Skip to main content

Nanorobotic Agents and Their Biomedical Applications

  • Chapter
  • First Online:
Innovative Diagnostics and Treatment: Nanorobotics and Stem Cells

Abstract

Application of nanorobotic agents is one of the most-promising perspective for future development and progress in medicine. Molecular machines gain significant attention with an ultimate goal to create a theranostic platform interacting with biological system and being able to perform atomic-level tasks. Such concept requires advanced technological approach i.e. design and assembly techniques, in vivo real-time navigation system, sensing methods as well as data transfer. Currently, both artificial (carbon nanotubes) and biological (DNA, proteins, bacteria) components are investigated as a building blocks of nanobots. This chapter presents advancements in nanorobotic agents biomedical application.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 16.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Freitas RA Jr (2005) What is nanomedicine? Nanomedicine 1(1):2–9

    Article  Google Scholar 

  2. Sierra DP, Weir NA, Jones JF (2005) A review of research in the field of nanorobotics. Sandia National Laboratories, 50 p

    Google Scholar 

  3. Ummat A, Dubey AA, Mavroidis C (2006) Bionanorobotics: a field inspired by nature. In: Bar-Cohen Y (ed) Biomimetics: biologically inspired technologies. CRC Press, Boca Raton, pp 201–227

    Google Scholar 

  4. Freitas RA Jr (2005) Nanotechnology, nanomedicine and nanosurgery. Int J Surg 3(4):243–246

    Article  Google Scholar 

  5. Cavalcanti A, Shirinzadeh B, Kretly LC (2008) Medical nanorobotics for diabetes control. Nanomedicine 4(2):127–138

    Article  Google Scholar 

  6. Martel S et al (2009) MRI-based medical nanorobotic platform for the control of magnetic nanoparticles and flagellated bacteria for target interventions in human capillaries. Int J Rob Res 28(9):1169–1182

    Article  Google Scholar 

  7. Martel S et al (2007) Automatic navigation of an untethered device in the artery of a living animal using a conventional clinical magnetic resonance imaging system. Appl Phys Lett 90(11):114105

    Article  Google Scholar 

  8. Latulippe M, Martel S (2015) Dipole field navigation: theory and proof of concept. IEEE Trans Rob 31(6):1353–1363

    Article  Google Scholar 

  9. Martel S et al (2009) Flagellated magnetotactic bacteria as controlled MRI-trackable propulsion and steering systems for medical nanorobots operating in the human microvasculature. Int J Rob Res 28(4):571–582

    Article  Google Scholar 

  10. Felfoul O, et al (2016) Magneto-aerotactic bacteria deliver drug-containing nanoliposomes to tumour hypoxic regions. Nat Nanotechnol

    Google Scholar 

  11. Hamdi M (2009) Computational design and multiscale modeling of a nanoactuator using DNA actuation. Nanotechnology 20(48):485501

    Article  Google Scholar 

  12. Hogg T, Freitas RA Jr (2010) Chemical power for microscopic robots in capillaries. Nanomedicine 6(2):298–317

    Article  Google Scholar 

  13. Hogg T, Freitas RA Jr (2012) Acoustic communication for medical nanorobots. Nano Commun Netw 3(2):83–102

    Article  Google Scholar 

  14. Jester SS, Famulok M (2014) Mechanically interlocked DNA nanostructures for functional devices. Acc Chem Res 47(6):1700–1709

    Article  Google Scholar 

  15. Abi A et al (2014) Electrochemical switching with 3D DNA tetrahedral nanostructures self-assembled at gold electrodes. ACS Appl Mater Interfaces 6(11):8928–8931

    Article  Google Scholar 

  16. Pochorovski I, Diederich F (2014) Development of redox-switchable resorcin[4]arene cavitands. Acc Chem Res 47(7):2096–2105

    Article  Google Scholar 

  17. Zhang C et al (2014) Contact electrification field-effect transistor. ACS Nano 8(8):8702–8709

    Article  Google Scholar 

  18. Ergeneman O et al (2014) Inkjet printed superparamagnetic polymer composite hemispheres with programmed magnetic anisotropy. Nanoscale 6(18):10495–10499

    Article  Google Scholar 

  19. Kopperger E, Pirzer T, Simmel FC (2015) Diffusive transport of molecular cargo tethered to a DNA origami platform. Nano Lett 15(4):2693–2699

    Article  Google Scholar 

  20. Vach PJ et al (2015) Fast magnetic micropropellers with random shapes. Nano Lett 15(10):7064–7070

    Article  Google Scholar 

  21. Shao L et al (2015) Gold nanorod rotary motors driven by resonant light scattering. ACS Nano 9(12):12542–12551

    Article  Google Scholar 

  22. Xu X, Kim K, Fan D (2015) Tunable release of multiplex biochemicals by plasmonically active rotary nanomotors. Angew Chem Int Ed Engl 54(8):2525–2529

    Article  Google Scholar 

  23. Jabbari H, Aminpour M, Montemagno C (2015) Computational approaches to nucleic acid origami. ACS Comb Sci 17(10):535–547

    Article  Google Scholar 

  24. Vavassori P et al (2016) Remote magnetomechanical nanoactuation. Small 12(8):1013–1023

    Article  Google Scholar 

  25. Chechetka SA et al (2016) Magnetically and near-infrared light-powered supramolecular nanotransporters for the remote control of enzymatic reactions. Angew Chem Int Ed Engl 55(22):6476–6481

    Article  Google Scholar 

  26. Li G, Xi N, Wang DH (2005) In situ sensing and manipulation of molecules in biological samples using a nanorobotic system. Nanomedicine 1(1):31–40

    Article  Google Scholar 

  27. Yang R et al (2013) Cellular biophysical dynamics and ion channel activities detected by AFM-based nanorobotic manipulator in insulinoma beta-cells. Nanomedicine 9(5):636–645

    Article  Google Scholar 

  28. Acosta JC et al (2013) Gentle and fast atomic force microscopy with a piezoelectric scanning probe for nanorobotics applications. Nanotechnology 24(6):065502

    Article  Google Scholar 

  29. Chacko JV et al (2014) Cellular level nanomanipulation using atomic force microscope aided with superresolution imaging. J Biomed Opt 19(10):105003

    Article  Google Scholar 

  30. Martel S (2016) Swimming microorganisms acting as nanorobots versus artificial nanorobotic agents: a perspective view from an historical retrospective on the future of medical nanorobotics in the largest known three-dimensional biomicrofluidic networks. Biomicrofluidics 10(2):021301

    Article  Google Scholar 

Download references

Acknowledgements

The project was supported by Horizon 2020 (SCIENCE), 7th FP (BAMI) and STRETEGMED II (CIRCULATE) grants to WW and TJ.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tomasz Jadczyk .

Rights and permissions

Reprints and permissions

Copyright information

© 2017 The Author(s)

About this chapter

Cite this chapter

Jadczyk, T. et al. (2017). Nanorobotic Agents and Their Biomedical Applications. In: Innovative Diagnostics and Treatment: Nanorobotics and Stem Cells. SpringerBriefs in Applied Sciences and Technology(). Springer, Singapore. https://doi.org/10.1007/978-981-10-4527-1_2

Download citation

  • DOI: https://doi.org/10.1007/978-981-10-4527-1_2

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-10-4526-4

  • Online ISBN: 978-981-10-4527-1

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics