) Regulation of cardiac Na+,Ca2+ exchange and KATP potassium channels by PIP2. Science 273:956–959

    Article  CAS  PubMed  Google Scholar 

  • Hilgemann DW, Feng S, Nasuhoglu C (2001) The complex and intriguing lives of PIP2 with ion channels and transporters. Sci STKE 2001:re19

    Google Scholar 

  • Hille B, Dickson E, Kruse M, Falkenburger B (2014) Dynamic metabolic control of an ion channel. Prog iMol Biol Transl Sci 123:219–247

    Article  CAS  Google Scholar 

  • Hille B, Dickson EJ, Kruse M, Vivas O, Suh BC (2015) Phosphoinositides regulate ion channels. Biochim Biophys Acta 1851:844–856

    Article  CAS  PubMed  Google Scholar 

  • Hong TT, Smyth JW, Gao D, Chu KY, Vogan JM, Fong TS, Jensen BC, Colecraft HM, Shaw RM (2010) BIN1 localizes the L-type calcium channel to cardiac T-tubules. PLoS Biol 8:e1000312

    Article  PubMed  PubMed Central  Google Scholar 

  • Hou XW, Pedi L, Diver MM, Long SB (2012) Crystal structure of the calcium release-activated calcium channel Orai. Science 338:1308–1313

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Idevall-Hagren O, Lu A, Xie B, De Camilli P (2015) Triggered Ca2+ influx is required for extended synaptotagmin 1-induced ER-plasma membrane tethering. EMBO J 34:2291–2305

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Inoue M, Bridge JH (2003) Ca2+ sparks in rabbit ventricular myocytes evoked by action potentials: involvement of clusters of L-type Ca2+ channels. Circ Res 92:532–538

    Article  CAS  PubMed  Google Scholar 

  • Ito K, Komazaki S, Sasamoto K, Yoshida M, Nishi M, Kitamura K, Takeshima H (2001) Deficiency of triad junction and contraction in mutant skeletal muscle lacking junctophilin type 1. J Cell Biol 154:1059–1067

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kim S, Kedan A, Marom M, Gavert N, Keinan O, Selitrennik M, Laufman O, Lev S (2013) The phosphatidylinositol-transfer protein Nir2 binds phosphatidic acid and positively regulates phosphoinositide signalling. EMBO Rep 14:891–899

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kim YJ, Guzman-Hernandez ML, Wisniewski E, Balla T (2015) Phosphatidylinositol-phosphatidic acid exchange by Nir2 at ER-PM contact sites maintains phosphoinositide signaling competence. Dev Cell 33:549–561

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Komazaki S, Ito K, Takeshima H, Nakamura H (2002) Deficiency of triad formation in developing skeletal muscle cells lacking junctophilin type 1. FEBS Lett 524:225–229

    Article  CAS  PubMed  Google Scholar 

  • Kotlikoff MI (2003) Calcium-induced calcium release in smooth muscle: the case for loose coupling. Prog iBiophys Mol Biol 83:171–191

    Article  CAS  Google Scholar 

  • Kruse M, Hille B (2013) The phosphoinositide sensitivity of the KV channel family. Channels (Austin, Tex) 7:530–536

    Google Scholar 

  • Kruse M, Hammond GR, Hille B (2012) Regulation of voltage-gated potassium channels by PI(4,5)P2. J Gen Physiol 140:189–205

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kugler G, Weiss RG, Flucher BE, Grabner M (2004) Structural requirements of the dihydropyridine receptor α1S II–III loop for skeletal-type excitation-contraction coupling. J Biol Chem 279:4721–4728

    Article  CAS  PubMed  Google Scholar 

  • Lanner JT, Georgiou DK, Joshi AD, Hamilton SL (2010) Ryanodine receptors: structure, expression, molecular details, and function in calcium release. Cold Spring Harb Perspect Biol 2:a003996

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lee E, Marcucci M, Daniell L, Pypaert M, Weisz OA, Ochoa GC, Farsad K, Wenk MR, De Camilli P (2002) Amphiphysin 2 (Bin1) and T-tubule biogenesis in muscle. Science 297:1193–1196

    Article  CAS  PubMed  Google Scholar 

  • Logothetis DE, Petrou VI, Adney SK, Mahajan R (2010) Channelopathies linked to plasma membrane phosphoinositides. Pflugers Arch 460:321–341

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Maeda K, Anand K, Chiapparino A, Kumar A, Poletto M, Kaksonen M, Gavin AC (2013) Interactome map uncovers phosphatidylserine transport by oxysterol-binding proteins. Nature 501:257–261

    Article  CAS  PubMed  Google Scholar 

  • McCarl CA, Picard C, Khalil S, Kawasaki T, Rother J, Papolos A, Kutok J, Hivroz C, Ledeist F, Plogmann K et al (2009) ORAI1 deficiency and lack of store-operated Ca2+ entry cause immunodeficiency, myopathy, and ectodermal dysplasia. J Allergy Clin immunol 124:1311–1318.e1317

    Google Scholar 

  • Minamisawa S, Oshikawa J, Takeshima H, Hoshijima M, Wang Y, Chien KR, Ishikawa Y, Matsuoka R (2004) Junctophilin type 2 is associated with caveolin-3 and is down-regulated in the hypertrophic and dilated cardiomyopathies. Biochem Biophys Res Commun 325:852–856

    Article  CAS  PubMed  Google Scholar 

  • Moore DH, Ruska H (1957) Electron microscope study of mammalian cardiac muscle cells. J Biophys Biochem Cytol 3:261–268

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nakai J, Dirksen RT, Nguyen HT, Pessah IN, Beam KG, Allen PD (1996) Enhanced dihydropyridine receptor channel activity in the presence of ryanodine receptor. Nature 380:72–75

    Article  CAS  PubMed  Google Scholar 

  • Nakai J, Sekiguchi N, Rando TA, Allen PD, Beam KG (1998a) Two regions of the ryanodine receptor involved in coupling with L-type Ca2+ channels. J Biol Chem 273:13403–13406

    Article  CAS  PubMed  Google Scholar 

  • Nakai J, Tanabe T, Konno T, Adams B, Beam KG (1998b) Localization in the II-III loop of the dihydropyridine receptor of a sequence critical for excitation-contraction coupling. J Biol Chem 273:24983–24986

    Article  CAS  PubMed  Google Scholar 

  • Nakatsu F, Baskin JM, Chung J, Tanner LB, Shui G, Lee SY, Pirruccello M, Hao M, Ingolia NT, Wenk MR et al (2012) PtdIns4P synthesis by PI4KIIIα at the plasma membrane and its impact on plasma membrane identity. J Cell Biol 199:1003–1016

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Navedo MF, Santana LF (2013) CaV1.2 sparklets in heart and vascular smooth muscle. J Mol Cell Cardiol 58:67–76

    Article  CAS  PubMed  Google Scholar 

  • Navedo MF, Cheng EP, Yuan C, Votaw S, Molkentin JD, Scott JD, Santana LF (2010) Increased coupled gating of L-type Ca2+ channels during hypertension and Timothy syndrome. Circ Res 106:748–756

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nishi M, Mizushima A, Nakagawara K, Takeshima H (2000) Characterization of human junctophilin subtype genes. Biochem Biophys Res Commun 273:920–927

    Article  CAS  PubMed  Google Scholar 

  • Prakriya M, Lewis RS (2015) Store-operated calcium channels. Physiol Rev 95:1383–1436

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Protasi F, Takekura H, Wang Y, Chen SR, Meissner G, Allen PD, Franzini-Armstrong C (2000) RYR1 and RYR3 have different roles in the assembly of calcium release units of skeletal muscle. Biophys J 79:2494–2508

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Protasi F, Paolini C, Nakai J, Beam KG, Franzini-Armstrong C, Allen PD (2002) Multiple regions of RyR1 mediate functional and structural interactions with α1S-dihydropyridine receptors in skeletal muscle. Biophys J 83:3230–3244

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rohács T, Lopes CM, Jin T, Ramdya PP, Molnar Z, Logothetis DE (2003) Specificity of activation by phosphoinositides determines lipid regulation of Kir channels. Proc Natl Acad Sci USA 100:745–750

    Article  PubMed  PubMed Central  Google Scholar 

  • Sanders KM, Koh SD, Ro S, Ward SM (2012) Regulation of gastrointestinal motility – insights from smooth muscle biology. Nat Rev Gastroenterol Hepatol 9:633–645

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sheridan DC, Cheng W, Ahern CA, Mortenson L, Alsammarae D, Vallejo P, Coronado R (2003) Truncation of the carboxyl terminus of the dihydropyridine receptor β1a subunit promotes Ca2+ dependent excitation-contraction coupling in skeletal myotubes. Biophys J 84:220–237

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sheridan DC, Takekura H, Franzini-Armstrong C, Beam KG, Allen PD, Perez CF (2006) Bidirectional signaling between calcium channels of skeletal muscle requires multiple direct and indirect interactions. Proc Natl Acad Sci USA 103:19760–19765

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sobie EA, Ramay HR (2009) Excitation-contraction coupling gain in ventricular myocytes: insights from a parsimonious model. J Physiol 587:1293–1299

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Song LS, Guatimosim S, Gomez-Viquez L, Sobie EA, Ziman A, Hartmann H, Lederer WJ (2005) Calcium biology of the transverse tubules in heart. Ann N Y Acad Sci 1047:99–111

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stefan CJ, Manford AG, Baird D, Yamada-Hanff J, Mao Y, Emr SD (2011) Osh proteins regulate phosphoinositide metabolism at ER-plasma membrane contact sites. Cell 144:389–401

    Article  CAS  PubMed  Google Scholar 

  • Stiber J, Hawkins A, Zhang ZS, Wang S, Burch J, Graham V, Ward CC, Seth M, Finch E, Malouf N et al (2008) STIM1 signalling controls store-operated calcium entry required for development and contractile function in skeletal muscle. Nat Cell Biol 10:688–697

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Suh BC, Horowitz LF, Hirdes W, Mackie K, Hille B (2004) Regulation of KCNQ2/KCNQ3 current by G protein cycling: the kinetics of receptor-mediated signaling by Gq. J Gen Physiol 123:663–683

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Suh BC, Kim DI, Falkenburger BH, Hille B (2012) Membrane-localized β-subunits alter the PIP2 regulation of high-voltage activated Ca2+ channels. Proc Natl Acad Sci USA 109:3161–3166

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Szentpetery Z, Varnai P, Balla T (2010) Acute manipulation of Golgi phosphoinositides to assess their importance in cellular trafficking and signaling. Proc Natl Acad Sci USA 107:8225–8230

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Takeshima H, Komazaki S, Nishi M, Iino M, Kangawa K (2000) Junctophilins: a novel family of junctional membrane complex proteins. Mol Cell 6:11–22

    CAS  PubMed  Google Scholar 

  • Tanabe T, Beam KG, Adams BA, Niidome T, Numa S (1990) Regions of the skeletal muscle dihydropyridine receptor critical for excitation-contraction coupling. Nature 346:567–569

    Article  CAS  PubMed  Google Scholar 

  • van Oort RJ, Garbino A, Wang W, Dixit SS, Landstrom AP, Gaur N, De Almeida AC, Skapura DG, Rudy Y, Burns AR et al (2011) Disrupted junctional membrane complexes and hyperactive ryanodine receptors after acute junctophilin knockdown in mice. Circulation 123:979–988

    Article  PubMed  PubMed Central  Google Scholar 

  • Vivas O, Kruse M, Hille B (2014) Nerve growth factor sensitizes adult sympathetic neurons to the proinflammatory peptide bradykinin. J Neurosci 34:11959–11971

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang SQ, Song LS, Lakatta EG, Cheng H (2001) Ca2+ signalling between single L-type Ca2+ channels and ryanodine receptors in heart cells. Nature 410:592–596

    Article  CAS  PubMed  Google Scholar 

  • Whorton MR, MacKinnon R (2011) Crystal structure of the mammalian GIRK2 K+ channel and gating regulation by G proteins, PIP2, and sodium. Cell 147:199–208

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wu L, Bauer CS, X-g Z, Xie C, Yang J (2002) Dual regulation of voltage-gated calcium channels by PtdIns(4,5)P2. Nature 419:947–952

    Article  CAS  PubMed  Google Scholar 

  • Xu M, Zhou P, Xu SM, Liu Y, Feng X, Bai SH, Bai Y, Hao XM, Han Q, Zhang Y et al (2007) Intermolecular failure of L-type Ca2+ channel and ryanodine receptor signaling in hypertrophy. PLoS Biol 5:e21

    Article  PubMed  PubMed Central  Google Scholar 

  • Zaydman MA, Cui J (2014) PIP2 regulation of KCNQ channels: biophysical and molecular mechanisms for lipid modulation of voltage-dependent gating. Front Physiol 5:195

    Article  PubMed  PubMed Central  Google Scholar 

  • Zaydman MA, Silva JR, Delaloye K, Li Y, Liang H, Larsson HP, Shi J, Cui J (2013) Kv7.1 ion channels require a lipid to couple voltage sensing to pore opening. Proc Natl Acad Sci USA 110:13180–13185

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang H, He C, Yan X, Mirshahi T, Logothetis DE (1999) Activation of inwardly rectifying K+ channels by distinct PtdIns(4,5)P2 interactions. Nat Cell Biol 1:183–188

    Article  CAS  PubMed  Google Scholar 

  • Zhang H, Craciun LC, Mirshahi T, Rohács T, Lopes CM, Jin T, Logothetis DE (2003) PIP2 activates KCNQ channels, and its hydrolysis underlies receptor-mediated inhibition of M currents. Neuron 37:963–975

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

Special thanks to Dr. Rose Ellen Dixon for critical comments on the chapter.

Competing Interests

The author declares that no competing interests exist.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eamonn J. Dickson .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Nature Singapore Pte Ltd.

About this chapter

Cite this chapter

Dickson, E.J. (2017). Endoplasmic Reticulum-Plasma Membrane Contacts Regulate Cellular Excitability. In: Tagaya, M., Simmen, T. (eds) Organelle Contact Sites. Advances in Experimental Medicine and Biology, vol 997. Springer, Singapore. https://doi.org/10.1007/978-981-10-4567-7_7

Download citation

Publish with us

Policies and ethics