Skip to main content

Developments in Field Emission Gun Technologies and Advanced Detection Systems

  • Chapter
  • First Online:
Field Emission Scanning Electron Microscopy

Part of the book series: SpringerBriefs in Applied Sciences and Technology ((BRIEFSAPPLSCIENCES))

Abstract

To improve image or analysis quality a large signal-to-noise ratio (SNR) is necessary for imaging and spectroscopic techniques to provide high quality and precise measurements. However, the probe current increases as the square of the beam diameter .

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 16.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Bendayan, M., & Paransky, E. (2014). Perspectives on low voltage transmission electron microscopy as applied to cell biology. Microscopy Research and Technique, 77, 999–1004.

    Article  Google Scholar 

  • Cazaux, J. (2005). Recent developments and new strategies in scanning electron microscopy. Journal of Microscopy, 217, 16–35.

    Article  Google Scholar 

  • Crewe, A., & Wall, J. (1970). A scanning microscope with 5 nm resolution. Journal of Molecular Biology, 48, 375–393.

    Article  Google Scholar 

  • Crewe, A., Wall, J., & Welter, L. (1968). A high-resolution scanning transmission electron microscope. Journal of Applied Physics, 39, 5861–5868.

    Article  Google Scholar 

  • Drouin, D., Couture, A. R., Joly, D., Tastet, X., Aimez, V., & Gauvin, R. (2007). CASINO V2. 42—A fast and easy-to-use modeling tool for scanning electron microscopy and microanalysis users. Scanning, 29, 92–101.

    Google Scholar 

  • Drummy, L. F. (2014). Electron microscopy of organic–inorganic interfaces: Advantages of low voltage. Ultramicroscopy, 145, 74–79.

    Article  Google Scholar 

  • Egerton, R. (2012). Mechanisms of radiation damage in beam-sensitive specimens, for TEM accelerating voltages between 10 and 300 kV. Microscopy Research and Technique, 75, 1550–1556.

    Article  Google Scholar 

  • Egerton, R., Li, P., & Malac, M. (2004). Radiation damage in the TEM and SEM. Micron, 35, 399–409.

    Article  Google Scholar 

  • El-Gomati, M., & Wells, T. (2001). Very-low-energy electron microscopy of doped semiconductors. Applied Physics Letters, 79, 2931.

    Article  Google Scholar 

  • Frank, L., & Mullerova, I. (2006). The scanning low energy electron microscopy (SLEEM) mode in SEM. Microscopy and Microanalysis, 12, 152–153.

    Article  Google Scholar 

  • Gauvin, R., & Rudinsky, S. (2016). A universal equation for computing the beam broadening of incident electrons in thin films. Ultramicroscopy, 167, 21–30.

    Article  Google Scholar 

  • Houdellier, F., de Knoop, L., Gatel, C., Masseboeuf, A., Mamishin, S., Taniguchi, Y., et al. (2015). Development of TEM and SEM high brightness electron guns using cold-field emission from a carbon nanotip. Ultramicroscopy, 151, 107–115.

    Google Scholar 

  • Joy, D. (2002). SMART—A program to measure SEM resolution and imaging performance. Journal of Microscopy, 208, 24–34.

    Article  Google Scholar 

  • Joy, D. C. (1985). Resolution in low voltage scanning electron microscopy. Journal of Microscopy, 140, 283–292.

    Article  Google Scholar 

  • Joy, D. C., & Joy, C. S. (1996). Low voltage scanning electron microscopy. Micron, 27, 247–263.

    Article  Google Scholar 

  • Joy, D. C., Joy, C. S., et al. (1998). Study of the dependence of E2 energies on sample chemistry. Microscopy and Microanalysis, 4, 475–480.

    Google Scholar 

  • Kaiser, U., Biskupek, J., Meyer, J., Leschner, J., Lechner, L., Rose, H., et al. (2011). Transmission electron microscopy at 20 kV for imaging and spectroscopy. Ultramicroscopy, 111, 1239–1246.

