Skip to main content

Electron Diffraction Techniques in the SEM

  • Chapter
  • First Online:
Field Emission Scanning Electron Microscopy

Part of the book series: SpringerBriefs in Applied Sciences and Technology ((BRIEFSAPPLSCIENCES))

Abstract

The first observation of an electron diffraction pattern from a bulk specimen by Coates and co-workers in 1967 (Coates 1967) in the form of an electron channeling pattern (ECP) is taken nowadays as the birth of electron diffraction techniques in the SEM. Before this date, electron diffraction was solely a TEM experiment.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 59.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 79.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abbasi, M., Kim, D. I., Guim, H. U., Hosseini, M., Danesh-Manesh, H., & Abbasi, M. (2015). Application of transmitted kikuchi diffraction in studying nano-oxide and ultrafine metallic grains. ACS Nano, 9, 10991–11002.

    Article  Google Scholar 

  • Alam, M., Blackman, M., & Pashley, D. (1954). High-angle Kikuchi patterns. Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences, 221, 224–242.

    Google Scholar 

  • Babinsky, K., De Kloe, R., Clemens, H., & Primig, S. (2014). A novel approach for site-specific atom probe specimen preparation by focused ion beam and transmission electron backscatter diffraction. Ultramicroscopy, 144, 9–18.

    Article  Google Scholar 

  • Babinsky, K., Knabl, W., Lorich, A., De Kloe, R., Clemens, H., & Primig, S. (2015). Grain boundary study of technically pure molybdenum by combining APT and TKD. Ultramicroscopy, 159, 445–451.

    Google Scholar 

  • Bandli, B. R., & Gunter, M. E. (2014). Scanning electron microscopy and transmitted electron backscatter diffraction examination of asbestos standard reference materials, amphibole particles of differing morphology, and particle phase discrimination from talc ores. Microscopy and Microanalysis, 20, 1805–1816.

    Article  Google Scholar 

  • Bauer, F., Sitzman, S., Lang, C., Hartfield, C., & Goulden, J. (2014). Advancing materials characterization in the FIB-SEM with transmission Kikuchi diffraction. Microscopy and Microanalysis, 20, 326–327.

    Article  Google Scholar 

  • Birosca, S., Ding, R., Ooi, S., Buckingham, R., Coleman, C., & Dicks, K. (2015). Nanostructure characterisation of flow-formed Cr–Mo–V steel using transmission Kikuchi diffraction technique. Ultramicroscopy, 153, 1–8.

    Article  Google Scholar 

  • Brodusch, N., Demers, H., & Gauvin, R. (2013a). Dark-field imaging of thin specimens with a forescatter electron detector at low accelerating voltage. Microscopy and Microanalysis, 19, 1688–1697.

    Article  Google Scholar 

  • Brodusch, N., Demers, H., & Gauvin, R. (2013b). Nanometres-resolution Kikuchi patterns from materials science specimens with transmission electron forward scatter diffraction in the scanning electron microscope. Journal of Microscopy, 250, 1–14.

    Article  Google Scholar 

  • Brodusch, N., Demers, H., & Gauvin, R. (2015). Dark-field imaging based on post-processed electron backscatter diffraction patterns of bulk crystalline materials in a scanning electron microscope. Ultramicroscopy, 148, 123–131.

    Article  Google Scholar 

  • Brodusch, N., Demers, H., Trudeau, M., & Gauvin, R. (2013c). Acquisition parameters optimization of a transmission electron forward scatter diffraction system in a cold-field emission scanning electron microscope for nanomaterials characterization. Scanning, 35, 375–386.

    Article  Google Scholar 

  • Brodusch, N., & Gauvin, R. (2017). The qualitative f-ratio method applied to electron channelling-induced x-ray imaging with an annular silicon drift detector in a scanning electron microscope in the transmission mode. Journal of Microscopy, 267, 288–298.

    Google Scholar 

  • Chekir, N., Gauvin, R., Brodusch, N., Sixsmith, J. J., & Brochu, M. (2017). Effect of travel speed and post deposition heat treatments in laser wire deposition of thin Ti-6Al-4V deposits, Part I: Microstructure characterization. Materials Science & Engineering A (Submitted).

    Google Scholar 

  • Coates, D. (1967). Kikuchi-like reflection patterns obtained with the scanning electron microscope. Philosophical Magazine, 16, 1179–1184.

    Article  Google Scholar 

  • Deal, A., Hooghan, T., & Eades, A. (2008). Energy-filtered electron backscatter diffraction. Ultramicroscopy, 108, 116–125.

    Article  Google Scholar 

  • Dorri, M., Turgeon, S., Brodusch, N., Cloutier, M., Chevallier, P., Gauvin, R., et al. (2016). Characterization of amorphous oxide nano-thick layers on 316L stainless steel by electron channeling contrast imaging and electron backscatter diffraction. Microscopy and Microanalysis, 22, 997–1006.

    Article  Google Scholar 

  • Engler, O., & Randle, V. (2010). Introduction to texture analysis: Macrotexture, microtexture, and orientation mapping. CRC Press.

    Google Scholar 

  • Erdman, N., Shibata, M., Nylese, T., & Rampton, T. (2014). Nanoscale crystallographic analysis in FE-SEM using transmission Kikuchi diffraction. Microscopy and Microanalysis, 20, 864–865.

    Article  Google Scholar 

  • Fultz, B., & Howe, J. (2013). Transmission electron microscopy and diffractometry of materials. Springer.

    Google Scholar 

  • Garner, A., Gholinia, A., Frankel, P., Gass, M., MacLaren, I., & Preuss, M. (2014). The microstructure and microtexture of zirconium oxide films studied by transmission electron backscatter diffraction and automated crystal orientation mapping with transmission electron microscopy. Acta Materialia, 80, 159–171.

    Article  Google Scholar 

  • Gauvin, R. (2015). A universal equation for computing the beam broadening of incidents electrons in thin films. Microscopy and Microanalysis (Submitted).

    Google Scholar 

  • Geiss, R., Keller, R., & Read, D. (2010). Transmission electron diffraction from nanoparticles, nanowires and thin films in an SEM with conventional EBSD equipment. Microscopy and Microanalysis, 16, 1742–1743.

    Article  Google Scholar 

  • Geiss, R., Keller, R., Sitzman, S., & Rice, P. (2011). New method of transmission electron diffraction to characterize nanomaterials in the SEM. Microscopy and Microanalysis, 17, 386–387.

    Article  Google Scholar 

  • Geiss, R. H., Read, D. T., Alers, G. B., & Graham, R. L. (2009). EBSD analysis of narrow damascene copper lines. In Frontiers of characterization and metrology for nanoelectronics: 2009.

    Google Scholar 

  • Gutierrez-Urrutia, I., Zaefferer, S., & Raabe, D. (2013). Coupling of electron channeling with EBSD: Toward the quantitative characterization of deformation structures in the SEM. JOM Journal of the Minerals Metals and Materials Society, 65, 1229–1236.

    Article  Google Scholar 

  • Harland, C., Akhter, P., & Venables, J. (1981). Accurate microcrystallography at high spatial resolution using electron back-scattering patterns in a field emission gun scanning electron microscope. Journal of Physics E: Scientific Instruments, 14, 175.

    Article  Google Scholar 

  • Hirsch, P. B., Howie, A., Nicholson, R. B., Pashley, D. W., & Whelan, M. J. (1965). Electron microscopy of thin crystals. London: Butterworths.

    Google Scholar 

  • Holt, D. B., Muir, M., Grant, P., & Boswarva, I. (1974). Quantitative scanning electron microscopy. London, New York, San Francisco: Academic Press.

    Google Scholar 

  • Hovington, P., Pinard, P. T., Lagacé, M., Rodrigue, L., Gauvin, R., & Trudeau, M. L. (2009). Towards a more comprehensive microstructural analysis of Zr–2.5 Nb pressure tubing using image analysis and electron backscattered diffraction (EBSD). Journal of Nuclear Materials, 393, 162–174.

    Article  Google Scholar 

  • Hu, J., Garner, A., Ni, N., Gholinia, A., Nicholls, R. J., Lozano-Perez, S., et al. (2015). Identifying suboxide grains at the metal–oxide interface of a corroded Zr–1.0% Nb alloy using (S) TEM, transmission-EBSD and EELS. Micron, 69, 35–42.

    Article  Google Scholar 

  • Kaboli, S., Demers, H., Brodusch, N., & Gauvin, R. (2014). Electron channeling contrast observations in deformed Magnesium alloys. Microscopy and Microanalysis, 20, 1452–1453.

    Article  Google Scholar 

  • Kaboli, S., Demers, H., Brodusch, N., & Gauvin, R. (2015). Rotation contour contrast reconstruction using electron backscatter diffraction in a scanning electron microscope. Journal of Applied Crystallography, 48, 776–785.

    Article  Google Scholar 

  • Keller, R., & Geiss, R. (2012). Transmission EBSD from 10 nm domains in a scanning electron microscope. Journal of Microscopy, 245, 245–251.

    Google Scholar 

  • Keshavarzi, A., Bocker, C., & Rüssel, C. (2015). Nano lamellae composed of yttrium aluminum garnet and yttrium silicate by surface crystallization of glass. Journal of Materials Science, 50, 848–854.

    Google Scholar 

  • Kikuchi, S. (1928). Diffraction of cathode rays by mica. Proceedings of the Imperial Academy, 4, 271–274.

    Google Scholar 

  • Kossel, W., Loeck, V., & Voges, H. (1935). Die Richtungsverteilung der in einem Kristall entstandenen charakteristischen Rontgenstrahlung. Zeitschrift fur Physik A: Hadrons and Nuclei, 94, 139–144.

    Article  Google Scholar 

  • Maher, D. M., & Joy, D. C. (1976). The formation and interpretation of defect images from crystalline materials in a scanning transmission electron microscope. Ultramicroscopy, 1, 239–253.

    Article  Google Scholar 

  • Maitland, T., & Sitzman, S. (2006). Electron Backscatter Diffraction (EBSD) techique and material characterization examples. In: Scanning microscopy for nanotechnology. Springer.

    Google Scholar 

  • Marthinsen, K., & Hoier, R. (1986). Many-beam effects and phase information in electron channelling patterns. Acta Crystallographica. Section A, Foundations of Crystallography, 42, 484–492.

    Article  Google Scholar 

  • Meisnar, M., Vilalta-Clemente, A., Gholinia, A., Moody, M., Wilkinson, A. J., Huin, N., et al. (2015). Using transmission Kikuchi diffraction to study intergranular stress corrosion cracking in type 316 stainless steels. Micron, 75, 1–10.

    Google Scholar 

  • Merli, P., Migliori, A., Morandi, V., & Rosa, R. (2001). Spatial resolution and energy filtering of backscattered electron images in scanning electron microscopy. Ultramicroscopy, 88, 139–150.

    Article  Google Scholar 

  • Morandi, V., & Merli, P. G. (2007). Contrast and resolution versus specimen thickness in low energy scanning transmission electron microscopy. Journal of Applied Physics, 101, 114917.

    Article  Google Scholar 

  • Morin, P., Pitaval, M., Besnard, D., & Fontaine, G. (1979). Electron–channelling imaging in scanning electron microscopy. Philosophical Magazine A, 40, 511–524.

    Article  Google Scholar 

  • Mortazavi, N., Esmaily, M., & Halvarsson, M. (2015). The capability of transmission Kikuchi diffraction technique for characterizing nano-grained oxide scales formed on a FeCrAl stainless steel. Materials Letters, 147, 42–45.

    Google Scholar 

  • Nowell, M., & Wright, S. (2004). Phase differentiation via combined EBSD and XEDS. Journal of Microscopy, 213, 296–305.

    Article  Google Scholar 

  • Nowell, M. M., Wright, S. I., Rampton, T., & de Kloe, R. (2014). A new microstructural imaging approach through EBSD pattern region of interest analysis. Microscopy and Microanalysis, 20, 1116–1117.

