Skip to main content

How Do Mineral Deposits Form and Transform? A Systematic Approach

  • Chapter
  • First Online:
Minerals and Allied Natural Resources and their Sustainable Development

Part of the book series: Springer Geology ((SPRINGERGEOL))

Abstract

Formation and transformation of mineral deposits are interactions of geospheres , one including the atmosphere, hydrosphere, biosphere, lithosphere, and asthenosphere and the other involving the mantle and the core of the earth. Complex chemical and thermal interactions between these two geospheres have led to distribution and concentration of elements and even, later modifications, producing the mineral or ore deposits of today. The essential processes involve magmatism, hydrothermal, and sedimentary processes with a strong impact of tectonism and in places, of weathering and erosion. The genetic processes vary in details. The principal ones are outlined below with the principal products in parentheses: (1) Essentially magmatic processes (Ni, Cu, PGE Cr, Fe–Ti); (2) Pegmatitic processes (rare metals, ceramic, and radioactive elements); (3) Essentially magmatic hydrothermal processes (Sn, W, U, Cu, Mo, REE ); (4) Essentially amagmatic hydrothermal processes (Cu, Pb–Zn, Au, U); (5) Sedimentary (-diagenetic) processes (Fe, Mn, U, Sn, Ti, monazite, phosphorite, carbonate rocks, rock salt gypsum); (6) Lateritic and non-lateritic residual processes (Fe, Mn, Al, Ni, and clays); (7) Supergene oxidation and enrichment (Cu, Ag, Au, U); (8) Biogeochemical degradation of biomass (peat-lignite-coal, natural gas, and oil).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Paragenetic association: a set of genetically related minerals.

    Paragenetic sequence in a mineral association connotes sequence of mineral deposition in an association of minerals, where the constituent phases bear evidence of being genetically related.

References

  • Ahn JH, Busek PR (1990) Hematite nanospheres of possible colloidal origin from a Precambrian banded iron formation. Science 250:111–113

    Article  Google Scholar 

  • Arndt NT, Lesher CM, Czamanske GK (2005) Mantle-derived magmas and magmatic Ni–Cu–PGE deposits. In: Hedenquist JW, Thompson JFH, Goldfarb RJ, Richards JP (eds) Econ Geol, 5–23

    Google Scholar 

  • Ayres DE (1972) Genesis of iron-bearing minerals in banded iron formations mesobands in the Dales Gorge Member, Hammersley Group, Western Australia. Econ Geol 67:1214–1233

    Article  Google Scholar 

  • Bardossy GY, Aleva GJJ (1990) Lateritic bauxites. Developments in economic geology. Elsevier, Amsterdam, vol 27, 624 pp

    Google Scholar 

  • Barnes HL (1979) Solubilities of ore minerals. In: Barnes HL (ed) Geochemistry of hydrothermal ore deposits, 2nd edn. Wiley, New York, pp 60–404

    Google Scholar 

  • Barnes JW (1988) Ores and minerals. Introducing economic geology. Open University Press, Milton Keynes, 181 pp

    Google Scholar 

  • Barnes S-J, Lightfoot PC (2005) Formation of magmatic nickel sulfides and processes affecting their copper and platinum group element contents. In: Hedenquist JW, Thompson JFH, Goldfarb RJ, Richards JP (eds) Econ Geol, 179–213

    Google Scholar 

  • Barnes S-J, Maier WD (2002) Platinum-group element distributions in the Rustenberg layered suite of the Bushveld complex, South Africa. In: Cabri LJ (ed) The geology, geochemistry, mineralogy and mineral beneficiation of platinum-group elements. Can Inst Mining Metall Pet Spec vol 54:431–458

    Google Scholar 

  • Barnicoat et al (1997) Hydrothermal gold mineralization in the Witwatersrand basin. Nature 386:820–824

    Article  Google Scholar 

  • Barrie CT, Hannington MD (1999) Classification of volcanic-associated massive sulfide deposits based on host-rock composition. Rev Econ Geol 8:2–11

    Google Scholar 

  • Bau M, Moller P (1993) Rare earth element systematics of the chemically precipitated component in Early Precambrian iron formation and the evolution of the terrestrial atmosphere-hydrosphere-lithosphere system. Geochim Cosmochim Acta 57:2239–2249

    Article  Google Scholar 

  • Bekker A, Slack JF, Planavsky N, Krapez B, Hofman A, Konhauser KO, Rouxel OJ (2010) Iron formation: the sedimentary product of a complex interplay amongst mantle, tectonic, oceanic and biospheric processes. Econ Geol 105:467–508

    Article  Google Scholar 

  • Beukes NJ (1983) Paleoenvironmental setting of iron-formation in the depositional basin of the Transvaal Supergroup, South Africa. In: Trendall AF, Morris RC (eds) Iron formations: facts and problems. Elsevier, Amsterdam, pp 139–209

    Google Scholar 

  • Beukes NJ, Gutzmer J, Mukhopadhyay, J (2002) The geology and genesis of high grade hematite iron deposits. Iron ore conference vol, Sept 2002, Perth, pp 23–29

    Google Scholar 

  • Blevin PL, Chappell BW (1992) The role of magma sources, oxidation states and fractionation in determining the granite metallogeny of eastern Australia. Trans R Soc Edinburgh: Earth Sci 83:305–316

    Article  Google Scholar 

  • Brimhall GH (1991) The genesis of ores. Sci Am, 48–55

    Google Scholar 

  • Burnham CW (1967) Hydrothermal fluids at the magmatic stage. In: Barnes HL (ed) Geochemistry of hydrothermal ore deposits. Holt, Rinehart and Winston Inc, New York, pp 34–76

    Google Scholar 

  • Burnham CW (1979) Magmas and hydrothermal fluids. In: Barnes HL (ed) Geochemistry of hydrothermal ore deposits, 2nd edn. Wiley, New York, pp 71–136

    Google Scholar 

  • Burnham CW (1997) Magmas and hydrothermal fluids. In: Barnes HL (ed) Geochemistry of hydrothermal ore deposits, 3rd edn. Wiley, New York, pp 63–123

    Google Scholar 

  • Burnham CW, Ohmoto H (1980) Late-stage processes of felsic magmatism. Mining Geol, Spec Issue 8:1–11

    Google Scholar 

  • Butt CRM (1989) Genesis of supergene gold deposits in the lateritic regolith of the Yilgarn block, Western Australia. Econ Geol Monogr 6:460–470

    Google Scholar 

  • Cairns-Smith AG (1978) Precambrian solution photochemistry, inverse segregation and banded iron formations. Nature 76:807–808

    Article  Google Scholar 

  • Campbell IH, Naldrett AJ (1979) The influence of silicate: sulfide ratios on the geochemistry of magmatic sulfides. Econ Geol 74:1503–1506

    Article  Google Scholar 

  • Campbell IH, Naldrett AJ, Barnes SJ (1983) A model for the origin of the platinum group-rich sulfide horizons in the Bushveld and Stillwater complexes. J Petrol 24:133–165

    Article  Google Scholar 

  • Candela PA, Piccoli PM (1995) Model ore metal partitioning from melts into vapour/brine mixtures. In: Thompson JFH (ed) Magmas, fluid and ore deposits. Mineral Assoc Can Short Course Ser 23:101–127

    Google Scholar 

  • Cathles LM, Erendi AHJ, Barrie T (1997) How long can a hydrothermal system be sustained by a single intrusive event? Econ Geol 92:766–771

    Article  Google Scholar 

  • Cawthorn RG (1996) Layered intrusions. Dev in Petrology 15, Elsevier, Amsterdam, 531 pp

    Google Scholar 

  • Cawthorn RG, Barnes S-J, Balhaus C, Malitch KN (2005) Platinum group elements, chromium and vanadium deposits in mafic and ultramafic rocks. In: Hedenquist JW, Thompson JFH, Goldfarb RJ, Richards JP (eds) Econ Geol, 215–249

    Google Scholar 

  • Cerný P (1991) Rare element granitic pegmatites Pt II: regional to global environments and petrogenesis. Geosci Can 18:68–81

    Google Scholar 

  • Cerný P, Ercit TS (2005) Classification of granitic pegmatites. Can Min 43:2005–2026

    Article  Google Scholar 

  • Cerný P, Blevin PL, Cuney M, London D (2005) Granite-related ore deposits. In: Hedenquist JW, Thompson JFH, Goldfarb RJ, Richards JP (eds) Econ Geol, 337–370

    Google Scholar 

  • Chattopadhyay A (2010) A review of the structural characteristics of orogenic gold deposits, with special reference to Indian gold fields. In: Deb M, Goldfarb RJ (eds) Gold metallogeny: India and beyond. Narosa Publ House, New Delhi, pp 123–153

    Google Scholar 

  • Cloud P (1973) Paleoecological significance of banded iron formation. Econ Geol 68:113–1135

    Article  Google Scholar 

  • Collins WJ, Beams SD, White AJR, Chappell BW (1982) Nature and origin of A-type granites with particular reference to southeastern Australia. Contrib Mineral Pet 80:189–200

    Article  Google Scholar 

  • Cox SF (2005) Coupling between deformation, fluid pressures and fluid flow in ore producing hydrothermal systems at depth in the crust. In: Hedenquist JW, Thompson JFH, Goldfarb RJ, Richards JP (eds) Econ Geol, 39–75

    Google Scholar 

  • Craig JR, Skinner BJ, Vaughan DI (2001) Resources of the earth: origin, use and environmental impact. 3rd edn. Prentice Hall, US, 520 pp

    Google Scholar 

  • Cronan DS (1980) Under water minerals. Acadamic Press, London 350 pp

    Google Scholar 

  • Cuney M (2010) Evolution of uranium fractionation processes through time: driving the secular variation of uranium deposit types. Econ Geol 105(3):553–569

    Article  Google Scholar 

  • Czamanske GK (1959) Sulfide solubility in aqueous solutions. Econ Geol 54:57–63

    Article  Google Scholar 

  • Deb M (1979) Polymetamorphism of ores in Precambrian stratiform massive sulphide deposits at Ambaji-Deri, western India. Miner Deposita 14:21–31

    Article  Google Scholar 

  • Deb M (1990) Regional metamorphism of sediment-hosted, conformable base metal sulfide deposits in the Aravalli-Delhi orogenic belt, NW India. In: Spry P, Bryndzia L (eds) Regional metamorphism of ore deposits. VSP, Netherlands, pp 117–140

    Google Scholar 

  • Deb M (2014) Precambrian geodynamics and metallogeny of the Indian shield. Ore Geol Rev 57:1–28

    Article  Google Scholar 

  • Deb M, Bhattacharya AK (1980) Geological setting and conditions of metamorphism of Rajpura-Dariba polymetallic ore deposit, Rajasthan, India. Proceedings V IAGOD symposium 1, Schweiserbart, Stuttgart, pp 679–697

    Google Scholar 

  • Detrick RS, Buhl P, Vera E, Mutter J, Orcutt J, Madsen J, Brocher T (1987) Multichannel seismic imaging of a crustal magma chamber along the East Pacific Rise. Nature 326:35–41

    Article  Google Scholar 

  • Dill HG (2010) The ‘chessboard classification scheme of mineral deposits: mineralogy and geology from aluminum to zirconium. Earth Sci Rev 100:1–420

    Article  Google Scholar 

  • Drever JI (1974) Geochemical model for the origin of Precambrian banded iron formations. Geol Soc Am Bull 85:1099–1106

    Article  Google Scholar 

  • Einaudi MT, Meinert LD, Newberry RJ (1981) Skarn deposits. In: Skinner BJ (ed) Econ Geol 75th Anniv vol, 317–391

    Google Scholar 

  • Eldrige CS, Barton PB, Ohmoto H (1983) Mineral textures and their bearing on the formation of the Kuroko ore bodies. In: Ohmoto H, Skinner BJ (eds) The Kuroko and related massive sulphide deposits. Econ Geol Monogr 5:241–281

    Google Scholar 

  • Emmons WH (1936) Hypogene zoning in metalliferous lodes. Rept 1, 16th Int Geol Congr, pp 417–432

    Google Scholar 

  • Evans AM (1997) An introduction to economic geology and its environmental impacts. Blackwell Sci Ltd, Oxford 364 pp

    Google Scholar 

  • Force ER, Cannon WF (1988) Depositional model for shallow marine manganese deposits around black shale basins. Econ Geol 83:93–117

    Article  Google Scholar 

  • Franklin JM (1995) Volcanic-associated massive sulphide base metals. In: Eckstrand OR, Sinclair WD, Thorpe RI (eds) Geology of canadian mineral deposit types. Geol Surv Can, Geol Can 8:158–183

    Google Scholar 

  • Franklin JM, Lydon JW, Sangster DF (1981) Volcanic-associated massive sulfide deposits. In: Skinner BJ (ed) Econ Geol, 485–627

    Google Scholar 

  • Franklin JM, Gibson HL, Jonasson IR, Galley AO (2005) Volcanogenic massive sulfide deposits. In: Hedenquist JW, Thompson JFH, Goldfarb RJ, Richards JP (eds) Econ Geol, 523–560

    Google Scholar 

  • Frimmel HE (2005) The case for a modified paleoplacer model for Witwatersrand gold. SEG Newslett 60:12–14

    Google Scholar 

  • Frimmel HE, Groves DI, Kirk J, Ruiz J, Chesley J, Minter, WEL (2005) The formation and preservation of the Witwatersrand gold fields, the world’s largest gold province. In: Hedenquist JW, Thompson JFH, Goldfarb RJ, Richards JP (eds) Econ Geol, 769–797

    Google Scholar 

  • Garven G, Ge S, Person MA, Sverjensky DA (1993) Genesis of stratabound ore deposits in the mid-continent basins of North America. Amer J Sci 293:497–568

    Article  Google Scholar 

  • Goldfarb RJ, Groves DI, Gardoll S (2001) Orogenic gold and geologic time: a global synthesis. Ore Geol Rev 18:1–75

    Article  Google Scholar 

  • Goldfarb RJ, Baker T, Dubé B, Groves D, Hart C, Robert F, Gosselin P (2005) Distribution, character and genesis of gold deposits in metamorphic terrains. In: Hedenquist JW, Thompson JFH, Goldfarb RJ, Richards JP (eds) Econ Geol, 407–450

    Google Scholar 

  • Goldfarb RJ, Hart C, Davis G, Groves D (2007) East Asian gold—deciphering the anomaly of Phanerozoic gold in Precambrian continents. Econ Geol 102:341–346

    Article  Google Scholar 

  • Goldhaber MB, Reynolds RL, Rye RO (1978) Origin of a south Texas roll-type uranium deposit. II: Sulfide petrology and sulfur isotope studies. Econ Geol 73:1690–1705

    Article  Google Scholar 

  • Goodfellow WD (2004) Geology, genesis and exploration of SEDEX deposits, with emphasis on the Selwyn basin, Canada. In: Deb M, Goodfellow WD (eds) Sediment-hosted lead-zinc sulphide deposits. Narosa Publ House, New Delhi, pp 24–99

    Google Scholar 

  • Goodfellow WD, Franklin JM (1993) Geology, mineralogy and chemistry of sediment-hosted clastic massive sulphides in shallow cores, Middle valley, northern Juan de Fuca ridge. Econ Geol 88:2033–2064

    Article  Google Scholar 

  • Goodfellow WD, Lydon JW, Turner RJW (1993) Geology and genesis of stratiform sediment-hosted (SEDEX) zinc-lead-silver sulphide deposits. Miner Deposit Model GAC Spec Pap 40:201–252

    Google Scholar 

  • Goudie A (1973) Duricrusts in tropical and subtropical landscapes. Oxford Press, UK, 174 pp

    Google Scholar 

  • Gross GA (1966) Principal types of iron formations and derived ores. Can Min Met Bull 59(646):150–153

    Google Scholar 

  • Gross GA (1993) Industrial and genetic models for iron ores in iron-formations. Miner Deposit Model GAC Spec Pap 40:151–170

    Google Scholar 

  • Gross GA, Mcleod CR (1987) Metallic minerals on the deep seabed. Geol Surv Can 86–21, 65

    Google Scholar 

  • Groves D, Goldfarb RJ, Gebre-Mariam M, Hagemann SG, Robert F (1998) Orogenic gold deposits—a proposed classification in the context of their crustal distribution and relationship to other gold deposit types. Ore Geol Rev 13:7–27

    Article  Google Scholar 

  • Groves DI, Vielreicher RM, Goldfarb RJ, Condie KC (2005) Controls on the heterogenous distribution of mineral deposits through time. Geol Soc London Spec publ 248:71–101

    Article  Google Scholar 

  • Groves DI, Bierlein FP, Meinert LD, Hitzman MW (2010) Iron oxide–copper–gold (IOCG) deposits through earth history: implications for origin, lithospheric setting and distinction from other epigenetic iron oxide deposits. Econ Geol 105:641–653

    Article  Google Scholar 

  • Groves DI, Goldfarb RJ, Santosh M (2016) The conjunction of factors that lead to formation of giant gold provinces and deposits in non-arc settings. Geosci Front 7:303–314

    Article  Google Scholar 

  • Guilbert JM, Park CF (1986) The geology of ore deposits. W.H. Freeman and Co, 985 pp

    Google Scholar 

  • Han TM (1988) Origin of magnetite in Precambrian iron formations of low metamorphic grade. In: Zachrisson E (ed) Proceedings of 7th quadrennial IAGOD symposium, Schweitzerbart, Stuttgart, pp 641–656

    Google Scholar 

  • Hart CJR, Mair JL, Goldfarb RJ, Groves DI (2004) Source and redox controls on metallogenic variations in ore systems, Tombstone tungsten belt, Yokon, Canada. Trans R Soc Edinburgh, Earth Scs 95:339–356

