Skip to main content

Low Voltage SEM

  • Chapter
  • First Online:
Field Emission Scanning Electron Microscopy

Part of the book series: SpringerBriefs in Applied Sciences and Technology ((BRIEFSAPPLSCIENCES))

Abstract

For a long time, the microscopist had to compromise between the lens aberrations , especially chromatic , and the electron diffusion volume to carry high resolution imaging in the SEM.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 59.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 79.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Bell, D. C., & Erdman, N. (2012). Low voltage electron microscopy: Principles and applications. Hoboken: John Wiley & Sons.

    Google Scholar 

  • Bozzola, J. J., & Russell, L. D. (1999). Electron microscopy: Principles and techniques for biologists. Burlington: Jones & Bartlett Learning.

    Google Scholar 

  • Cazaux, J. (2004) About the mechanisms of charging in EPMA, SEM, and ESEM with Their Time Evolution. Microscopy and Microanalysis, 10.

    Google Scholar 

  • Cazaux, J. (2005). Recent developments and new strategies in scanning electron microscopy. Journal of Microscopy, 217, 16–35.

    Article  Google Scholar 

  • Dapor, M., Jepson, M. A., Inkson, B. J., & Rodenburg, C. (2009). The effect of oxide overlayers on secondary electron dopant mapping. Microscopy and Microanalysis, 15, 237–243.

    Article  Google Scholar 

  • Ding, Z.-J., & Shimizu, R. (1996). A Monte Carlo modeling of electron interaction with solids including cascade secondary electron production. Scanning, 18, 92–113.

    Article  Google Scholar 

  • Dotan, I., Roche, P. J. R., Paliouras, M., Mitmaker, E. J., & Trifiro, M. A. (2016). Engineering multi-walled carbon nanotube therapeutic bionanofluids to selectively target papillary thyroid cancer cells. Plos One, 11.

    Google Scholar 

  • Echlin, P. (2009). Handbook of sample preparation for scanning electron microscopy and X-ray microanalysis. Berlin: Springer.

    Google Scholar 

  • El-Gomati, M., & Wells, T. (2001). Very-low-energy electron microscopy of doped semiconductors. Applied Physics Letters, 79, 2931.

    Article  Google Scholar 

  • El Gomati, M., Walker, C., Assa’d, A., & ZadraŽil, M. (2008). Theory experiment comparison of the electron backscattering factor from solids at low electron energy (250–5000 eV). Scanning, 30, 2–15.

    Article  Google Scholar 

  • El Gomati, M., Zaggout, F., Walker, C., & Zha, X. (2009). The role of oxygen in secondary electron contrast of doped semiconductors in LVSEM. In SPIE scanning microscopy.

    Google Scholar 

  • Joy, D. C., & Joy, C. S. (1996). Low voltage scanning electron microscopy. Micron, 27, 247–263.

    Article  Google Scholar 

  • Kanaya, K., & Okayama, S. (1972). Penetration and energy-loss theory of electrons in solid targets. Journal of Physics. D. Applied Physics, 5, 43.

    Article  Google Scholar 

  • Konno, M., Ogashiwa, T., Sunaoshi, T., Orai, Y., & Sato, M. (2014). Lattice imaging at an accelerating voltage of 30 kV using an in-lens type cold field-emission scanning electron microscope. Ultramicroscopy, 145, 28–35.

    Article  Google Scholar 

  • Mikmekova, S., Yamada, K., & Noro, H. (2015). Dual-phase steel structure visualized by extremely slow electrons. Microscopy, dfv059.

    Google Scholar 

  • Reimer, L. (1993). Image formation in low-voltage scanning electron microscopy (SPIE Tutorial Text Vol. TT12) (Tutorial Texts in Optical Engineering). SPIE Press.

    Google Scholar 

  • Reimer, L. (1998). Scanning electron microscopy: Physics of image formation and microanalysis (Springer Series in Optical Sciences). Berlin: Springer.

    Google Scholar 

  • Schatten, H., & Pawley, J. B. (2008). Biological low-voltage scanning electron microscopy. Berlin: Springer.

    Google Scholar 

  • Schmid, R., Gaukler, K., & Seiler, H. (1983). Measurement of elastically reflected electrons (E 2.5 keV) for imaging of surfaces in a simple ultra high vacuum scanning electron microscope. Scanning Electron Microscopy, 2, 501–509.

    Google Scholar 

  • Seah, M., & Dench, W. (1979). Quantitative electron spectroscopy of surfaces. Surface and Interface Analysis, 1, 2–11.

    Article  Google Scholar 

  • Verde-Gomez, Y., Macias, E. M., Valenzuela-Muniz, A. M., Alonso-Lemus, I., Yoshida, M. M., Zaghib, K., et al. (2017). Structural study of sulfurated multiwall carbon nanohorns. Submitted: Nanoletters.

    Google Scholar 

  • Zaggout, F., Walker, C., & El Gomati, M. (2010). The chemisorption of oxygen and its effect on the secondary electron emission from doped semiconductors. In Journal of physics: Conference series.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nicolas Brodusch .

Rights and permissions

Reprints and permissions

Copyright information

© 2018 The Author(s)

About this chapter

Cite this chapter

Brodusch, N., Demers, H., Gauvin, R. (2018). Low Voltage SEM. In: Field Emission Scanning Electron Microscopy. SpringerBriefs in Applied Sciences and Technology. Springer, Singapore. https://doi.org/10.1007/978-981-10-4433-5_4

Download citation

Publish with us

Policies and ethics