Skip to main content

Abstract

The chapter reviews the two approaches to test the Kerr black hole hypothesis with electromagnetic radiation. In the top-bottom approach, we employ a non-Kerr black hole solution from a certain alternative theory of gravity and we check whether it can better explain observational data than the Kerr metric. In the bottom-up approach, we consider instead a phenomenological parameterization of the metric, which ideally should be able to describe the spacetime of any possible black hole in any possible gravity theory.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 69.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    The expression total angular momentum is used to indicate the angular momentum computed as the Komar integral associated to axisymmetry at spatial infinity.

  2. 2.

    The data files are available at http://gravitation.web.ua.pt/index.php?q=node/416.

  3. 3.

    That is, we have rescaled, in this discussion, \(\mu r_\mathrm{H} \rightarrow r_\mathrm{H}\), \(\varOmega _\mathrm{H}/\mu \rightarrow \varOmega _\mathrm{H}\), \(\mu M\rightarrow M\) and \(\mu ^2 J\rightarrow J\). Let us note that any solution can have any physical mass for an appropriate choice of \(\mu \).

References

  1. M. Azreg-Ainou, Class. Quant. Grav. 28, 148001 (2011), arXiv:1106.0970 [gr-qc]

  2. C. Bambi, JCAP 1105, 009 (2011), arXiv:1103.5135 [gr-qc]

  3. E. Barausse, T.P. Sotiriou, Phys. Rev. Lett. 101, 099001 (2008), arXiv:0803.3433 [gr-qc]

  4. E. Berti et al., Class. Quant. Grav. 32, 243001 (2015), arXiv:1501.07274 [gr-qc]

  5. B. Bertotti, L. Iess, P. Tortora, Nature 425, 374 (2003)

    Article  ADS  Google Scholar 

  6. J. Brink, Phys. Rev. D 78, 102002 (2008), arXiv:0807.1179 [gr-qc]

  7. V. Cardoso, P. Pani, J. Rico, Phys. Rev. D 89, 064007 (2014), arXiv:1401.0528 [gr-qc]

  8. X. Dianyon, Class. Quant. Grav. 5, 871 (1988)

    Article  ADS  Google Scholar 

  9. G. Dvali, C. Gomez, Fortsch. Phys. 61, 742 (2013), arXiv:1112.3359 [hep-th]

  10. G. Dvali, C. Gomez, Phys. Lett. B 719, 419 (2013), arXiv:1203.6575 [hep-th]

  11. H. Fang, Ph.D. thesis, California Institute of Technology (2007)

    Google Scholar 

  12. M. Ghasemi-Nodehi, C. Bambi, Eur. Phys. J. C 76, 290 (2016), arXiv:1604.07032 [gr-qc]

  13. S.B. Giddings, Phys. Rev. D 90, 124033 (2014), arXiv:1406.7001 [hep-th]

  14. K. Glampedakis, S. Babak, Class. Quant. Grav. 23, 4167 (2006), arXiv:gr-qc/0510057

  15. D. Hansen, N. Yunes, Phys. Rev. D 88, 104020 (2013), arXiv:1308.6631 [gr-qc]

  16. C.A.R. Herdeiro, E. Radu, Phys. Rev. Lett. 112, 221101 (2014),arXiv:1403.2757 [gr-qc]

  17. C. Herdeiro, E. Radu, Class. Quant. Grav. 32, 144001 (2015), arXiv:1501.04319 [gr-qc]

  18. C. Herdeiro, E. Radu, H. Runarsson, Class. Quant. Grav. 33, 154001 (2016), arXiv:1603.02687 [gr-qc]

  19. T. Johannsen, Phys. Rev. D 88, 044002 (2013), arXiv:1501.02809 [gr-qc]

  20. T. Johannsen, D. Psaltis, Phys. Rev. D 83, 124015 (2011), arXiv:1105.3191 [gr-qc]

  21. H. Kim, Phys. Rev. D 59, 064002 (1999)

    Article  ADS  MathSciNet  Google Scholar 

  22. B. Kleihaus, J. Kunz, E. Radu, Phys. Rev. Lett. 106, 151104 (2011), arXiv:1101.2868 [gr-qc]

  23. R. Konoplya, L. Rezzolla, A. Zhidenko, Phys. Rev. D 93, 064015 (2016), arXiv:1602.02378 [gr-qc]

  24. N. Lin, N. Tsukamoto, M. Ghasemi-Nodehi, C. Bambi, Eur. Phys. J. C 75, 599 (2015), arXiv:1512.00724 [gr-qc]

  25. V.S. Manko, I.D. Novikov, Class. Quant. Grav. 9, 2477 (1992)

    Article  ADS  Google Scholar 

  26. V.S. Manko, E.W. Mielke, J.D. Sanabria-Gomez, Phys. Rev. D 61, 081501 (2000), arXiv:gr-qc/0001081

  27. V.S. Manko, J.D. Sanabria-Gomez, O.V. Manko, Phys. Rev. D 62, 044048 (2000)

    Article  ADS  MathSciNet  Google Scholar 

  28. Y. Ni, M. Zhou, A. Cardenas-Avendano, C. Bambi, C.A.R. Herdeiro, E. Radu, JCAP 1607, 049 (2016), arXiv:1606.04654 [gr-qc]

  29. K. Nordtvedt, Phys. Rev. 169, 1017 (1968)

    Article  ADS  Google Scholar 

  30. D. Psaltis, D. Perrodin, K.R. Dienes, I. Mocioiu, Phys. Rev. Lett. 100, 091101 (2008) [erratum: Phys. Rev. Lett. 100, 119902 (2008)], arXiv:0710.4564 [astro-ph]

  31. F.E. Schunck, E.W. Mielke, Phys. Lett. A 249, 389 (1998)

    Article  ADS  Google Scholar 

  32. T.P. Sotiriou, V. Faraoni, Phys. Rev. Lett. 108, 081103 (2012), arXiv:1109.6324 [gr-qc]

  33. S. Vigeland, N. Yunes, L. Stein, Phys. Rev. D 83, 104027 (2011), arXiv:1102.3706 [gr-qc]

  34. C.M. Will, Living Rev. Rel. 17, 4 (2014), arXiv:1403.7377 [gr-qc]

  35. J.G. Williams, S.G. Turyshev, D.H. Boggs, Phys. Rev. Lett. 93, 261101 (2004), arXiv:gr-qc/0411113

  36. S. Yazadjiev, Gen. Rel. Grav. 32, 2345 (2000)

    Article  ADS  MathSciNet  Google Scholar 

  37. S. Yoshida, Y. Eriguchi, Phys. Rev. D 56, 762 (1997)

    Article  ADS  MathSciNet  Google Scholar 

  38. B. Zwiebach, Phys. Lett. B 156, 315 (1985)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cosimo Bambi .

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Nature Singapore Pte Ltd.

About this chapter

Cite this chapter

Bambi, C. (2017). Non-Kerr Spacetimes. In: Black Holes: A Laboratory for Testing Strong Gravity. Springer, Singapore. https://doi.org/10.1007/978-981-10-4524-0_12

Download citation

Publish with us

Policies and ethics