Skip to main content

Abstract

For centuries, scientists have been conducting investigations to develop materials which are “stronger, stiffer, lighter, and hotter.”

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Here the term “phase” is generalized in that a phase can be a composite itself.

References

  1. Clyne TW, Withers PJ (1995) An introduction to metal matrix composites, 1st edn. Cambridge University Press, Cambridge, pp 1–60

    Google Scholar 

  2. Tjong SC (2013) Recent progress in the development and properties of novel metal matrix nanocomposites reinforced with carbon nanotubes and graphene nanosheets. Mater Sci Eng R 74(10):281–350

    Article  Google Scholar 

  3. Lloyd DJ (1994) Particle reinforced aluminium and magnesium matrix composites. Int Mater Rev 39(1):1–23

    Article  Google Scholar 

  4. Tjong SC, Ma ZY (2000) Microstructural and mechanical characteristics of in-situ metal matrix composites. Mater Sci Eng R 29:49–113

    Article  Google Scholar 

  5. Huang LJ, Geng L, Peng HX (2015) Microstructurally inhomogeneous composites: Is a homogeneous reinforcement distribution optimal? Prog Mater Sci 71:93–168

    Article  Google Scholar 

  6. Christman T, Needleman A, Suresh S (1989) An experimental and numerical study of deformation in metal-ceramic composites. Acta Metall Mater 37:3029–3050

    Article  Google Scholar 

  7. Llorca J, Needleman A, Suresh S (1991) An analysis of the effects of matrix void growth on deformation and ductility in metal-ceramic composites. Acta Metall Mater 39:2317–2335

    Article  Google Scholar 

  8. Nardone VC, Prewo KM (1986) On the strength of discontinuous silicon carbide reinforced aluminum composites. Scripta Metal 20(1):43–48

    Article  Google Scholar 

  9. Sinclair I, Gregson PJ (1997) Structural performance of discontinuous metal matrix composites. Mater Sci Tech-lond 13:709–726

    Article  Google Scholar 

  10. Eshelby JD (1957) The determination of the elastic field of an ellipsoidal inclusion, and related problems. Proc R Soc A 241:376–396

    Article  Google Scholar 

  11. Wilkinson DS, Pompe W, Oeschner M (2001) Modeling the mechanical behaviour of heterogeneous multi-phase materials. Prog Mater Sci 46:379–405

    Article  Google Scholar 

  12. Allen AJ, Bourke MAM, Dawes S, Hutchings MT, Withers PJ (1992) The analysis of internal strains measured by neutron diffraction in Al/SiC metal matrix composites. Acta Metall Mater 40(9):2361–2373

    Article  Google Scholar 

  13. Lu K (2010) The future of metals. Science 328:319–320

    Article  Google Scholar 

  14. Konopka K, Olszόwka-Myalska A, Szafran M (2003) Ceramic-metal composites with an interpenetrating network. Mater Chem Phys 81:329–332

    Article  Google Scholar 

  15. Konopka K, Ozieblo A (2001) Microstructure and the fracture toughness of the Al2O3-Fe composites. Mater Charact 46:125–129

    Article  Google Scholar 

  16. Ward-Close CM, Minor R, Doorbar PJ (1996) Intermetallic-matrix composites-a review. Intermetallics 4:217–229

    Article  Google Scholar 

  17. Sansoucy E, Marcoux P, Ajdelsztajn L, Jodoin B (2008) Properties of SiC-reinforced aluminum alloy coatings produced by the cold gas dynamic spraying process. Surf Coat Tech 202:3988–3996

    Article  Google Scholar 

  18. Zhang XH, Xu Q, Han JC, Kvanin VL (2003) Self-propagating high temperature combustion synthesis of TiB/Ti composites. Mater Sci Eng A 348:41–46

    Article  Google Scholar 

  19. Nan CW (1993) Physics of inhomogeneous inorganic materials. Prog Mater Sci 37:1–116

    Article  Google Scholar 

  20. Lloyd DJ (1989) The solidification microstructure of particulate reinforced aluminium/SiC composites. Compos Sci Techol 35(2):159–179