    Google Scholar 

  • Prior, D. J., Trimby, P., Weber, U., & Dingley, D. J. (1996). Orientation contrast imaging of microstructures in rocks using forescatter detectors in the scanning electron microscope. Mineralogical Magazine, 60, 859–869.

    Article  Google Scholar 

  • Proust, G., Retraint, D., Chemkhi, M., Roos, A., & Demangel, C. (2015). electron backscatter diffraction and transmission Kikuchi diffraction analysis of an austenitic stainless steel subjected to surface mechanical attrition treatment and plasma nitriding. Microscopy and Microanalysis: the Official Journal of Microscopy Society of America, Microbeam Analysis Society, Microscopical Society of Canada, 1–8.

    Google Scholar 

  • Randle, V., Schwartz, A., Kumar, M., & Adams, B. (2000). Electron backscatter diffraction in materials science. Kluwer Academic.

    Google Scholar 

  • Reimer, L. (1998). Scanning electron microscopy: Physics of image formation and microanalysis (Springer Series in Optical Sciences). Springer.

    Google Scholar 

  • Rice, K., Keller, R., & Stoykovich, M. (2014). Specimen-thickness effects on transmission Kikuchi patterns in the scanning electron microscope. Journal of Microscopy, 254, 129–136.

    Article  Google Scholar 

  • Robert, D., Douillard, T., Boulineau, A., Brunetti, G., Nowakowski, P., Venet, D., et al. (2013). Multiscale phase mapping of LiFePO4-based electrodes by transmission electron microscopy and electron forward scattering diffraction. ACS Nano, 7, 10887–10894.

    Article  Google Scholar 

  • Schulson, E. (1971). Interpretation of the widths of SEM electron channelling lines. Physica Status Solidi (b), 46, 95–101.

    Google Scholar 

  • Schwarzer, R. A., Field, D. P., Adams, B. L., Kumar, M., & Schwartz, A. J. (2009). Present state of electron backscatter diffraction and prospective developments. In: A. J. Schwartz, M. Kumar, B. L. Adams, & D. P. Field (Eds.), Electron backscatter diffraction in materials science. Springer.

    Google Scholar 

  • Sha, G., Tugcu, K., Liao, X., Trimby, P., Murashkin, M., Valiev, R., et al. (2014). Strength, grain refinement and solute nanostructures of an Al–Mg–Si alloy (AA6060) processed by high-pressure torsion. Acta Materialia, 63, 169–179.

    Article  Google Scholar 

  • Shen, Y. Q., Lee, E., Chow, S. Y., Khoo, B. S., Kon, C., Gui, D., et al. (2013). Application of transmission EBSD in aluminium metal layer and GaAs/AlAs epitaxial layers. In: 2013 20th IEEE International Symposium on the Physical and Failure Analysis of Integrated Circuits (IPFA).

    Google Scholar 

  • Sivel, V., Tichelaar, F., Mohdadi, H., Alkemade, P., & Zandbergen, H. (2005). Crystallographic analysis of thin specimens. Journal of Microscopy, 218, 115–124.

    Article  Google Scholar 

  • Small, J., & Michael, J. (2001). Phase identification of individual crystalline particles by electron backscatter diffraction. Journal of Microscopy, 201, 59–69.

    Article  Google Scholar 

  • Small, J., Michael, J., & Bright, D. (2002). Improving the quality of electron backscatter diffraction (EBSD) patterns from nanoparticles. Journal of Microscopy, 206, 170–178.

    Article  Google Scholar 

  • Spencer, J., Humphreys, C., & Hirsch, P. (1972). A dynamical theory for the contrast of perfect and imperfect crystals in the scanning electron microscope using backscattered electrons. Philosophical Magazine, 26, 193–213.

    Article  Google Scholar 

  • Steinmetz, D., & Zaefferer, S. (2010). Towards ultrahigh resolution EBSD by low accelerating voltage. Materials Science and Technology, 26, 640–645.