    Google Scholar 

  • Kanaya, K., & Okayama, S. (1972). Penetration and energy-loss theory of electrons in solid targets. Journal of Physics D: Applied Physics, 5, 43.

    Article  Google Scholar 

  • Kasuya, K., Kawasaki, T., Moriya, N., Arai, M., & Furutsu, T. (2014). Magnetic field superimposed cold field emission gun under extreme-high vacuum. Journal of Vacuum Science & Technology B, 32, 031802.

    Google Scholar 

  • Konno, M., Ogashiwa, T., Sunaoshi, T., Orai, Y., & Sato, M. (2014). Lattice imaging at an accelerating voltage of 30 kV using an in-lens type cold field-emission scanning electron microscope. Ultramicroscopy, 145, 28–35.

    Article  Google Scholar 

  • Mikmekova, S., Yamada, K., & Noro, H. (2013). TRIP steel microstructure visualized by slow and very slow electrons. Microscopy, 62(6), 589–596.

    Google Scholar 

  • Mikmekova, S., Yamada, K., & Noro, H. (2015). Dual-phase steel structure visualized by extremely slow electrons. Microscopy, 64(6), 437–443.

    Google Scholar 

  • Mullerova, I., Matsuda, K., Hrncirik, P., & Frank, L. (2007). Enhancement of SEM to scanning LEEM. Surface Science, 601, 4768–4773.

    Article  Google Scholar 

  • Orai, Y., Sunaoshi, T., Okada, S., Ogashiwa, T., Ito, H., & Konno, M. (2014). Application of low energy STEM with the in-lens cold FE-SEM. Journal of Physics: Conference Series.

    Google Scholar 

  • Pennycook, S. (1989). Z-contrast STEM for materials science. Ultramicroscopy, 30, 58–69.

    Article  Google Scholar 

  • Pennycook, S., Jesson, D., McGibbon, A., & Nellist, P. (1996). High angle dark field STEM for advanced materials. Journal of Electron Microscopy, 45, 36–43.

    Article  Google Scholar 

  • Reimer, L. (1993). Image formation in low-voltage scanning electron microscopy (SPIE tutorial text Vol. TT12) (Tutorial texts in optical engineering), USA: SPIE Press.

    Google Scholar 

  • Reimer, L. (1998). Scanning electron microscopy: Physics of image formation and microanalysis (Springer series in optical sciences). Berlin: Springer.

    Google Scholar 

  • Sasaki, T., Sawada, H., Hosokawa, F., Kohno, Y., Tomita, T., Kaneyama, T., et al. (2010). Performance of low-voltage STEM/TEM with delta corrector and cold field emission gun. Journal of Electron Microscopy, 59, S7–S13.

    Article  Google Scholar 

  • Sasaki, T., Sawada, H., Hosokawa, F., Sato, Y., & Suenaga, K. (2014). Aberration-corrected STEM/TEM imaging at 15kV. Ultramicroscopy, 145, 50–55.

    Article  Google Scholar 

  • Sunaoshi, T., Orai, Y., Ito, H., Ogashiwa, T., Agemura, T., & Konno, M. (2012). 30 kV stem imaging with lattice resolution using a high resolution cold FE-SEM. In: Proceedings of the 15th European Microscopy Congress, Manchester Central, United Kingdom, September 16–21.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nicolas Brodusch .

Rights and permissions

Reprints and permissions

Copyright information

© 2018 The Author(s)

About this chapter

Cite this chapter

Brodusch, N., Demers, H., Gauvin, R. (2018). Developments in Field Emission Gun Technologies and Advanced Detection Systems. In: Field Emission Scanning Electron Microscopy. SpringerBriefs in Applied Sciences and Technology. Springer, Singapore. https://doi.org/10.1007/978-981-10-4433-5_2

Download citation

Publish with us

Policies and ethics