Skip to main content

Electron Detection Strategies for High Resolution Imaging: Deceleration and Energy Filtration

  • Chapter
  • First Online:
Field Emission Scanning Electron Microscopy

Part of the book series: SpringerBriefs in Applied Sciences and Technology ((BRIEFSAPPLSCIENCES))

  • 1729 Accesses

Abstract

From the early beginning, the reflected and transmitted electrons produced after the interaction of a high energy electron beam with a specimen surface were collected by placing electron detectors around and below the specimen at specific locations inside the specimen chamber.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 59.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 79.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Agemura, T., Nomaguchi, T., & Joy, D. (2011). Digital BSE imaging on SEMs. Microscopy and Microanalysis, 17, 914.

    Article  Google Scholar 

  • Aoyama, T., Nagoshi, M., & Sato, K. (2015). Quantitative analysis of angle-selective backscattering electron image of iron oxide and steel. Microscopy, 64(5), 319–325.

    Google Scholar 

  • Asahina, S., Uno, S., Suga, M., Stevens, S. M., Klingstedt, M., Okano, Y., et al. (2011). A new HRSEM approach to observe fine structures of novel nanostructured materials. Microporous and Mesoporous Materials, 146, 11–17.

    Google Scholar 

  • Berger, D., & Niedrig, H. (2002). Energy distribution of electron backscattering from crystals and relation to electron backscattering patterns and electron channeling patterns. Scanning, 24, 70–74.

    Article  Google Scholar 

  • Bhattacharyya, A., & Eades, J. A. (2009). Use of an energy filter to improve the spatial resolution of electron backscatter diffraction. Scanning, 31, 114–121.

    Article  Google Scholar 

  • Brodusch, N., Demers, H., & Gauvin, R. (2013). Dark-field imaging of thin specimens with a forescatter electron detector at low accelerating voltage. Microscopy and microanalysis: The Official Journal of Microscopy Society of America, Microbeam Analysis Society, Microscopical Society of Canada, 1–10.

    Google Scholar 

  • Cazaux, J. (2004). About the role of the various types of secondary electrons (SE1; SE2; SE3) on the performance of LVSEM. Journal of Microscopy, 214, 341–347.

    Article  Google Scholar 

  • Cazaux, J. (2005). Recent developments and new strategies in scanning electron microscopy. Journal of Microscopy, 217, 16–35.

    Article  Google Scholar 

  • Cazaux, J., Kuwano, N., & Sato, K. (2013). Backscattered electron imaging at low emerging angles: A physical approach to contrast in LVSEM. Ultramicroscopy, 135, 43–49.

    Article  Google Scholar 

  • Deal, A., Hooghan, T., & Eades, A. (2008). Energy-filtered electron backscatter diffraction. Ultramicroscopy, 108, 116–125.

    Article  Google Scholar 

  • Drouin, D., Couture, A. R., Joly, D., Tastet, X., Aimez, V., & Gauvin, R. (2007). CASINO V2. 42—A fast and easy-to-use modeling tool for scanning electron microscopy and microanalysis users. Scanning, 29, 92–101.

    Google Scholar 

  • Everhart, T., & Thornley, R. (1960). Wide-band detector for micro-microampere low-energy electron currents. Journal of Scientific Instruments, 37, 246.

    Article  Google Scholar 

  • Gauvin, R., & Michaud, P. (2009). MC X-ray, a new monte carlo program for quantitative X-ray microanalysis of real materials. Microscopy and Microanalysis, 15, 488.

    Article  Google Scholar 

  • Jaksch, H. (2008a). Low loss BSE imaging with the EsB detection system on the gemini ultra FE-SEM. In EMC 2008 14th European Microscopy Congress, September 1–5, 2008, Aachen, Germany.

    Google Scholar 

  • Jaksch, H. (2008b). Strain related contrast mechanisms in crystalline materials imaged with AsB detection. In EMC 2008 14th European Microscopy Congress, September 1–5, 2008, Aachen, Germany.

    Google Scholar 

  • Jaksch, H. (2011). The contrast mechanisms of LL-BSE electrons in FE-SEM characterization of polymer, single proteins, and oxidization states of elements. Microscopy and Microanalysis, 17, 902–903.

    Article  Google Scholar 

  • Jaksch, H. (2012a). Hybridisation & band gap contrast from LL-BSE electrons. Microscopy and Microanalysis, 18, 704–705.

    Article  Google Scholar 

  • Jaksch, H. (2012b). What BSE electrons can tell us. From ECCI via RBS to low loss BSE imaging. Microscopy and Microanalysis, 18, 680–681.

    Article  Google Scholar 

  • Jaksch, H., & Martin, J. (1995). High-resolution, low-voltage SEM for true surface imaging and analysis. Fresenius’ Journal of Analytical Chemistry, 353, 378–382.

    Article  Google Scholar 

  • Jaksch, H., & Vermeulen, J. (2005). New developments in GEMINI FESEM technology. Microscopy Today, 13, 8–10.

    Google Scholar 

  • Joy, D. (2002). SMART—A program to measure SEM resolution and imaging performance. Journal of Microscopy, 208, 24–34.

    Article  Google Scholar 

  • Joy, D. C. (1984). Beam interactions, contrast and resolution in the SEM. Journal of Microscopy, 136, 241–258.

    Article  Google Scholar 

  • Joy, D. C. (1985). Resolution in low voltage scanning electron microscopy. Journal of Microscopy, 140, 283–292.

    Article  Google Scholar 

  • Joy, D. C., Newbury, D. E., & Davidson, D. L. (1982). Electron channeling patterns in the scanning electron microscope. Journal of Applied Physics, 53, R81–R122.

    Article  Google Scholar 

  • Kim, K. W., & Jaksch, H. (2009). Compositional contrast of uncoated fungal spores and stained section-face by low-loss backscattered electron imaging. Micron, 40, 724–729.

    Article  Google Scholar 

  • Koshikawa, T., & Shimizu, R. (1974). A Monte Carlo calculation of low-energy secondary electron emission from metals. Journal of Physics D: Applied Physics, 7, 1303.

    Article  Google Scholar 

  • Merli, P., Migliori, A., Morandi, V., & Rosa, R. (2001). Spatial resolution and energy filtering of backscattered electron images in scanning electron microscopy. Ultramicroscopy, 88, 139–150.

    Article  Google Scholar 

  • Murata, K. (1976). Depth resolution of the low-and high-deflection backscattered electron images in the scanning electron microscope. Physica Status Solidi (a), 36, 527–532.

    Google Scholar 

  • Newbury, D., Yakowitz, H., & Myklebust, R. (1973). Monte Carlo calculations of magnetic contrast from cubic materials in the scanning electron microscope. Applied Physics Letters, 23, 488–490.

    Article  Google Scholar 

  • Newbury D., Yakowitz H., & Myklebust L. (1976). A study of type II magnetic domain contrast in the SEM by Monte Carlo electron trajectory simulation. In Use of Monte Carlo Calculations in Electron Probe Microanalysis and Scanning Electron Microscopy: Proceedings of a Workshop Held at the National Bureau of Standards, Gaithersburg, Maryland, October 1–3, 1975. US Department of Commerce, National Bureau of Standards: for sale by the Superintendent of Documents, U.S. Government Printing Office.

    Google Scholar 

  • Rasband, W. S. (1997–2015). Image J. Maryland, USA: Bethesda. https://imagej.nih.gov/ij/.

  • Reimer, L. (1993). Image formation in low-voltage scanning electron microscopy. In L. Reimer (Ed.), Image formation in low-voltage scanning electron microscopy. USA: SPIE-International Society for Optical Engineering.

    Google Scholar 

  • Reimer, L. (1998). Scanning electron microscopy: Physics of image formation and microanalysis (Springer Series in Optical Sciences). Berlin: Springer.

    Google Scholar 

  • Reimer, L., & Volbert, B. (1979). Detector system for backscattered electrons by conversion to secondary electrons. Scanning, 2, 238–248.

    Article  Google Scholar 

  • Tsurumi, D., Hamada, K., & Kawasaki, Y. (2010). Energy-filtered imaging in a scanning electron microscope for dopant contrast in InP. Journal of Electron Microscopy, 59, S183–S187.

    Article  Google Scholar 

  • Wells, O. C. (1970). New contrast mechanism for scanning electron microscope. Applied Physics Letters, 16, 151–153.

    Article  Google Scholar 

  • Wells, O. C. (1971). Low-loss image for surface scanning electron microscope. Applied Physics Letters, 19, 232–235.

    Article  Google Scholar 

  • Wells, O. C. (1974). Scanning electron microscopy, USA: McGraw-Hill.

    Google Scholar 

  • Wells, O. C. (1979). Effects of collector take-off angle and energy filtering on the BSE image in the SEM. Scanning, 2, 199–216.

    Article  Google Scholar 

  • Wells, O. C., Broers, A., & Bremer, C. (1973). Method for examining solid specimens with improved resolution in the scanning electron microscope (SEM). Applied Physics Letters, 23, 353–355.

    Article  Google Scholar 

  • Wells, O. C., LeGoues, F., & Hodgson, R. (1990). In-lens low-loss electron detector for the upper specimen stage in the SEM. Electron Microscopy 1990, 1, 382.

    Google Scholar 

  • Zach, J. (1989). Design of a high-resolution low-voltage scanning electron microscope. Optik, 83, 30–40.

    Google Scholar 

  • Zach, J., & Rose, H. (1986). Efficient detection of secondary electrons in low-voltage scanning electron microscopy. Scanning, 8, 285–293.

    Article  Google Scholar 

  • Zach, J., & Rose, H. (1988). High-resolution low-voltage electron-microprobe with large SE detection efficiency. In Institute of Physics Conference Series, 81–82.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nicolas Brodusch .

Rights and permissions

Reprints and permissions

Copyright information

© 2018 The Author(s)

About this chapter

Cite this chapter

Brodusch, N., Demers, H., Gauvin, R. (2018). Electron Detection Strategies for High Resolution Imaging: Deceleration and Energy Filtration. In: Field Emission Scanning Electron Microscopy. SpringerBriefs in Applied Sciences and Technology. Springer, Singapore. https://doi.org/10.1007/978-981-10-4433-5_3

Download citation

Publish with us

Policies and ethics