    Article  Google Scholar 

  • Sun, J., Trimby, P., Yan, F., Liao, X., Tao, N., & Wang, J. (2013). Grain size effect on deformation twinning propensity in ultrafine-grained hexagonal close-packed titanium. Scripta Materialia, 69, 428–431.

    Article  Google Scholar 

  • Sussman, M., Brodusch, N., Gauvin, R., & Demopoulos, G. P. (2014). Transmission electron forward scattered diffraction and low voltage SEM/STEM characterization of binder-free TiO2 electrodes. Microscopy and Microanalysis, 20, 492–493.

    Article  Google Scholar 

  • Suzuki, S. (2013). Features of transmission EBSD and its application. JOM Journal of the Minerals Metals and Materials Society, 65, 1254–1263.

    Article  Google Scholar 

  • Trimby, P. W. (2012). Orientation mapping of nanostructured materials using transmission Kikuchi diffraction in the scanning electron microscope. Ultramicroscopy, 120, 16–24.

    Google Scholar 

  • Trimby, P. W., Cao, Y., Chen, Z., Han, S., Hemker, K. J., Lian, J., et al. (2014). Characterizing deformed ultrafine-grained and nanocrystalline materials using transmission Kikuchi diffraction in a scanning electron microscope. Acta materialia, 62, 69–80.

    Google Scholar 

  • Venables, J., & Harland, C. (1973). Electron back-scattering patterns—A new technique for obtaining crystallographic information in the scanning electron microscope. Philosophical Magazine, 27, 1193–1200.

    Article  Google Scholar 

  • Wells, O. C. (1971). Low-loss image for surface scanning electron microscope. Applied Physics Letters, 19, 232–235.

    Article  Google Scholar 

  • Wells, O. C. (1974). Scanning electron microscopy. McGraw-Hill.

    Google Scholar 

  • Wells, O. C. (1999). Comparison of different models for the generation of electron backscattering patterns in the scanning electron microscope. Scanning, 21, 368–371.

    Article  Google Scholar 

  • Williams, D. B., & Carter, C. B. (2009). Transmission electron microscopy: A textbook for materials science. Springer.

    Google Scholar 

  • Winkelmann, A. (2009). Dynamical simulation of electron backscatter diffraction patterns. In: Electron backscatter diffraction in materials science. Springer.

    Google Scholar 

  • Winkelmann, A., Schroter, B., & Richter, W. (2003). Dynamical simulations of zone axis electron channelling patterns of cubic silicon carbide. Ultramicroscopy, 98, 1–7.

    Article  Google Scholar 

  • Winkelmann, A., Trager-Cowan, C., Sweeney, F., Day, A. P., & Parbrook, P. (2007). Many-beam dynamical simulation of electron backscatter diffraction patterns. Ultramicroscopy, 107, 414–421.

    Article  Google Scholar 

  • Wright, S. I., Nowell, M. M., de Kloe, R., Camus, P., & Rampton, T. (2015). Electron imaging with an EBSD detector. Ultramicroscopy, 148, 132–145.

    Google Scholar 

  • Zaefferer, S. (2007). On the formation mechanisms, spatial resolution and intensity of backscatter Kikuchi patterns. Ultramicroscopy, 107, 254–266.

    Article  Google Scholar 

  • Zaefferer, S., & Elhami, N.-N. (2014). Theory and application of electron channelling contrast imaging under controlled diffraction conditions. Acta Materialia, 75, 20–50.

    Article  Google Scholar 

  • Zielinski, W., Plocinski, T., & Kurzydlowski, K. (2015). Transmission Kikuchi diffraction and transmission electron forescatter imaging of electropolished and FIB manufactured TEM specimens. Materials Characterization, 104, 42–48.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nicolas Brodusch .

Rights and permissions

Reprints and permissions

Copyright information

© 2018 The Author(s)

About this chapter

Cite this chapter

Brodusch, N., Demers, H., Gauvin, R. (2018). Electron Diffraction Techniques in the SEM. In: Field Emission Scanning Electron Microscopy. SpringerBriefs in Applied Sciences and Technology. Springer, Singapore. https://doi.org/10.1007/978-981-10-4433-5_8

Download citation

Publish with us

Policies and ethics