    Article  Google Scholar 

  • Haynes D (2006) The Olympic Dam ore deposit discovery—a personal view. SEG Newslett 66:1–15

    Google Scholar 

  • Hedenquist JW, Arribas A Jr, Gonzales-Urien E (2000) Exploration for epithermal gold deposits. Rev in Econ Geol 13:245–277

    Google Scholar 

  • Heinrich CA, Ryan CG, Mernagh TP, Eadington PJ (1992) Seggregation of ore metals between magmatic brine and vapour: a fluid inclusion study using PIXE microanalyses. Econ Geol 87:1566–1583

    Article  Google Scholar 

  • Henry CD, Elson HB, Macintosh WC, Heizler MT, Castor SB (1997) Brief duration of hydrothermal activity at Round Mountain, Nevada, determined from 40Ar/39Ar geochronology. Econ Geol 92:807–826

    Article  Google Scholar 

  • Hiemstra SA (1985) The distribution of some platinum group elements in the UG2 chromitite layer of the Bushveld complex. Econ Geol 80:944–957

    Article  Google Scholar 

  • Hitzman MW (1999) Characteristics and worldwide occurrence of Irish-type Zn–Pb–(Ag) deposits. In: Oliver H, Pongratz J, McGoldrick P (eds) Basin, fluid and Zn–Pb ores. CODES Spec Publ, pp 93–116

    Google Scholar 

  • Hitzman MW, Oreskes N, Einaudi MT (1992) Geological characteristics and tectonic setting of Proterozoic iron oxide (Cu-U-Au-REE) deposits. Precambrian Res 58:241–287

    Article  Google Scholar 

  • Hitzman MW, Selly D, Bul S (2010) Formation of sedimentary rock-hosted stratiform copper deposits through Earth history. Econ Geol 105:627–639

    Article  Google Scholar 

  • Hodgson CJ (1989) The structure of shear-related, vein-type gold deposits: a review. Ore Geol Rev 4:231–273

    Article  Google Scholar 

  • Hoefs J, Schidlowski M (1967) Carbon isotope composition of carbonaceous matter from the Precambrian of the Witwatersrand System. Science 155:1096–1097

    Article  Google Scholar 

  • Holland HD (1973) The ocean: a possible source of iron in iron formations. Econ Geol 68:1169–1172

    Article  Google Scholar 

  • Holland HD (1984) The chemical evolution of the atmosphere and oceans. Princeton Univ Press, Princeton 582 pp

    Google Scholar 

  • Huston DL (1999) Stable isotopes and their significance for understanding the genesis of volcanic-hosted massive sulfide deposits: a review. Rev Econ Geol 8:151–180

    Google Scholar 

  • Huston DL, Large RR (1989) A chemical model for the concentration of gold in volcanogenic massive sulfide deposits. Ore Geol Rev 4:171–200

    Article  Google Scholar 

  • Huston DL, Pehrsson S, Eglington BM, Zaw K (2010) Geology and metallogeny of volcanic-hosted massive sulfide deposits: variations through geologic time and with tectonic setting. Econ Geol 105:571–591

    Article  Google Scholar 

  • Hutchinson RW (1981) Mineral deposits as guides to supracrustal evolution. Am Geophys Union, Evolution Earth Geodyn 5:120–140

    Article  Google Scholar 

  • Hutchinson RW, Fyfe WS, Kerrich R (1980) Deep fluid penetration and ore deposition. Min Sci Eng 12(3):107–120

    Google Scholar 

  • Institute of Mining Metallurgy (1985) High heat production (HHP) granites, hydrothermal circulation and ore genesis. In: Proceeding Conference, St Austell, Cornwall, England, 593 pp

    Google Scholar 

  • Irvine TN (1977) Origin of chromitite layers in the Muscox intrusion and other stratiform intrusions: a new interpretation. Geology 5:273–277

    Article  Google Scholar 

  • Ishihara S (1981) The granitoid series and mineralization. In: Skinner BJ (ed) Econ Geol, 458-484

    Google Scholar 

  • Isley AE (1995) Hydrothermal plumes and the delivery of iron to banded iron formation. J Geol 103:169–185

    Article  Google Scholar 

  • Jacobsen SB, Pimental-Klose MR (1988) A Nd isotope study of the Hamersley and Michipicoten banded iron formations: the source of REE and Fe in Archean oceans. Earth Planet Sci Lett 87:29–44

    Article  Google Scholar 

  • James HL (1954) Sedimentary facies of iron formation. Econ Geol 49:235–293

    Article  Google Scholar 

  • Jensen ML, Bateman AM (1981) Economic mineral deposits. Wiley, New York 593 pp

    Google Scholar 

  • Johnson CM, Beard BL, Roden EE (2008) The iron isotope fingerprints of redox and biogeochemical cycling in the modern and ancient Earth. Ann Rev Earth Planet Sci 36:457–493

    Article  Google Scholar 

  • Kappler A, Pasquero C, Konhauser KO, Newman DK (2005) Deposition of banded iron formations by anoxygenic phototropic Fe (II)-oxidising bacteria. Geology 33:865–868

    Article  Google Scholar 

  • Kato Y, Kano T, Kunugiza K (2002) Negative Ce anomaly in the banded iron formations: evidence for the emergence of oxygenated deep sea at 2.9 to 2.7 Ga. Resour Geol 52:101–110

    Article  Google Scholar 

  • Keays RR, Jowitt SM (2013) The Avebury nickel deposit, Tasmania: a case study of an unconventional nickel deposit. Ore Geol Rev 52:4–17

    Article  Google Scholar 

  • Kerrich R, Fyfe WS (1981) The gold-carbonate association: source of CO2 and CO2 fixation reactions in Archean lode gold deposits. Chem Geol 33:265–294

    Article  Google Scholar 

  • Kerrich R, Goldfarb RJ, Richards JP (2005) Metallogenic provinces in an evolving dynamic framework. In: Hedenquist JW, Thompson JFH, Goldfarb RJ, Richards JP (eds) Econ Geol, 1097–1136

    Google Scholar 

  • Kerrich R, Goldfarb RJ, Cline J, Leach D (2010) Metallogenic provinces of Laurentia in a superplume-supercontinent framework with a focus on gold. In: Deb M, Goldfarb RJ (eds) Gold metallogeny: India and beyond. Narosa Publ House, New Delhi, pp 1–29

    Google Scholar 

  • Kirk J, Ruiz J, Chesley J, Walshe J, England G (2002) A major Archean gold and crust-forming event in Kaapvaal craton, South Africa. Science 297:1856–1858

    Article  Google Scholar 

  • Kirkham RV (1989) Distribution, setting, and genesis of sediment-hosted stratiform copper deposits. In: Boyle RW, Brown AC, Jefferson CW, Jowett EC, Kirkham RV (eds) Sediment-hosted stratiform copper deposits. Geol Assoc Can Spec 36:3–38

    Google Scholar 

  • Klein C, Beukes NJ (1993) Sedimentology and geochemistry of the glaciogenic late Proterozoic Rapitan iron formations in Canada. Econ Geol 88:65–542

    Article  Google Scholar 

  • Konhauser KO, Hamade T, Morris RC, Ferris FG, Southam G, Raiswell R, Canfield D (2002) Could bacteria have formed the Precambrian banded iron formations. Geology 33:865–868

    Google Scholar 

  • Large RR, McPhie J, Gemmell JB, Herrmann W, Davidson GJ (2001) The spectrum of ore deposit types, volcanic environments, alteration halos, and related exploration vectors in submarine volcanic successions: some examples from Australia. Econ Geol 96:913–938

    Google Scholar 

  • Large RR, Meffre S, Burnett R, Guy B, Bull S, Gilbert S, Goemann K, Danyushevski L (2013) Evidence for an intrabasinal source and multiple concentration processes in the formation of the Carbon Leader Reef, Witwatersrand Supergroup, South Africa. Econ Geol 108(6):1215–1241

    Article  Google Scholar 

  • Laznicka P (1993) Precambrian empirical metallogeny, Pt a & b. Elsevier, Amsterdam 1622 pp

    Google Scholar 

  • Leach D et al (2005) Sediment-hosted lead-zinc deposits: a global perspective. In: Hedenquist JW, Thompson JFH, Goldfarb RJ, Richards JP (eds) Econ Geol, 561–608

    Google Scholar 

  • Lesher CM (1989) Komatiite-hosted nickel sulfide deposits. Rev Econ Geol 4:45–101

    Google Scholar 

  • Lesher CM, Groves DI (1986) Controls on the formation of komatiite-associated nickel–copper sulfide deposits. In: Friedrich GH (ed) Geology and metallogeny of copper deposits. Springer, Berlin, pp 43–62

    Chapter  Google Scholar 

  • Lindgren W (1933) Mineral Deposits. McGraw-Hill, New York 930 pp

    Google Scholar 

  • London D (1995) Geochemical features of peraluminous granites, pegmatites and rhyolites as sources of lithophile metal deposits. Mineral Assoc Can Short Course Sr 23:175–202

    Google Scholar 

  • London D (1997) Estimating abundances of volatiles and other mobile components in evolved silicate melts through mineral-melt equilibria. J Pet 38:1691–1706

    Article  Google Scholar 

  • London D (2005) Granitic pegmatites: an assessment of the current concepts and a direction for the future. Lithos 80:281–303

    Article  Google Scholar 

  • Lydon JW (1984) Volcanogenic massive sulfide deposits. Part 1: a descriptive model. Geosci Can 11:195–202

    Google Scholar 

  • Lydon JW (1988) Ore deposits models#14. Volcanogenic massive sulfide deposits. Pt. 2. Genetic models. Geosci Can 15:43–65

    Google Scholar 

  • Lydon JW (2004) Genetic models for Sullivan and other SEDEX deposits. In: Deb M, Goodfellow WD (eds) Sediment-hosted lead-zinc sulphide deposits. Narosa Publ House, New Delhi, pp 149–190

    Google Scholar 

  • Maclean WH (1969) Liquidus phase relationships in the FeS–FeO–Fe3O4–SiO2 system, and their application in geology. Econ Geol 64:84–865

    Article  Google Scholar 

  • Mann AW (1984) Mobility of gold and silver in lateritic weathering profile: some observations from Western Australia. Econ Geol 79:38–49

    Article  Google Scholar 

  • Marshall B, Gilligan LB (1989) Durchbewegung structure, piercement cusps, and piercement veins in massive sulfide deposits: formation and interpretation. Econ Geol 84:2311–2319

    Article  Google Scholar 

  • Matveev S, Ballhaus C (2002) Role of water in the origin of podiform chromite deposits. Earth Planet Sci Lett 203:235–243

    Article  Google Scholar 

  • Mavrogenes JA, O’Neill H (1999) The relative effects of pressure, temperature and oxygen fugacity on the solubility of sulfide in mafic magmas. Geochim Cosmochim Acta 63:1173–1180

    Article  Google Scholar 

  • Maynard JB (1983) Geochemistry of sedimentary ore deposits. Springer, Heidelberg 305 pp

    Book  Google Scholar 

  • Maynard JB (2010) The chemistry of manganese ores through time: a signal of increasing diversity of Earth-surface environments. Econ Geol 105:535–552

    Article  Google Scholar 

  • Minter WEL (1999) Irrefutable detrital origin of Witwatersrand gold and evidence of eolian signatures. Econ Geol 94:665–670

    Article  Google Scholar 

  • Minter WEL (2006) The sedimentary setting of Witwatersrand placer mineral deposits in Archean atmosphere. In: Kesler SE, Ohmoto H (eds) Evolution of early Earth’s atmosphere and biosphere—constraints from ore deposits. Geol Soc Am Mem 198:105–119

    Google Scholar 

  • Minter WEL, Goedhart M, Knight J, Frimme HE (1993) Morphology of Witwatersrand gold grains from the Basal Reef: evidence for their detrital origin. Econ Geol 88:237–248

    Article  Google Scholar 

  • Mookherjee A (1976) Ores and metamorphism: temporal and genetic relationships. In: Wolf KH (ed) Handbook of Stratabound and Stratiform ore deposits, v 4. Elsevier, Amsterdam, pp 203–260

    Google Scholar 

  • Mookherjee A (1999) Ore genesis—a holistic approach. Allied Publishers Pvt Ltd, New Delhi 657 pp

    Google Scholar 

  • Mookherjee A (2000) Crustal fluids and formation of mineral deposits. The Vth Foundation lecture, Indian Geological Congress, Pune, pp 1–19

    Google Scholar 

  • Morey GB (1999) High grade iron ore deposits of the Mesabi Range, Minnesota: products of a continental scale Proterozoic ground water flow system. Econ Geol 94:133–142

    Article  Google Scholar 

  • Mote TI, Becker TA, Renne P, Brimhall GH (2001) Chronology of Exotic Mineralization at El Salvador, Chile, by 40Ar/39Ar dating of copper wad and supergene alunite. Econ Geol 96:351–366

    Article  Google Scholar 

  • Mukherjee I, Large RR (2015) Trends in nutrient supply, productivity and atmosphere oxygenation through the Boring Billion. AGU-GAC-MAC-CGU meeting, Montreal, Canada, Abstract PG12A-04

    Google Scholar 

  • Mungall JE (1999) Why are large Ni–Cu deposits found only within plates? Geological Association of Canada, Mineral Association of Canada annual meeting, abstract with program 24, p 88

    Google Scholar 

  • Mungall JE (2002) Kinetic controls on the partitioning of trace elements between silicate and sulfide liquids. J Pet 43:749–768

    Article  Google Scholar 

  • Murck BW, Campbell IH (1986) The effects of temperature, oxygen fugacity and melt composition on the behavier of chromium in basic and ultrabasic melts. Geochim Cosmochim Acta 50:1871–1887

    Article  Google Scholar 

  • Naldrett AJ (1989) Magmatic sulfide deposits. Oxford University Press, Oxford 186 pp

    Google Scholar 

  • Naldrett AJ (2004) Magmatic sulfide deposits: geology, geochemistry and exploration. Springer, Berlin 727 pp

    Book  Google Scholar 

  • Naldrett AJ, MacDonald AJ (1980) Tectonic setting of some Ni–Cu sulfide ores: their importance in genesis and exploration. Geol Assoc Can Spec Pap 20:57–633

    Google Scholar 

  • Nashlund HR, Henriquez F, Nystrom JO, Vivallo W, Dobbs, FM (2002) Magmatic iron ores and associated mineralization: examples from Chilean High Andes and coastal Cordillera. In: Potter TM (ed), Hydrothermal iron oxide-copper-gold and related deposits: a global perspective. PGC Publ, Australia, vol 2, pp 207–226

    Google Scholar 

  • Nesbitt BE, Murowchic JB, Muehlenbachs K (1986) Dual origins of lode gold deposits in the Canadian Cordillera. Geology 14(6):50–506

    Article  Google Scholar 

  • Nicholson K (1992) Genetic types of manganese oxide deposits in Scotland: indicators of paleo-ocean spreading rate and a Devonian geochemical mobility boundary. Econ Geol 87:1301–1309

    Article  Google Scholar 

  • Northrop HR, Goldhaber MB (1990) Genesis of the tabular-type vanadium-uranium deposits of the Henry basin, Utah. Econ Geol 85:215–268

    Article  Google Scholar 

  • Norton SA (1973) Laterite and bauxite formation. Econ Geol 68:353–361

    Article  Google Scholar 

  • Norton D (1977) Fluid circulation in the Earth’s crust. In: Heacock JD (ed) The Earth’s crust. Am Geophy Union, Washington, Am Geophy Mono 20, pp 693–704

    Google Scholar 

  • Pal N, Mishra B (2002) Alteration geochemistry and fluid inclusion characteristics of the greenstone-hosted gold deposit at Hutti, Eastern Dharwar Craton, India. Miner Deposita 37:722–736

    Article  Google Scholar 

  • Partington GA, Williams PJ (2000) Proterozoic lode gold and (Iron)–Copper–Gold deposits: a comparison of Australian and global examples. Rev Econ Geol 13:69–101

    Google Scholar 

  • Partington GA, McNaughton NJ, Williams I (1995) A review of geology, mineralization and geochronology of the Greenbushes pegmatites, Western Australia. Econ Geol 90:616–635

    Article  Google Scholar 

  • Phillips GN, Law JDM (1997) Hydrothermal origin for Witwatersrand gold. SEG Newslett 31:26–33

    Google Scholar 

  • Phillips GN, Law JDM (2000) Witwatersrand goldfields: geology, genesis and exploration. Rev Econ Geol 13:439–500

    Google Scholar 

  • Philpotts AR (1967) Origin of certain iron–titanium oxide and apatite rocks. Econ Geol 62:15–303

    Article  Google Scholar 

  • Pohl WL (2011) Economic geology, principles and practice. metals, minerals, coal and hydrocarbons—introduction to formation and sustainable exploitation of mineral deposits. Wiley-Blackwell, Sussex, p 663

    Book  Google Scholar 

  • Pollard PJ (1995) Geology of rare metal deposits: an introduction and overview. Econ Geol 90:489–494

    Article  Google Scholar 

  • Porter TM (ed) (2000) Hydrothermal iron oxide copper–gold and related deposits: a global perspective. Australian Mineral Foundation, Adelaide 349 pp

    Google Scholar 

  • Porter TM (ed) (2002) Hydrothermal iron oxide copper-gold and related deposits: perspective 2. PGC Publ, Adelaide, vol 2, 367 pp

    Google Scholar 

  • Poulsen KH (1995) Lode gold. In: Eckstrand OR, Sinclair WD, Thorpe RI (eds) Geology of Canadian mineral deposit types. Geological Survey of Canada, Geology of Canada vol 8, pp 323–328

