Skip to main content

Magnetic Domain Imaging

  • Chapter
  • First Online:
Book cover Field Emission Scanning Electron Microscopy

Part of the book series: SpringerBriefs in Applied Sciences and Technology ((BRIEFSAPPLSCIENCES))

  • 1722 Accesses

Abstract

Magnetic domains in ferromagnetic materials generate stray fields above the specimen surface of ferromagnetics with uniaxial anisotropy , i.e., without closed domains at the specimen surface.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 59.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 79.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Banbury, J. R., & Nixon, W. C. (1967). The direct observation of domain structure and magnetic fields in the scanning electron microscope. Journal of Scientific Instruments, 44, 889.

    Article  Google Scholar 

  • Banbury, J. R., & Nixon, W. C. (1969). A high-contrast directional detector for the scanning electron microscope. Journal of Physics E: Scientific Instruments, 2, 1055.

    Article  Google Scholar 

  • Batista, L., Rabe, U., & Hirsekorn, S. (2014). Determination of the easy axes of small ferromagnetic precipitates in a bulk material by combined magnetic force microscopy and electron backscatter diffraction techniques. Ultramicroscopy, 146, 17–26.

    Article  Google Scholar 

  • Chapman, J. (1984). The investigation of magnetic domain structures in thin foils by electron microscopy. Journal of Physics D: Applied Physics, 17, 623.

    Article  Google Scholar 

  • Chapman, J. (1989). High resolution imaging of magnetic structures in the transmission electron microscope. Materials Science and Engineering B, 3, 355–358.

    Article  Google Scholar 

  • Chim, W. K. (1994). An analytical model for scanning electron microscope Type I magnetic contrast with energy filtering. Review of Scientific Instruments, 65, 374–382.

    Article  Google Scholar 

  • Cort, D., & Steeds, J. (1972). Some experiments using Kossel lines to study the magnetic domain structure in poly-crystalline cobalt. Physica Status Solidi (a), 10, 215–222.

    Google Scholar 

  • Ding, Y. Y., Gallaugher, M., Brodusch, N., Gauvin, R., & Chromik, R. R. (2014). Coating induced residual stress in nonoriented electrical steel laminations. Journal of Materials Research, 29, 1737–1746.

    Article  Google Scholar 

  • Fathers, D., Jakubovics, J., Joy, D., Newbury, D., & Yakowitz, H. (1974). A new method of observing magnetic domains by scanning electron microscopy. II. Experimental confirmation of the theory of image contrast. Physica Status Solidi (a), 22, 609–619.

    Google Scholar 

  • Fathers, D. J., Jakubovics, J. P., & Joy, D. C. (1973). Magnetic domain contrast from cubic materials in the scanning electron microscope. Philosophical Magazine, 27, 765–768.

    Article  Google Scholar 

  • Gallaugher, M., Brodusch, N., Gauvin, R., & Chromik, R. R. (2014). Magnetic domain structure and crystallographic orientation of electrical steels revealed by a forescatter detector and electron backscatter diffraction. Ultramicroscopy, 142, 40–49.

    Article  Google Scholar 

  • Ge, Y., Heczko, O., Soderberg, O., Hannula, S., & Lindroos, V. (2005). Investigation of magnetic domains in Ni–Mn–Ga alloys with a scanning electron microscope. Smart Materials and Structures, 14, S211.

    Article  Google Scholar 

  • Ge, Y., Heczko, O., Soderberg, O., & Lindroos, V. (2004). Various magnetic domain structures in a Ni–Mn–Ga martensite exhibiting magnetic shape memory effect. Journal of Applied Physics, 96, 2159–2163.

    Article  Google Scholar 

  • Grüner, D., & Shen, Z. (2010). Direct scanning electron microscopy imaging of ferroelectric domains after ion milling. Journal of the American Ceramic Society, 93, 48–50.

    Article  Google Scholar 

  • Ihlefeld, J. F., Michael, J. R., McKenzie, B. B., Scrymgeour, D. A., Maria, J. P., Paisley, E. A., et al. (2017). Domain imaging in ferroelectric thin films via channeling-contrast backscattered electron microscopy. Journal of Materials Science, 52, 1071–1081.

    Article  Google Scholar 

  • Ikuta, T., & Shimizu, R. (1974). Magnetic domain contrast from ferromagnetic materials in the scanning electron microscope. Physica Status Solidi (a), 23, 605–613.

    Google Scholar 

  • Joy, D. C., & Jakubovics, J. P. (1968). Direct observation of magnetic domains by scanning electron microscopy. Philosophical Magazine, 17, 61–69.

    Article  Google Scholar 

  • Joy, D. C., & Jakubovics, J. P. (1969). Scanning electron microscope study of the magnetic domain structure of cobalt single crystals. Journal of Physics D: Applied Physics, 2, 1367.

    Article  Google Scholar 

  • Kammlott, G. (1971). Observation of ferromagnetic domains with the scanning electron microscope. Journal of Applied Physics, 42, 5156–5160.