    Article  Google Scholar 

  21. Kumai S, Hu J, Higo Y, Nunomura S (1996) Effects of dendrite cell size and particle distribution on the near-threshold fatigue crack growth behaviour of cast Al/SiCp composites. Acta Mater 44:2249–2257

    Article  Google Scholar 

  22. Yin L (2009) Composites microstructures with tailored phase contiguity and spatial distribution. Ph.D. thesis of University of Bristol, pp 1-25

    Google Scholar 

  23. Conlon KT, Wilkinson DS (2001) Effect of particle distribution on deformation and damage of two-phase alloys. Mater Sci Eng A 317(1–2):108–114

    Article  Google Scholar 

  24. Li M, Ghosh S, Richmond O (1999) An experimental-computational approach to the investigation of damage evolution in discontinuously reinforced aluminum matrix composite. Acta Mater 47(12):3515–3532

    Article  Google Scholar 

  25. Toda H, Gouda T, Kobayashi T (1998) Finite element analysis of observed high strengthening in composites with regularly segregated microstructures. Mater Sci Tech-lond 14(9–10):9–10

    Google Scholar 

  26. Patel VV, El-Desouky A, Garay JE, Morsi K (2009) Pressure-less and current-activated pressure-assisted sintering of titanium dual matrix composites: effect of reinforcement particle size. Mater Sci Eng, A 507(1–2):161–166

    Article  Google Scholar 

  27. Morsi K, Patel VV, Moon KS, Garay JE (2008) Current-activated pressure-assisted sintering (CAPAS) and nanoindentation mapping of dual matrix composites. J Mater Sci 43(12):4050–4056

    Article  Google Scholar 

  28. Xu FM, Zhu SJ, Zhao J, Qi M, Wang FG, Li SX, Wang ZG (2003) Fatigue crack growth in SiC particulates reinforced Al matrix graded composite. Mater Sci Eng, A 360(1–2):191–196

    Article  Google Scholar 

  29. Ellis LY, Lewandowski JJ (1994) Effects of layer thickness on impact toughness of Al/Al-SiCp laminates. Mater Sci Eng A 183(1–2):59–67

    Article  Google Scholar 

  30. Pandey AB, Majumdar BS, Miracle DB (2001) Laminated particulate-reinforced aluminum composites with improved toughness. Acta Mater 49:405–417

    Article  Google Scholar 

  31. Qin S, Zhang G (2000) Preparation of high fracture performance SiCp-6061A1/6061A1 composite. Mater Sci Eng A 279(1–2):231–236

    Article  Google Scholar 

  32. Liu C, Qin S, Zhang G, Naka M (2002) Micromechanical properties of high fracture performance SiCp-6061Al/6061Al composite. Mater Sci Eng A 332(1–2):203–209

    Article  Google Scholar 

  33. Osman TM, Singh PM, Lewandowski JJ (1994) Crack bridging in a laminated metal matrix composite. Scripta Mater 31:607–612

    Article  Google Scholar 

  34. Osman TM, Lewandowski JJ (1994) Influence of thickness in the fracture resistance of conventional and laminated DRA materials. Scripta Mater 31:191–195

    Article  Google Scholar 

  35. Osman TM, Lewandowski JJ, Lesuer DR (1997) The fracture resistance of layered DRA materials: Influence of laminae thickness. Mater Sci Eng A 229(1–2):1–9

    Article  Google Scholar 

  36. Liu BX, Huang LJ, Geng L, Wang B, Cui XP, Liu C, Wang GS (2013) Microstructure and tensile behavior of novel laminated Ti–TiBw/Ti matrix composite by reaction hot pressing. Mater Sci Eng A 583:182–187

    Article  Google Scholar 

  37. Lloyd DJ, Lewandowski JJ, Hunt-Jr WH (1995) Intrinsic and extrinsic fracture mechanisms in inorganic composite systems. TMS Warrendale PA 39–48