    Google Scholar 

  • Poulsen KH, Robert F, Dubé B (2000) Geologial classification of Canadian gold deposits. Geol Surv Can Bull 540:106

    Google Scholar 

  • Pretorius DA (1976) The nature of the Witwatersrand gold–uranium deposits. In: Wolf, KH (ed) Handbook of stratabound and stratiform ore deposits, Amsterdam, Elsevier, vol 7, pp 29–88

    Google Scholar 

  • Ramesh Babu PV (1999) Rare metals and rare earth pegmatites of central India. In: Mahadevan TM, Dhanaraju R (eds), Expl Res for Atom Miner 12:7–52

    Google Scholar 

  • Rasmussen B, Fletcher IR, Muhling JR, Thorne WS, Broadbent GC (2007) Prolonged history of episodic fluid flow in giant hematite orebody: evidence from the U-Pb geochemistry of hydrothermal xenotime. Earth Planet Sci Lett 258:249–259

    Article  Google Scholar 

  • Reed MH (1997) Hydrothermal alteration and its relationship to ore fluid composition. In: Barnes HL (ed) Geochemistry of hydrothermal ore deposits. 3rd edn, Wiley, pp 303–366

    Google Scholar 

  • Richards JP (2013) Giant ore deposits formed by optimal alignments and combination of geological processes. Nature Geosci 6(11):911–916

    Article  Google Scholar 

  • Richards JP (2016) Links between porphyry and IOCG deposits (SEG Thayer Lindsley lecture). Symp Mineral deposits and Ore-forming Processes. 35th International Geological Congress, Cape Town, South Africa

    Google Scholar 

  • Richards JP, Mumin AH (2013) Magmatic-hydrothermal processes within an evolving Earth: iron oxide–copper–gold and porphyry Cu + Mo + Au deposits. Geology 41(7):767–770

    Article  Google Scholar 

  • Robb L (2005) Introduction to ore-forming processes. Blackwell Publ, UK 373 pp

    Google Scholar 

  • Robb LJ, Meyer FM (1990) The nature of the Witwatersrand hinterland: conjectures on the source area problem. Econ Geol 85:511–536

    Article  Google Scholar 

  • Robert F, Poulsen KH (2001) Vein formation and deformation in greenstone gold deposits. Rev Econ Geol 14:111–155

    Google Scholar 

  • Roedder E (1984) Fluid inclusions. Review in Mineral, vol 12, Mineralogical Society of America, 646 pp

    Google Scholar 

  • Rona PA (1988) Hydrothermal mineralization at ocean ridges. Can Miner 26:431–465

    Google Scholar 

  • Roonwal GS (1986) The Indian Ocean: exploitable mineral and petroleum resources. Springer, Berlin 198 pp

    Book  Google Scholar 

  • Roy S (1966) Syngenetic manganese formations of India. Jadavpur Univ Press, Calcutta 219 pp

    Google Scholar 

  • Roy S (1981) Manganese deposits. Acadamic Press, London 458 pp

    Google Scholar 

  • Roy S (1997) Genetic diversity of manganese deposition in the terrestrial geological record. In: Nicholson K, Hein, JR, Bühn B, Dasgupta S (eds) Manganese mineralization: geochemistry and mineralogy of terrestrial and marine deposits. Geol Soc London, Spec Publ 119: 5–27

    Google Scholar 

  • Roy S (1999) Marine metallogenesis: new perspectives. In: Somayajulu BLK (ed) Ocean Science: trends and future directions. Ind Nat Sci Acad Akademia Books International, New Delhi, pp 129–150

    Google Scholar 

  • Roy S (2006) Sedimentary manganese metallogenesis in response to the evolution of the Earth system. Earth Sci Rev 77:273–305

    Article  Google Scholar 

  • Ruzicka V (1995) Unconformity-associated uranium. In: Ekstrand OR, Sinclair WD, Thorpe RI (eds) Geology of Canadian Mineral Deposit Types. Geololgical Survey of Canada, Geology of Canada, No 8, pp 197–210

    Google Scholar 

  • Sangster DF (1990) Mississippi valley type and SEDEX type lead-zinc deposits: a comparative examination. Trans Inst Mining Metall (Sec. B) 99: B21–B42

    Google Scholar 

  • Sarkar SC, Dasgupta S (1980) Geological setting and transformation of sulfide deposits in the northern part of the Khetri copper belt, Rajasthan, India: an outline. Miner Deposita 15:117–137

    Article  Google Scholar 

  • Sarkar SC, Deb M (1974) Metamorphism of the sulphides of the Singhbhum copper belt, India—the evidence from the ore fabric. Econ Geol 68:1282–1293

    Article  Google Scholar 

  • Sarkar SC, Gupta A (2005) Nature and origin of the iron ores of eastern India, a subject of scientific interest and industrial concern. In: Proceedings of SEM Mineral and Energy resources of eastern and northeastern India. MGMI, Kolkata, pp 79–101

    Google Scholar 

  • Sarkar SC, Gupta A (2012) Crustal evolution and metallogeny in India. Cambridge University Press, Delhi 840 pp

    Book  Google Scholar 

  • Sarkar SC, Dwivedy KK, Das AK (1995) Rare earth deposits in India—an outline of their types, distribution, mineralogy, geochemistry and genesis. Glob Tectonics Metallogeny 5:53–61

    Google Scholar 

  • Sawkins FJ (1990) Integrated tectonic-genetic model for volcanic-hosted massive sulfide deposits. Geology 18:1061–1064

    Google Scholar 

  • Schidlowski M (1981) Uraniferous constituents of the Witwatersrand conglomerates: ore microscopic observations and implications for Witwatersrand metallogeny. In: Armstrong F (ed) Genesis of Uranium- and Gold-bearing Precambrian Quartz pebble conglomerates. US Geol Surv Prof 1161:1–29

    Google Scholar 

  • Seedorff E, Barton MD (2004) Enigmatic origin of Carlin-type deposits: an amagmatic solution? SEG Newslett 59:14–16

    Google Scholar 

  • Shanks WC III, Bischoff JL (1980) Geochemistry, sulfur isotope composition and accumulation rates of Red Sea geothermal deposits. Econ Geol 75:445–459

    Article  Google Scholar 

  • Shepherd TJ, Rankin AH, Alderton DH (1985) A practical guide to fluid inclusion studies. Blackie, Glasgow 235 pp

    Google Scholar 

  • Sillitoe RH (1985) Ore related breccias in volcanoplutonic arcs. Econ Geol 80:1467–1514

    Article  Google Scholar 

  • Sillitoe RH (1995) Exploration and discovery of base and precious metal deposits in the Circum-Pacific region during the last 25 years. Resour Geol 19:119

    Google Scholar 

  • Sillitoe RH (1996) Granites and metal deposits. Episodes 19(4):126–133

    Google Scholar 

  • Sillitoe RH (2010) Porphyry copper systems. Econ Geol 105:3–41

    Article  Google Scholar 

  • Sillitoe RH, Burrows DR (2002) New field evidence bearing on the origin of the El Laco magnetite deposit, northern Chile. Econ Geol 97:1101–1109

    Google Scholar 

  • Sillitoe RH, Mortensen JK (2010) Longevity of porphyry copper formation at Quellaveco, Peru. Econ Geol 105:1157–1162

    Article  Google Scholar 

  • Singer DA (1986) Descriptive model of lateritic nickel. In: Cox DP, Singer DA (eds) Mineral deposit models. US Geol Surv Bull 1693:379

    Google Scholar 

  • Skinner BJ (1979) Many origins of hydrothermal deposits. In: Barnes HL (ed) Geochemistry of hydrothermal ore deposits, 2nd edn. Wiley, New York, pp 1–21

    Google Scholar 

  • Skinner BJ, Peck DL (1969) An immiscible sulfide melt from Hawai. Econ Geol Monogr 4:22–310

    Google Scholar 

  • Solomon M, Groves DI (2000) The geology and origin of Australia’s mineral deposits. Hobart Printing Author, Tasmania, 1002 pp

    Google Scholar 

  • Spry PG, Marshall B, Vokes FM (2000). Metamorphosed and metamorphogenic ore deposits. Rev Econ Geol 11:310

    Google Scholar 

  • Stolper E (1982) The speciation of water in silicate melts. Geochim Cosmochim Acta 46:2609–2620

    Article  Google Scholar 

  • Strong DF (1988) A review and model for granite-related mineral deposits. In: Taylor RP, Strong DF (eds) Recent advances in the geology of granite-related mineral deposits. Can Inst Mining Metall, Spec 39:424–445

    Google Scholar 

  • Sutherland DG (1982) The transport and sorting of diamonds by fluvial and marine processes. Econ Geol 77:1613–1620

    Article  Google Scholar 

  • Taylor D, Dalstra HJ, Harding AE, Broadbent GC, Barley ME (2001) Genesis of high-grade hematite ore bodies of the Hamersley Province, Western Australia. Econ Geol 96:837–873

    Google Scholar 

  • Tiwary A, Deb M, Cook NJ (1998) Use of pyrite microfabric as a key to tectono-thermal evolution of massive sulfide deposits - an example from Deri, southern Rajasthan. Ind Mineral Mag 62(2):197–212

    Article  Google Scholar 

  • Trueman DL, Cerny’ P (1982) Exploration for rare element granitic pegmatite. In: Cerny P (ed) Granitic pegmatite in science and industry. Mineral Assoc Can Short Course Handbook, vol 8, pp 463-493

    Google Scholar 

  • Tucker RF, Viljoen RP, Viljoen MJ (2016) A review of the Witwatersrand basin—the world’s greatest goldfield. Episodes 39(2):105–134

    Article  Google Scholar 

  • Urabe T (1987) Kuroko deposit modeling based on a magmatic-hydrothermal theory. Min Geol 37:159–176

    Google Scholar 

  • Urabe T et al (1995) The effect of magmatic activity on hydrothermal venting along the superfast-spreading East Pacific Rise. Science 269:1092–1095

    Article  Google Scholar 

  • Valeton I (1972) Bauxites. Elsevier, Amsterdam, 226 pp

    Google Scholar 

  • William-Jones AE, Heinrich CA (2005) Vapour transport of metals and the formation of magmatic hydrothermal ore deposits. Econ Geol 100:1287–1312

    Article  Google Scholar 

  • Williams PJ, Barton MD, Johnson DA, Fontbote L, de Haller A, Mark G, Oliver NHS, Marschik R (2005) Iron oxide copper-gold deposits: geology, space-time distribution and possible modes of origin: In: Hedenquist JW, Thompson JFH, Goldfarb RJ, Richards JP (eds) Econ Geol, 371–405

    Google Scholar 

  • Wood SA, Sampson IM (1998) Solubility of ore minerals and complexation of ore metals in hydrothermal solutions. Rev Econ Geol 10:33–80

    Google Scholar 

  • Zierenberg RA, Shanks WCIII, Bischoff JL (1984) Massive sulfide deposits at 21oN, East Pacific Rise: chemical compositions, stable isotopes and phase equilibria. Geol Soc Am Bull 95:922–929

    Article  Google Scholar 

  • Zierenberg RA, Koski RA, Morton JL, Bouse RM (1993) Genesis of massive sulphide deposits on a sediment-covered spreading centre, Escanaba Trough, southern Gorda ridge. Econ Geol 88:2065–2094

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mihir Deb .

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Nature Singapore Pte Ltd.

About this chapter

Cite this chapter

Deb, M., Sarkar, S.C. (2017). How Do Mineral Deposits Form and Transform? A Systematic Approach. In: Minerals and Allied Natural Resources and their Sustainable Development. Springer Geology. Springer, Singapore. https://doi.org/10.1007/978-981-10-4564-6_2

Download citation

Publish with us

Policies and ethics