    Article  Google Scholar 

  • Kohashi, T., Konoto, M., & Koike, K. (2009). High-resolution spin-polarized scanning electron microscopy (spin SEM). Journal of electron microscopy, dfp047.

    Google Scholar 

  • Koike, K. (2013). Spin-polarized scanning electron microscopy. Microscopy, 62, 177–191.

    Article  Google Scholar 

  • Koike, K., & Hayakawa, K. (1984). Observation of magnetic domains with spin-polarized secondary electrons. Applied Physics Letters, 45, 585–586.

    Article  Google Scholar 

  • Lewis, L., Wang, J. Y., & Canfield, P. (1998). Magnetic domains of single-crystal Nd2Fe14B imaged by unmodified scanning electron microscopy. Journal of Applied Physics, 83, 6843–6845.

    Article  Google Scholar 

  • Newbury, D., Joy, D., Echlin, P., Fiori, C., & Goldstein, J. (1986). Advanced scanning electron microscopy and x-ray microanalysis. New York: Plenum Press.

    Book  Google Scholar 

  • Newbury, D., Yakowitz, H., & Myklebust, R. (1973). Monte Carlo calculations of magnetic contrast from cubic materials in the scanning electron microscope. Applied Physics Letters, 23, 488–490.

    Article  Google Scholar 

  • Philibert, J., & Tixier, R. (1969). Effets de contraste cristallin en microscopie électronique à balayage. Micron, 1, 174–186.

    Google Scholar 

  • Prior, D. J., Trimby, P., Weber, U., & Dingley, D. J. (1996). Orientation contrast imaging of microstructures in rocks using forescatter detectors in the scanning electron microscope. Mineralogical Magazine, 60, 859–869.

    Article  Google Scholar 

  • Rasband, W. S. (2015) Bethesda, Maryland, USA, 1997–2015. Image J (https://imagej.nih.gov/ij/).

  • Reimer, L. (1998). Scanning electron microscopy: Physics of image formation and microanalysis (Springer Series in Optical Sciences). Springer.

    Google Scholar 

  • Szmaja, W. (1994). SEM investigation of the dependence of magnetic domain structure on the thickness of cobalt monocrystals. Journal of Magnetism and Magnetic Materials, 130, 138–146.

    Article  Google Scholar 

  • Szmaja, W. (1996). The thickness dependence of the magnetic domain structure in cobalt monocrystals studied by SEM. Journal of Magnetism and Magnetic Materials, 153, 215–223.

    Article  Google Scholar 

  • Szmaja, W. (2000). Studies of the surface domain structure of cobalt monocrystals by the SEM type-I magnetic contrast and Bitter colloid method. Journal of Magnetism and Magnetic Materials, 219, 281–293.

    Article  Google Scholar 

  • Szmaja, W., Polanski, K., & Dolecki, K. (1994). SEM investigation of the temperature dependence of magnetic domain structure of cobalt monocrystals. Journal of Magnetism and Magnetic Materials, 130, 147–154.

    Article  Google Scholar 

  • Szmaja, W., Polanski, K., & Dolecki, K. (1995). The temperature dependence of magnetic domain structure in cobalt monocrystals studied by SEM. Journal of Magnetism and Magnetic Materials, 151, 249–258.

    Article  Google Scholar 

  • Trager-Cowan, C., Sweeney, F., Trimby, P., Day, A., Gholinia, A., Schmidt, N.-H., et al. (2007). Electron backscatter diffraction and electron channeling contrast imaging of tilt and dislocations in nitride thin films. Physical Review B, 75, 085301.

    Article  Google Scholar 

  • Wells, O. C. (1974). Scanning electron microscopy. McGraw-Hill.

    Google Scholar 

  • Wells, O. C. (1976). Calculation of type II magnetic contrast in the low-loss image in the scanning electron microscope. In Use of Monte Carlo calculations in electron probe microanalysis and scanning electron microscopy: Proceedings of a workshop held at the National Bureau of Standards, Gaithersburg, Maryland, October 1–3, 1975. US Department of Commerce, National Bureau of Standards: For sale by the Supt. of Docs., US Govt. Print. Off.

    Google Scholar 

  • Yamamoto, T., Nishizawa, H., & Tsuno, K. (1975). High voltage scanning electron microscopy for observing magnetic domains. Journal of Physics D: Applied Physics, 8, L113.

    Article  Google Scholar 

  • Yuan, J., Senkel, R., & Reimer, L. (1987). Recording of magnetic contrast type I by a two-detector system. Scanning, 9, 249–256.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nicolas Brodusch .

Rights and permissions

Reprints and permissions

Copyright information

© 2018 The Author(s)

About this chapter

Cite this chapter

Brodusch, N., Demers, H., Gauvin, R. (2018). Magnetic Domain Imaging. In: Field Emission Scanning Electron Microscopy. SpringerBriefs in Applied Sciences and Technology. Springer, Singapore. https://doi.org/10.1007/978-981-10-4433-5_9

Download citation

Publish with us

Policies and ethics