    Google Scholar 

  38. Wong JC, Paramsothy M, Gupta M (2009) Using Mg and Mg-nano Al2O3 concentric alternating macro-ring materials design to enhance the properties of magnesium. Compos Sci Technol 69:438–444

    Article  Google Scholar 

  39. Hansen N (1969) Strengthening of aluminium by a three-dimensional network of aluminium-oxide particles. Acta Matallurgica 17:637–642

    Article  Google Scholar 

  40. Murphy AM, Howard SJ, Clyne TW (1998) Characterisation of severity of particle clustering and its effect on fracture of particulate MMCs. Mater Sci Tech-lond 14(9–10):959–968

    Article  Google Scholar 

  41. Llorca J (2002) Fatigue of particle-and whisker-reinforced metal-matrix composites. Prog Mater Sci 47(3):283–353

    Article  Google Scholar 

  42. Bhanu-Prasad VV, Bhat BVR, Mahajan YR, Pamakrishnan P (2002) Structure-property correlation in discontinuously reinforced aluminum matrix composites as a function of relative particle size ratio. Mater Sci Eng, A 337:179–186

    Article  Google Scholar 

  43. Huang LJ, Geng L, Peng HX, Zhang J (2011) Room temperature tensile fracture characteristics of in situ TiBw/Ti6Al4V composites with a quasi-continuous network architecture. Scripta Mater 64(9):844–847

    Article  Google Scholar 

  44. Kaveendran B, Wang GS, Huang LJ, Geng L, Luo Y, Peng HX (2013) In situ (Al3Zrp+Al2O3np)/2024Al metal matrix composite with controlled reinforcement architecture fabricated by reaction hot pressing. Mater Sci Eng A 583:89–95

    Article  Google Scholar 

  45. Panda KB, Ravi-Chandran KS (2003) Synthesis of ductile titanium–titanium boride (Ti-TiB) composites with a beta-titanium matrix: the nature of TiB formation and composite properties. Metall Mater Trans A 34:1371–1385

    Article  Google Scholar 

  46. Peng HX, Yin L (2008) Microstructurally inhomogeneous composites with tailored reinforcement distribution. 13th European Conference on Composite Materials (ECCM13), Stockholm Sweden, pp 1–9

    Google Scholar 

  47. Wegner LD, Gibson LJ (2001) The fracture toughness behaviour of interpenetrating phase composites. Int J Mech Sci 43:1771–1791

    Article  Google Scholar 

  48. Dong ZQ, Zhang L, Chen WX (2012) Evaluation of Cu-Cr3C2 composite with interpenetrating network. Mater Sci Eng A 552:24–30

    Article  Google Scholar 

  49. Peng HX (2005) A review of “Consolidation effects on tensile properties of an elemental Al matrix composite”. Mater Sci Eng A 396:1–2

    Article  Google Scholar 

  50. Filgueira M, De-Holanda JNF, Rosenthal R, Pinatti DG (2001) Mechanical Behaviour of Copper 15% Volume Niobium Microcomposite Wires. Mater Res 4(2):127–131

    Article  Google Scholar 

  51. Huang LJ, Wang S, Geng L, Kaveendran B, Peng HX (2013) Low volume fraction in situ (Ti5Si3+Ti2C)/Ti hybrid composites with network microstructure fabricated by reaction hot pressing of Ti-SiC system. Compos Sci Technol 82:23–28

    Article  Google Scholar 

  52. Hashin Z, Shtrikman S (1963) A variational approach to the theory of the elastic behaviour of multiphase materials. J Mech Phys Solids 11(2):127–140

    Article  Google Scholar 

  53. Hashin Z, Shtrikman S (1962) A variational approach to the theory of the elastic behaviour of polycrystals. J Mech Phys Solids 10:343–352

    Article  Google Scholar 

  54. Beran M (1965) Use of the vibrational approach to determine bounds for the effective permittivity in random media. Nuovo Cim B 38(2):771–781

    Article  Google Scholar 

  55. Beran MJ, Molyneux J (1996) Use of classical variational principles to determine bounds for the effective bulk modulus in heterogeneous media. Quart Appl Math 24:107–118

