Skip to main content

Deep Learning Techniques for Roadside Video Data Analysis

  • Chapter
  • First Online:
Roadside Video Data Analysis

Part of the book series: Studies in Computational Intelligence ((SCI,volume 711))

Abstract

In this chapter, we describe deep learning techniques that are proposed for roadside video data analysis. We firstly present an introduction to deep learning concepts, and a short review of several typical types of CNN.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 129.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. L. Zheng, Y. Zhao, S. Wang, J. Wang, Q. Tian, Good practice in CNN feature transfer. arXiv preprint arXiv:1604.00133 (2016)

  2. S.D. Learning, CS231n: convolutional neural networks for visual recognition (2016). http://cs231n.github.io/convolutional-networks/

  3. J. Ba, V. Mnih, K. Kavukcuoglu, Multiple object recognition with visual attention, arXiv preprint arXiv:1412.7755 (2014)

  4. J. Donahue, L. Anne Hendricks, S. Guadarrama, M. Rohrbach, S. Venugopalan, et al., Long-term recurrent convolutional networks for visual recognition and description, in Computer Vision and Pattern Recognition (CVPR), IEEE Conference on (2015), pp. 2625–2634

    Google Scholar 

  5. A. Dundar, J. Jin, E. Culurciello, Convolutional clustering for unsupervised learning. arXiv preprint arXiv:1511.06241 (2015)

  6. D.V. Nguyen, L. Kuhnert, K.D. Kuhnert, Structure overview of vegetation detection. A novel approach for efficient vegetation detection using an active lighting system. Robot. Auton. Syst. 60, 498–508 (2012)

    Article  Google Scholar 

  7. I. Lenz, H. Lee, A. Saxena, Deep learning for detecting robotic grasps. Int. J. Robot. Res. 34, 705–724 (2015)

    Article  Google Scholar 

  8. L. Romaszko, A deep learning approach with an ensemble-based neural network classifier for black box ICML 2013 contest, in Workshop on Challenges in Representation Learning, International Conference on Machine Learning (ICML) (2013), pp. 1–3

    Google Scholar 

  9. S. Ahmad Radzi, K.-H. Mohamad, S.S. Liew, R. Bakhteri, Convolutional neural network for face recognition with pose and illumination variation. Int. J. Eng. Technol. (IJET) 6, 44–57 (2014)

    Google Scholar 

  10. F. Shaheen, B. Verma, M. Asafuddoula, Impact of automatic feature extraction in deep learning architecture, in Digital Image Computing: Techniques and Applications (DICTA), International Conference on (2016), pp. 1–8

    Google Scholar 

  11. C. Cortes, Y. LeCun, C.J.C. Burges, The MNIST database of handwritten digits. http://yann.lecun.com/exdb/mnist/

  12. K. He, X. Zhang, S. Ren, J. Sun, Deep residual learning for image recognition. arXiv preprint arXiv:1512.03385 (2015)

  13. Y. Lecun, L. Bottou, Y. Bengio, P. Haffner, Gradient-based learning applied to document recognition. Proc. IEEE 86, 2278–2324 (1998)

    Article  Google Scholar 

  14. D.V. Nguyen, L. Kuhnert, K.D. Kuhnert, Spreading algorithm for efficient vegetation detection in cluttered outdoor environments. Robot. Auton. Syst. 60, 1498–1507 (2012)

    Article  Google Scholar 

  15. D.V. Nguyen, L. Kuhnert, T. Jiang, S. Thamke, K.D. Kuhnert, Vegetation detection for outdoor automobile guidance, in Industrial Technology (ICIT), IEEE International Conference on (2011), pp. 358–364

    Google Scholar 

  16. A. Bosch, X. Muñoz, J. Freixenet, Segmentation and description of natural outdoor scenes. Image Vis. Comput. 25, 727–740 (2007)

    Article  Google Scholar 

  17. W. Guo, U.K. Rage, S. Ninomiya, Illumination invariant segmentation of vegetation for time series wheat images based on decision tree model. Comput. Electron. Agri. 96, 58–66 (2013)

    Article  Google Scholar 

  18. F. Shaheen, B. Verma, An ensemble of deep learning architectures for automatic feature extraction, in Computational Intelligence (ISSCI), IEEE Symposium Series on (2016) (in Press)

    Google Scholar 

  19. D.-X. Liu, T. Wu, B. Dai, Fusing ladar and color image for detection grass off-road scenario, in Vehicular Electronics and Safety (ICVES), IEEE International Conference on (2007), pp. 1–4

    Google Scholar 

  20. R. Mottaghi, S. Fidler, A. Yuille, R. Urtasun, D. Parikh, Human-machine CRFS for identifying bottlenecks in scene understanding. Pattern Anal. Mach. Intell. IEEE Trans. 38, 74–87 (2016)

    Article  Google Scholar 

  21. J. Shotton, J. Winn, C. Rother, A. Criminisi, Textonboost for image understanding: multi-class object recognition and segmentation by jointly modeling texture, layout, and context. Int. J. Comput. Vis. 81, 2–23 (2009)

    Article  Google Scholar 

  22. S. Gould, J. Rodgers, D. Cohen, G. Elidan, D. Koller, Multi-class segmentation with relative location prior. Int. J. Comput. Vis. 80, 300–316 (2008)

    Article  Google Scholar 

  23. Y. Jimei, B. Price, S. Cohen, Y. Ming-Hsuan, Context driven scene parsing with attention to rare classes, in Computer Vision and Pattern Recognition (CVPR), IEEE Conference on (2014), pp. 3294–3301

    Google Scholar 

  24. A. Singhal, L. Jiebo, Z. Weiyu, Probabilistic spatial context models for scene content understanding, in Computer Vision and Pattern Recognition, (CVPR), IEEE Conference on (2003), pp. 235–241

    Google Scholar 

  25. B. Micusik, J. Kosecka, Semantic segmentation of street scenes by superpixel co-occurrence and 3D geometry, in Computer Vision Workshops (ICCV Workshops), IEEE 12th International Conference on (2009), pp. 625–632

    Google Scholar 

  26. C. Farabet, C. Couprie, L. Najman, Y. LeCun, Learning hierarchical features for scene labeling. Pattern Anal. Mach. Intell. IEEE Trans. 35, 1915–1929 (2013)

    Article  Google Scholar 

  27. M. Seyedhosseini, T. Tasdizen, Semantic image segmentation with contextual hierarchical models. Pattern Anal. Mach. Intell. IEEE Trans. 38(5), 951–964 (2015)

    Article  Google Scholar 

  28. D. Batra, R. Sukthankar, C. Tsuhan, Learning class-specific affinities for image labelling, in Computer Vision and Pattern Recognition, (CVPR), IEEE Conference on (2008), pp. 1–8

    Google Scholar 

  29. Z. Lei, J. Qiang, Image segmentation with a unified graphical model. Pattern Anal. Mach. Intell. IEEE Trans. 32, 1406–1425 (2010)

    Article  Google Scholar 

  30. R. Xiaofeng, B. Liefeng, D. Fox, RGB-(D) scene labeling: features and algorithms, in Computer Vision and Pattern Recognition (CVPR), IEEE Conference on (2012), pp. 2759–2766

    Google Scholar 

  31. A.G. Schwing, R. Urtasun, Fully connected deep structured networks. arXiv preprint arXiv:1503.02351 (2015)

  32. S. Zheng, S. Jayasumana, B. Romera-Paredes, V. Vineet, Z. Su, et al., Conditional random fields as recurrent neural networks. arXiv preprint arXiv:1502.03240 (2015)

  33. P.H. Pinheiro, R. Collobert, Recurrent convolutional neural networks for scene parsing. arXiv preprint arXiv:1306.2795 (2013)

  34. A. Sharma, O. Tuzel, M.-Y. Liu, Recursive context propagation network for semantic scene labeling, in Advances in Neural Information Processing Systems (2014), pp. 2447–2455

    Google Scholar 

  35. A. Sharma, O. Tuzel, D.W. Jacobs, Deep hierarchical parsing for semantic segmentation, in Computer Vision and Pattern Recognition (CVPR), IEEE Conference on (2015), pp. 530–538

    Google Scholar 

  36. S. Ling, L. Li, L. Xuelong, Feature learning for image classification via multiobjective genetic programming. Neural Netw. Learn. Syst. IEEE Trans. 25, 1359–1371 (2014)

    Article  Google Scholar 

  37. L. Zhang, B. Verma, D. Stockwell, S. Chowdhury, Spatially constrained location prior for scene parsing, in Neural Networks (IJCNN), International Joint Conference on (2016), pp. 1480–1486

    Google Scholar 

  38. J. Tighe, S. Lazebnik, Superparsing: scalable nonparametric image parsing with superpixels, in Computer Vision (ECCV), European Conference on (2010), pp. 352–365

    Google Scholar 

  39. P. Hanchuan, L. Fuhui, C. Ding, Feature selection based on mutual information criteria of max-dependency, max-relevance, and min-redundancy. Pattern Anal. Mach. Intell. IEEE Trans. 27, 1226–1238 (2005)