    Article  Google Scholar 

  56. Tjong SC, Mai YW (2008) Processing-structure-property aspects of particulate- and whisker-reinforced titanium matrix composites. Compos Sci Technol 68:583–601

    Article  Google Scholar 

  57. Guo XL, Wang LQ, Wang MM, Qin JN, Zhang D, Lu WJ (2012) Effects of degree of deformation on the microstructure, mechanical properties and texture of hybrid-reinforced titanium matrix composites. Acta Mater 60:2656–2667

    Article  Google Scholar 

  58. Huang LJ, Geng L, Peng HX, Balasubramaniam K, Wang GS (2011) Effects of sintering parameters on the microstructure and tensile properties of in situ TiBw/Ti6Al4V composites with a novel network architecture. Mater Des 32:3347–3353

    Article  Google Scholar 

  59. Huang LJ, Wang S, Dong YS, Zhang YZ, Pan F, Geng L, Peng HX (2012) Tailoring a novel network reinforcement architecture exploiting superior tensile properties of in situ TiBw/Ti composites. Mater Sci Eng A 545:187–193

    Article  Google Scholar 

  60. Geng L, Huang LJ (2014) High temperature properties of discontinuously reinforced titanium matrix composites: A Review. Acta Metall Sin (Engl Lett) 27(5):787–797

    Article  Google Scholar 

  61. Qin YX, Zhang D, Lu WJ, Pan W (2008) A new high-temperature, oxidation-resistant in situ TiB and TiC reinforced Ti6242 alloy. J Alloys Compd 455:369–375

    Article  Google Scholar 

  62. Sen I, Tamirisakandala S, Miracle DB, Ramamurty U (2007) Microstructural effects on the mechanical behavior of B-modified Ti–6Al–4 V alloys. Acta Mater 55:4983–4993

    Article  Google Scholar 

  63. Huang LJ, Geng L, Peng HX, Kaveendran B (2012) High temperature tensile properties of in situ TiBw/Ti6Al4V composites with a novel network reinforcement architecture. Mater Sci Eng, A 534:688–692

    Article  Google Scholar 

  64. Morsi K, Patel V (2007) Processing and properties of titanium–titanium boride (TiBw) matrix composites-A review. J Mater Sci 42(6):2037–2047

    Article  Google Scholar 

  65. Lu WJ, Zhang D, Zhang XN, Wu RJ, Sakata T, Mori H (2001) HREM study of TiB/Ti interfaces in a TiB-TiC in situ composite. Scripta Mater 44(7):1069–1075

    Article  Google Scholar 

  66. Meng QC, Feng HB, Chen GC, Yu RH, Jia DC, Zhou Y (2009) Defects formation of the in situ reaction synthesized TiB whiskers. J Cryst Growth 311:1612–1615

    Article  Google Scholar 

  67. Zhang CJ, Kong FT, Xiao SL, Zhao ET, Xu LJ, Chen YY (2012) Evolution of microstructure and tensile properties of in situ titanium matrix composites with volume fraction of (TiB + TiC) reinforcements. Mater Sci Eng A 548:152–160

    Article  Google Scholar 

  68. Huang LJ, Geng L, Peng HX, Zhang J (2011) Room temperature tensile fracture characteristics of in situ TiBw/Ti6Al4V composites with a quasi-continuous network architecture. Scripta Mater 64(9):844–847

    Article  Google Scholar 

  69. Liu D, Zhang SQ, Li A, Wang HM (2010) High temperature mechanical properties of a laser melting deposited TiC/TA15 titanium matrix composite. J Alloys Compd 496:189–195

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lujun Huang .

Rights and permissions

Reprints and permissions

Copyright information

© 2017 National Defense Industry Press, Beijing and Springer Nature Singapore Pte Ltd.

About this chapter

Cite this chapter

Huang, L., Geng, L. (2017). Introduction. In: Discontinuously Reinforced Titanium Matrix Composites. Springer, Singapore. https://doi.org/10.1007/978-981-10-4449-6_1

Download citation

Publish with us

Policies and ethics