    Article  Google Scholar 

  40. P. Felzenszwalb, D. Huttenlocher, Efficient graph-based image segmentation. Int. J. Comput. Vis. 59, 167–181 (2004)

    Article  Google Scholar 

  41. S. Gould, R. Fulton, D. Koller, Decomposing a scene into geometric and semantically consistent regions, in Computer Vision (ICCV), IEEE 12th International Conference on (2009), pp. 1–8

    Google Scholar 

  42. L. Ce, J. Yuen, A. Torralba, Nonparametric scene parsing: label transfer via dense scene alignment, in Computer Vision and Pattern Recognition (CVPR), IEEE Conference on (2009), pp. 1972–1979

    Google Scholar 

  43. V. Lempitsky, A. Vedaldi, A. Zisserman, Pylon model for semantic segmentation, in Advances in Neural Information Processing Systems (2011), pp. 1485–1493

    Google Scholar 

  44. D. Munoz, J.A. Bagnell, M. Hebert, Stacked hierarchical labeling, in Computer Vision (ECCV), European Conference on (2010), pp. 57–70

    Google Scholar 

  45. L. Ladicky, C. Russell, P. Kohli, P.H.S. Torr, Associative hierarchical random fields. Pattern Anal. Mach. Intell. IEEE Trans. 36, 1056–1077 (2014)

    Article  Google Scholar 

  46. A. Krizhevsky, I. Sutskever, G.E. Hinton, ImageNet classification with deep convolutional neural networks, in Advances in Neural Information Processing Systems (2012), pp. 1097–1105

    Google Scholar 

  47. M.D. Zeiler, R. Fergus, Visualizing and understanding convolutional networks, in European Conference on Computer Vision (2014), pp. 818–833

    Google Scholar 

  48. C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed, et al., Going deeper with convolutions, in Computer Vision and Pattern Recognition (CVPR), IEEE Conference on (2015), pp. 1–9

    Google Scholar 

  49. K. Simonyan, A. Zisserman, Very deep convolutional networks for large-scale image recognition. arXiv preprint arXiv:1409.1556 (2014)

  50. K. He, X. Zhang, S. Ren, J. Sun, Identity mappings in deep residual networks. arXiv preprint arXiv:1603.05027 (2016)

  51. S. Bing, W. Gang, Z. Zhen, W. Bing, Z. Lifan, Integrating parametric and non-parametric models for scene labeling, in Computer Vision and Pattern Recognition (CVPR), IEEE Conference on (2015), pp. 4249–4258

    Google Scholar 

  52. J. Shotton, J. Winn, C. Rother, A. Criminisi, Textonboost: joint appearance, shape and context modeling for multi-class object recognition and segmentation, in Computer Vision (ECCV), European Conference on (2006), pp. 1–15

    Google Scholar 

  53. Z. Long, C. Yuanhao, L. Yuan, L. Chenxi, A. Yuille, Recursive segmentation and recognition templates for image parsing. Pattern Anal. Mach. Intell. IEEE Trans. 34, 359–371 (2012)

    Article  Google Scholar 

  54. E. Akbas, N. Ahuja, Low-level hierarchical multiscale segmentation statistics of natural images. Pattern Anal. Mach. Intell. IEEE Trans. 36, 1900–1906 (2014)

    Article  Google Scholar 

  55. A. Lucchi, L. Yunpeng, P. Fua, Learning for structured prediction using approximate subgradient descent with working sets, in Computer Vision and Pattern Recognition (CVPR), IEEE Conference on (2013), pp. 1987–1994

    Google Scholar 

  56. C. Gatta, F. Ciompi, Stacked sequential scale-spacetaylor context. Pattern Anal. Mach. Intell. IEEE Trans. 36, 1694–1700 (2014)

    Article  Google Scholar 

  57. M. Najafi, S.T. Namin, M. Salzmann, L. Petersson, Sample and filter: nonparametric scene parsing via efficient filtering. arXiv preprint arXiv:1511.04960 (2015)

  58. T.V. Nguyen, L. Canyi, J. Sepulveda, Y. Shuicheng, Adaptive nonparametric image parsing. Circ. Syst. Video Technol. IEEE Trans. 25, 1565–1575 (2015)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Brijesh Verma .

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Nature Singapore Pte Ltd.

About this chapter

Cite this chapter

Verma, B., Zhang, L., Stockwell, D. (2017). Deep Learning Techniques for Roadside Video Data Analysis. In: Roadside Video Data Analysis. Studies in Computational Intelligence, vol 711. Springer, Singapore. https://doi.org/10.1007/978-981-10-4539-4_4

Download citation

  • DOI: https://doi.org/10.1007/978-981-10-4539-4_4

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-10-4538-7

  • Online ISBN: 978-981-10-4539-4

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics