Advertisement

Pathological Effects of Exosomes in Mediating Diabetic Cardiomyopathy

  • Esam S. B. Salem
  • Guo-Chang FanEmail author
Chapter
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 998)

Abstract

Diabetic subjects are at risk of developing cardiovascular disease, which accounts for 60–80% of diabetes-related mortality. Atherosclerosis is still considered as a leading cause of heart failure in diabetic patients, but it could also be an intrinsic and long-term effect of contractile cardiac cells malfunction, known as diabetic cardiomyopathy (DCM). Pathologically, this cardiac dysfunction is manifested by inflammation, apoptosis, fibrosis, hypertrophy and altered cardiomyocytes metabolism. However, the underlying molecular mechanisms of DCM pathophysiology are not clearly understood. Recent and several studies have suggested that exosomes are contributed to the regulation of cell-to-cell communication. Therefore, their in-depth investigation can interpret the complex pathophysiology of DCM. Structurally, exosomes are membrane-bounded vesicles (10–200 nm in diameter), which are actively released from all types of cells and detected in all biological fluids. They carry a wide array of bioactive molecules, including mRNAs, none-coding RNAs (e.g., microRNAs, lncRNAs, circRNAs, etc), proteins and lipids. Importantly, the abundance and nature of loaded molecules inside exosomes fluctuate with cell types and pathological conditions. This chapter summarizes currently available studies on the exosomes’ role in the regulation of diabetic cardiomyopathy. Specifically, the advances on the pathological effects of exosomes in diabetic cardiomyopathy as well as the therapeutic potentials and perspectives are also discussed.

Keywords

Exosomes Non-coding RNAs Diabetes Cardiomyopathy 

References

  1. 1.
    Eriksson J, Franssila-Kallunki A, Ekstrand A, Saloranta C, Widen E, Schalin C, Groop L (1989) Early metabolic defects in persons at increased risk for non-insulin-dependent diabetes mellitus. N Engl J Med 321(6):337–343PubMedCrossRefGoogle Scholar
  2. 2.
    Shepherd PR, Kahn BB (1999) Glucose transporters and insulin action—implications for insulin resistance and diabetes mellitus. N Engl J Med 341(4):248–257PubMedCrossRefGoogle Scholar
  3. 3.
    Egede LE, Ellis C (2010) Diabetes and depression: global perspectives. Diabetes Res Clin Pract 87(3):302–312PubMedCrossRefGoogle Scholar
  4. 4.
    Farag YM, Gaballa MR (2011) Diabesity: an overview of a rising epidemic. Nephrol Dial Transplant 26(1):28–35PubMedCrossRefGoogle Scholar
  5. 5.
    Greenberg RA, Sacks DB (2002) Screening for diabetes: is it warranted? Clin Chim Acta 315(1–2):61–69PubMedCrossRefGoogle Scholar
  6. 6.
    Castano L, Eisenbarth GS (1990) Type-I diabetes: a chronic autoimmune disease of human, mouse, and rat. Annu Rev Immunol 8:647–679PubMedCrossRefGoogle Scholar
  7. 7.
    American Diabetes Association (2010) Diagnosis and classification of diabetes mellitus. Diabetes Care 33(Suppl 1):S62–S69PubMedCentralCrossRefGoogle Scholar
  8. 8.
    Hanafusa T, Imagawa A (2007) Fulminant type 1 diabetes: a novel clinical entity requiring special attention by all medical practitioners. Nat Clin Pract Endocrinol Metab 3(1):36–45PubMedCrossRefGoogle Scholar
  9. 9.
    Reaven GM (1988) Banting lecture 1988. Role of insulin resistance in human disease. Diabetes 37(12):1595–1607PubMedCrossRefGoogle Scholar
  10. 10.
    Fajans SS (1989) Maturity-onset diabetes of the young (MODY). Diabetes Metab Rev 5(7):579–606PubMedCrossRefGoogle Scholar
  11. 11.
    American Diabetes Association (2006) Diagnosis and classification of diabetes mellitus. Diabetes Care 29(Suppl 1):S43–S48Google Scholar
  12. 12.
    Sacks DB, McDonald JM (1996) The pathogenesis of type II diabetes mellitus. A polygenic disease. Am J Clin Pathol 105(2):149–156PubMedCrossRefGoogle Scholar
  13. 13.
    Grundy SM, Benjamin IJ, Burke GL, Chait A, Eckel RH, Howard BV, Mitch W, Smith SC Jr, Sowers JR (1999) Diabetes and cardiovascular disease: a statement for healthcare professionals from the American Heart Association. Circulation 100(10):1134–1146PubMedCrossRefGoogle Scholar
  14. 14.
    Zimmet P, Alberti KG, Shaw J (2001) Global and societal implications of the diabetes epidemic. Nature 414(6865):782–787PubMedCrossRefGoogle Scholar
  15. 15.
    Isomaa B, Almgren P, Tuomi T, Forsen B, Lahti K, Nissen M, Taskinen MR, Groop L (2001) Cardiovascular morbidity and mortality associated with the metabolic syndrome. Diabetes Care 24(4):683–689PubMedCrossRefGoogle Scholar
  16. 16.
    Ryden L, Standl E, Bartnik M, Van den Berghe G, Betteridge J, de Boer MJ, Cosentino F, Jonsson B, Laakso M, Malmberg K, Priori S, Ostergren J, Tuomilehto J, Thrainsdottir I, Vanhorebeek I, Stramba-Badiale M, Lindgren P, Qiao Q, Priori SG, Blanc JJ, Budaj A, Camm J, Dean V, Deckers J, Dickstein K, Lekakis J, McGregor K, Metra M, Morais J, Osterspey A, Tamargo J, Zamorano JL, Deckers JW, Bertrand M, Charbonnel B, Erdmann E, Ferrannini E, Flyvbjerg A, Gohlke H, Juanatey JR, Graham I, Monteiro PF, Parhofer K, Pyorala K, Raz I, Schernthaner G, Volpe M, Wood D, Task Force on D, Cardiovascular Diseases of the European Society of C, European Association for the Study of D (2007) Guidelines on diabetes, pre-diabetes, and cardiovascular diseases: executive summary. The Task Force on Diabetes and Cardiovascular Diseases of the European Society of Cardiology (ESC) and of the European Association for the Study of Diabetes (EASD). Eur Heart J 28(1):88–136Google Scholar
  17. 17.
    Boudina S, Abel ED (2007) Diabetic cardiomyopathy revisited. Circulation 115(25):3213–3223PubMedCrossRefGoogle Scholar
  18. 18.
    Boudina S, Abel ED (2010) Diabetic cardiomyopathy, causes and effects. Rev Endocr Metab Disord 11(1):31–39PubMedPubMedCentralCrossRefGoogle Scholar
  19. 19.
    Poirier P, Bogaty P, Garneau C, Marois L, Dumesnil JG (2001) Diastolic dysfunction in normotensive men with well-controlled type 2 diabetes: importance of maneuvers in echocardiographic screening for preclinical diabetic cardiomyopathy. Diabetes Care 24(1):5–10PubMedCrossRefGoogle Scholar
  20. 20.
    Atlas SA (2007) The renin-angiotensin aldosterone system: pathophysiological role and pharmacologic inhibition. J Manag Care Pharm 13(8 Suppl B):9–20PubMedGoogle Scholar
  21. 21.
    Bahrami H, Bluemke DA, Kronmal R, Bertoni AG, Lloyd-Jones DM, Shahar E, Szklo M, Lima JA (2008) Novel metabolic risk factors for incident heart failure and their relationship with obesity: the MESA (Multi-Ethnic Study of Atherosclerosis) study. J Am Coll Cardiol 51(18):1775–1783PubMedCrossRefGoogle Scholar
  22. 22.
    Floras JS (2009) Sympathetic nervous system activation in human heart failure: clinical implications of an updated model. J Am Coll Cardiol 54(5):375–385PubMedCrossRefGoogle Scholar
  23. 23.
    Lymperopoulos A, Rengo G, Koch WJ (2013) Adrenergic nervous system in heart failure: pathophysiology and therapy. Circ Res 113(6):739–753PubMedCrossRefGoogle Scholar
  24. 24.
    Privratsky JR, Wold LE, Sowers JR, Quinn MT, Ren J (2003) AT1 blockade prevents glucose-induced cardiac dysfunction in ventricular myocytes: role of the AT1 receptor and NADPH oxidase. Hypertension 42(2):206–212PubMedCrossRefGoogle Scholar
  25. 25.
    Wende AR, Abel ED (2010) Lipotoxicity in the heart. Biochim Biophys Acta 1801(3):311–319PubMedCrossRefGoogle Scholar
  26. 26.
    Schilling JD, Mann DL (2012) Diabetic cardiomyopathy: bench to bedside. Heart Fail Clin 8(4):619–631PubMedPubMedCentralCrossRefGoogle Scholar
  27. 27.
    Skrzypiec-Spring M, Grotthus B, Szelag A, Schulz R (2007) Isolated heart perfusion according to Langendorff—still viable in the new millennium. J Pharmacol Toxicol Methods 55(2):113–126PubMedCrossRefGoogle Scholar
  28. 28.
    Kakkar R, Lee RT (2010) Intramyocardial fibroblast myocyte communication. Circ Res 106(1):47–57PubMedPubMedCentralCrossRefGoogle Scholar
  29. 29.
    Banerjee I, Fuseler JW, Price RL, Borg TK, Baudino TA (2007) Determination of cell types and numbers during cardiac development in the neonatal and adult rat and mouse. Am J Physiol Heart Circ Physiol 293(3):H1883–H1891PubMedCrossRefGoogle Scholar
  30. 30.
    Frangogiannis NG (2008) The immune system and cardiac repair. Pharmacol Res 58(2):88–111PubMedPubMedCentralCrossRefGoogle Scholar
  31. 31.
    Orlic D, Hill JM, Arai AE (2002) Stem cells for myocardial regeneration. Circ Res 91(12):1092–1102PubMedCrossRefGoogle Scholar
  32. 32.
    Souders CA, Bowers SL, Baudino TA (2009) Cardiac fibroblast: the renaissance cell. Circ Res 105(12):1164–1176PubMedPubMedCentralCrossRefGoogle Scholar
  33. 33.
    Williams AR, Hare JM (2011) Mesenchymal stem cells: biology, pathophysiology, translational findings, and therapeutic implications for cardiac disease. Circ Res 109(8):923–940PubMedPubMedCentralCrossRefGoogle Scholar
  34. 34.
    Tirziu D, Giordano FJ, Simons M (2010) Cell communications in the heart. Circulation 122(9):928–937PubMedPubMedCentralCrossRefGoogle Scholar
  35. 35.
    Blankenberg S, Rupprecht HJ, Bickel C, Peetz D, Hafner G, Tiret L, Meyer J (2001) Circulating cell adhesion molecules and death in patients with coronary artery disease. Circulation 104(12):1336–1342PubMedCrossRefGoogle Scholar
  36. 36.
    Re RN (1989) The cellular biology of angiotensin: paracrine, autocrine and intracrine actions in cardiovascular tissues. J Mol Cell Cardiol 21(Suppl 5):63–69PubMedCrossRefGoogle Scholar
  37. 37.
    Sapir Y, Kryukov O, Cohen S (2011) Integration of multiple cell-matrix interactions into alginate scaffolds for promoting cardiac tissue regeneration. Biomaterials 32(7):1838–1847PubMedCrossRefGoogle Scholar
  38. 38.
    van der Velden HM, Wilders R, Jongsma HJ (2002) Atrial fibrillation-induced gap junctional remodeling. J Am Coll Cardiol 39(10):1709PubMedCrossRefGoogle Scholar
  39. 39.
    Thery C (2011) Exosomes: secreted vesicles and intercellular communications. F1000 Biol Rep 3:15PubMedPubMedCentralCrossRefGoogle Scholar
  40. 40.
    Turturici G, Tinnirello R, Sconzo G, Geraci F (2014) Extracellular membrane vesicles as a mechanism of cell-to-cell communication: advantages and disadvantages. Am J Physiol Cell Physiol 306(7):C621–C633PubMedCrossRefGoogle Scholar
  41. 41.
    Gupta S, Knowlton AA (2007) HSP60 trafficking in adult cardiac myocytes: role of the exosomal pathway. Am J Physiol Heart Circ Physiol 292(6):H3052–H3056PubMedCrossRefGoogle Scholar
  42. 42.
    Record M, Carayon K, Poirot M, Silvente-Poirot S (2014) Exosomes as new vesicular lipid transporters involved in cell-cell communication and various pathophysiologies. Biochim Biophys Acta 1841(1):108–120PubMedCrossRefGoogle Scholar
  43. 43.
    Waldenstrom A, Genneback N, Hellman U, Ronquist G (2012) Cardiomyocyte microvesicles contain DNA/RNA and convey biological messages to target cells. PLoS One 7(4):e34653PubMedPubMedCentralCrossRefGoogle Scholar
  44. 44.
    Ibrahim AG, Cheng K, Marban E (2014) Exosomes as critical agents of cardiac regeneration triggered by cell therapy. Stem Cell Rep 2(5):606–619CrossRefGoogle Scholar
  45. 45.
    Sharov VG, Sabbah HN, Shimoyama H, Goussev AV, Lesch M, Goldstein S (1996) Evidence of cardiocyte apoptosis in myocardium of dogs with chronic heart failure. Am J Pathol 148(1):141–149PubMedPubMedCentralGoogle Scholar
  46. 46.
    Hristov M, Erl W, Linder S, Weber PC (2004) Apoptotic bodies from endothelial cells enhance the number and initiate the differentiation of human endothelial progenitor cells in vitro. Blood 104(9):2761–2766PubMedCrossRefGoogle Scholar
  47. 47.
    Elmore S (2007) Apoptosis: a review of programmed cell death. Toxicol Pathol 35(4):495–516PubMedPubMedCentralCrossRefGoogle Scholar
  48. 48.
    Buzas EI, Gyorgy B, Nagy G, Falus A, Gay S (2014) Emerging role of extracellular vesicles in inflammatory diseases. Nat Rev Rheumatol 10(6):356–364PubMedCrossRefGoogle Scholar
  49. 49.
    Sluijter JP, Verhage V, Deddens JC, van den Akker F, Doevendans PA (2014) Microvesicles and exosomes for intracardiac communication. Cardiovasc Res 102(2):302–311PubMedCrossRefGoogle Scholar
  50. 50.
    Zhu H, Dardick CD, Beers EP, Callanhan AM, Xia R, Yuan R (2011) Transcriptomics of shading-induced and NAA-induced abscission in apple (Malus domestica) reveals a shared pathway involving reduced photosynthesis, alterations in carbohydrate transport and signaling and hormone crosstalk. BMC Plant Biol 11:138PubMedPubMedCentralCrossRefGoogle Scholar
  51. 51.
    Ling H, Fabbri M, Calin GA (2013) MicroRNAs and other non-coding RNAs as targets for anticancer drug development. Nat Rev Drug Discov 12(11):847–865PubMedPubMedCentralCrossRefGoogle Scholar
  52. 52.
    Johnsen KB, Gudbergsson JM, Skov MN, Pilgaard L, Moos T, Duroux M (2014) A comprehensive overview of exosomes as drug delivery vehicles—endogenous nanocarriers for targeted cancer therapy. Biochim Biophys Acta 1846(1):75–87PubMedGoogle Scholar
  53. 53.
    Vlassov AV, Magdaleno S, Setterquist R, Conrad R (2012) Exosomes: current knowledge of their composition, biological functions, and diagnostic and therapeutic potentials. Biochim Biophys Acta 1820(7):940–948PubMedCrossRefGoogle Scholar
  54. 54.
    Johnstone RM, Adam M, Hammond JR, Orr L, Turbide C (1987) Vesicle formation during reticulocyte maturation. Association of plasma membrane activities with released vesicles (exosomes). J Biol Chem 262(19):9412–9420PubMedGoogle Scholar
  55. 55.
    Johnstone RM, Bianchini A, Teng K (1989) Reticulocyte maturation and exosome release: transferrin receptor containing exosomes shows multiple plasma membrane functions. Blood 74(5):1844–1851PubMedGoogle Scholar
  56. 56.
    Kharaziha P, Ceder S, Li Q, Panaretakis T (2012) Tumor cell-derived exosomes: a message in a bottle. Biochim Biophys Acta 1826(1):103–111PubMedGoogle Scholar
  57. 57.
    Rubler S, Dlugash J, Yuceoglu YZ, Kumral T, Branwood AW, Grishman A (1972) New type of cardiomyopathy associated with diabetic glomerulosclerosis. Am J Cardiol 30(6):595–602PubMedCrossRefGoogle Scholar
  58. 58.
    Kiencke S, Handschin R, von Dahlen R, Muser J, Brunner-Larocca HP, Schumann J, Felix B, Berneis K, Rickenbacher P (2010) Pre-clinical diabetic cardiomyopathy: prevalence, screening, and outcome. Eur J Heart Fail 12(9):951–957PubMedCrossRefGoogle Scholar
  59. 59.
    Cai L, Kang YJ (2001) Oxidative stress and diabetic cardiomyopathy: a brief review. Cardiovasc Toxicol 1(3):181–193PubMedCrossRefGoogle Scholar
  60. 60.
    Liu Q, Wang S, Cai L (2014) Diabetic cardiomyopathy and its mechanisms: role of oxidative stress and damage. J Diabetes Investig 5(6):623–634PubMedPubMedCentralCrossRefGoogle Scholar
  61. 61.
    Westermann D, Rutschow S, Jager S, Linderer A, Anker S, Riad A, Unger T, Schultheiss HP, Pauschinger M, Tschope C (2007) Contributions of inflammation and cardiac matrix metalloproteinase activity to cardiac failure in diabetic cardiomyopathy: the role of angiotensin type 1 receptor antagonism. Diabetes 56(3):641–646PubMedCrossRefGoogle Scholar
  62. 62.
    Choi KM, Zhong Y, Hoit BD, Grupp IL, Hahn H, Dilly KW, Guatimosim S, Lederer WJ, Matlib MA (2002) Defective intracellular Ca(2+) signaling contributes to cardiomyopathy in Type 1 diabetic rats. Am J Physiol Heart Circ Physiol 283(4):H1398–H1408PubMedCrossRefGoogle Scholar
  63. 63.
    Duncan JG (2011) Mitochondrial dysfunction in diabetic cardiomyopathy. Biochim Biophys Acta 1813(7):1351–1359PubMedPubMedCentralCrossRefGoogle Scholar
  64. 64.
    Lebeche D, Davidoff AJ, Hajjar RJ (2008) Interplay between impaired calcium regulation and insulin signaling abnormalities in diabetic cardiomyopathy. Nat Clin Pract Cardiovasc Med 5(11):715–724PubMedCrossRefGoogle Scholar
  65. 65.
    Asbun J, Villarreal FJ (2006) The pathogenesis of myocardial fibrosis in the setting of diabetic cardiomyopathy. J Am Coll Cardiol 47(4):693–700PubMedCrossRefGoogle Scholar
  66. 66.
    Singh VP, Le B, Khode R, Baker KM, Kumar R (2008) Intracellular angiotensin II production in diabetic rats is correlated with cardiomyocyte apoptosis, oxidative stress, and cardiac fibrosis. Diabetes 57(12):3297–3306PubMedPubMedCentralCrossRefGoogle Scholar
  67. 67.
    Raev DC (1994) Which left ventricular function is impaired earlier in the evolution of diabetic cardiomyopathy? An echocardiographic study of young type I diabetic patients. Diabetes Care 17(7):633–639PubMedCrossRefGoogle Scholar
  68. 68.
    Fang ZY, Prins JB, Marwick TH (2004) Diabetic cardiomyopathy: evidence, mechanisms, and therapeutic implications. Endocr Rev 25(4):543–567PubMedCrossRefGoogle Scholar
  69. 69.
    Bugger H, Abel ED (2009) Rodent models of diabetic cardiomyopathy. Dis Model Mech 2(9–10):454–466PubMedCrossRefGoogle Scholar
  70. 70.
    Rodrigues B, McNeill JH (1992) The diabetic heart: metabolic causes for the development of a cardiomyopathy. Cardiovasc Res 26(10):913–922PubMedCrossRefGoogle Scholar
  71. 71.
    Mizamtsidi M, Paschou SA, Grapsa J, Vryonidou A (2016) Diabetic cardiomyopathy: a clinical entity or a cluster of molecular heart changes? Eur J Clin Invest 46(11):947–953PubMedCrossRefGoogle Scholar
  72. 72.
    Bugger H, Abel ED (2014) Molecular mechanisms of diabetic cardiomyopathy. Diabetologia 57(4):660–671PubMedPubMedCentralCrossRefGoogle Scholar
  73. 73.
    Holscher ME, Bode C, Bugger H (2016) Diabetic cardiomyopathy: does the type of diabetes matter? Int J Mol Sci 17(12):2136PubMedCentralCrossRefGoogle Scholar
  74. 74.
    Aneja A, Tang WH, Bansilal S, Garcia MJ, Farkouh ME (2008) Diabetic cardiomyopathy: insights into pathogenesis, diagnostic challenges, and therapeutic options. Am J Med 121(9):748–757PubMedCrossRefGoogle Scholar
  75. 75.
    Galderisi M, Anderson KM, Wilson PW, Levy D (1991) Echocardiographic evidence for the existence of a distinct diabetic cardiomyopathy (the Framingham Heart Study). Am J Cardiol 68(1):85–89PubMedCrossRefGoogle Scholar
  76. 76.
    Maisch B, Alter P, Pankuweit S (2011) Diabetic cardiomyopathy—fact or fiction? Herz 36(2):102–115PubMedCrossRefGoogle Scholar
  77. 77.
    Cai L, Li W, Wang G, Guo L, Jiang Y, Kang YJ (2002) Hyperglycemia-induced apoptosis in mouse myocardium: mitochondrial cytochrome C-mediated caspase-3 activation pathway. Diabetes 51(6):1938–1948PubMedCrossRefGoogle Scholar
  78. 78.
    Huynh K, Kiriazis H, XJ D, Love JE, Gray SP, Jandeleit-Dahm KA, McMullen JR, Ritchie RH (2013) Targeting the upregulation of reactive oxygen species subsequent to hyperglycemia prevents type 1 diabetic cardiomyopathy in mice. Free Radic Biol Med 60:307–317PubMedCrossRefGoogle Scholar
  79. 79.
    Liu ZW, Zhu HT, Chen KL, Dong X, Wei J, Qiu C, Xue JH (2013) Protein kinase RNA-like endoplasmic reticulum kinase (PERK) signaling pathway plays a major role in reactive oxygen species (ROS)-mediated endoplasmic reticulum stress-induced apoptosis in diabetic cardiomyopathy. Cardiovasc Diabetol 12:158PubMedPubMedCentralCrossRefGoogle Scholar
  80. 80.
    Valko M, Leibfritz D, Moncol J, Cronin MT, Mazur M, Telser J (2007) Free radicals and antioxidants in normal physiological functions and human disease. Int J Biochem Cell Biol 39(1):44–84PubMedCrossRefGoogle Scholar
  81. 81.
    Ye G, Metreveli NS, Ren J, Epstein PN (2003) Metallothionein prevents diabetes-induced deficits in cardiomyocytes by inhibiting reactive oxygen species production. Diabetes 52(3):777–783PubMedCrossRefGoogle Scholar
  82. 82.
    Cai L, Wang J, Li Y, Sun X, Wang L, Zhou Z, Kang YJ (2005) Inhibition of superoxide generation and associated nitrosative damage is involved in metallothionein prevention of diabetic cardiomyopathy. Diabetes 54(6):1829–1837PubMedCrossRefGoogle Scholar
  83. 83.
    Haidara MA, Yassin HZ, Rateb M, Ammar H, Zorkani MA (2006) Role of oxidative stress in development of cardiovascular complications in diabetes mellitus. Curr Vasc Pharmacol 4(3):215–227PubMedCrossRefGoogle Scholar
  84. 84.
    Hamblin M, Friedman DB, Hill S, Caprioli RM, Smith HM, Hill MF (2007) Alterations in the diabetic myocardial proteome coupled with increased myocardial oxidative stress underlies diabetic cardiomyopathy. J Mol Cell Cardiol 42(4):884–895PubMedPubMedCentralCrossRefGoogle Scholar
  85. 85.
    Li CJ, Lv L, Li H, Yu DM (2012) Cardiac fibrosis and dysfunction in experimental diabetic cardiomyopathy are ameliorated by alpha-lipoic acid. Cardiovasc Diabetol 11:73PubMedPubMedCentralCrossRefGoogle Scholar
  86. 86.
    Schannwell CM, Schneppenheim M, Perings S, Plehn G, Strauer BE (2002) Left ventricular diastolic dysfunction as an early manifestation of diabetic cardiomyopathy. Cardiology 98(1–2):33–39PubMedCrossRefGoogle Scholar
  87. 87.
    Connelly KA, Gilbert RE, Krum H (2008) Letter by Connelly et al regarding article, “Diastolic stiffness of the failing diabetic heart: importance of fibrosis, advanced glycation end products, and myocyte resting tension”. Circulation 117(23):e483PubMedCrossRefGoogle Scholar
  88. 88.
    van Heerebeek L, Hamdani N, Handoko ML, Falcao-Pires I, Musters RJ, Kupreishvili K, Ijsselmuiden AJ, Schalkwijk CG, Bronzwaer JG, Diamant M, Borbely A, van der Velden J, Stienen GJ, Laarman GJ, Niessen HW, Paulus WJ (2008) Diastolic stiffness of the failing diabetic heart: importance of fibrosis, advanced glycation end products, and myocyte resting tension. Circulation 117(1):43–51PubMedCrossRefGoogle Scholar
  89. 89.
    Khaidar A, Marx M, Lubec B, Lubec G (1994) L-arginine reduces heart collagen accumulation in the diabetic db/db mouse. Circulation 90(1):479–483PubMedCrossRefGoogle Scholar
  90. 90.
    Spiro MJ, Crowley TJ (1993) Increased rat myocardial type VI collagen in diabetes mellitus and hypertension. Diabetologia 36(2):93–98PubMedCrossRefGoogle Scholar
  91. 91.
    Bodiga VL, Eda SR, Bodiga S (2014) Advanced glycation end products: role in pathology of diabetic cardiomyopathy. Heart Fail Rev 19(1):49–63PubMedCrossRefGoogle Scholar
  92. 92.
    Candido R, Forbes JM, Thomas MC, Thallas V, Dean RG, Burns WC, Tikellis C, Ritchie RH, Twigg SM, Cooper ME, Burrell LM (2003) A breaker of advanced glycation end products attenuates diabetes-induced myocardial structural changes. Circ Res 92(7):785–792PubMedCrossRefGoogle Scholar
  93. 93.
    Liu J, Masurekar MR, Vatner DE, Jyothirmayi GN, Regan TJ, Vatner SF, Meggs LG, Malhotra A (2003) Glycation end-product cross-link breaker reduces collagen and improves cardiac function in aging diabetic heart. Am J Physiol Heart Circ Physiol 285(6):H2587–H2591PubMedCrossRefGoogle Scholar
  94. 94.
    Vasan S, Foiles P, Founds H (2003) Therapeutic potential of breakers of advanced glycation end product-protein crosslinks. Arch Biochem Biophys 419(1):89–96PubMedCrossRefGoogle Scholar
  95. 95.
    From AM, Scott CG, Chen HH (2010) The development of heart failure in patients with diabetes mellitus and pre-clinical diastolic dysfunction a population-based study. J Am Coll Cardiol 55(4):300–305PubMedCrossRefGoogle Scholar
  96. 96.
    von Bibra H, St John Sutton M (2010) Diastolic dysfunction in diabetes and the metabolic syndrome: promising potential for diagnosis and prognosis. Diabetologia 53(6):1033–1045CrossRefGoogle Scholar
  97. 97.
    Devereux RB, Roman MJ, Paranicas M, O’Grady MJ, Lee ET, Welty TK, Fabsitz RR, Robbins D, Rhoades ER, Howard BV (2000) Impact of diabetes on cardiac structure and function: the strong heart study. Circulation 101(19):2271–2276PubMedCrossRefGoogle Scholar
  98. 98.
    Patil VC, Patil HV, Shah KB, Vasani JD, Shetty P (2011) Diastolic dysfunction in asymptomatic type 2 diabetes mellitus with normal systolic function. J Cardiovasc Dis Res 2(4):213–222PubMedPubMedCentralCrossRefGoogle Scholar
  99. 99.
    Paulus WJ, van Ballegoij JJ (2010) Treatment of heart failure with normal ejection fraction: an inconvenient truth! J Am Coll Cardiol 55(6):526–537PubMedCrossRefGoogle Scholar
  100. 100.
    Zhang X, Wei X, Liang Y, Liu M, Li C, Tang H (2013) Differential changes of left ventricular myocardial deformation in diabetic patients with controlled and uncontrolled blood glucose: a three-dimensional speckle-tracking echocardiography-based study. J Am Soc Echocardiogr 26(5):499–506PubMedCrossRefGoogle Scholar
  101. 101.
    MacDonald MR, Petrie MC, Hawkins NM, Petrie JR, Fisher M, McKelvie R, Aguilar D, Krum H, McMurray JJ (2008) Diabetes, left ventricular systolic dysfunction, and chronic heart failure. Eur Heart J 29(10):1224–1240PubMedCrossRefGoogle Scholar
  102. 102.
    Reisinger J, Dubrey SW, Falk RH (1997) Restrictive cardiomyopathy. N Engl J Med 336(26):1917PubMedCrossRefGoogle Scholar
  103. 103.
    Seferovic PM, Paulus WJ (2015) Clinical diabetic cardiomyopathy: a two-faced disease with restrictive and dilated phenotypes. Eur Heart J 36(27):1718–1727PubMedCrossRefGoogle Scholar
  104. 104.
    Kuethe F, Sigusch HH, Bornstein SR, Hilbig K, Kamvissi V, Figulla HR (2007) Apoptosis in patients with dilated cardiomyopathy and diabetes: a feature of diabetic cardiomyopathy? Horm Metab Res 39(9):672–676PubMedCrossRefGoogle Scholar
  105. 105.
    Dries DL, Sweitzer NK, Drazner MH, Stevenson LW, Gersh BJ (2001) Prognostic impact of diabetes mellitus in patients with heart failure according to the etiology of left ventricular systolic dysfunction. J Am Coll Cardiol 38(2):421–428PubMedCrossRefGoogle Scholar
  106. 106.
    Shiomi T, Tsutsui H, Ikeuchi M, Matsusaka H, Hayashidani S, Suematsu N, Wen J, Kubota T, Takeshita A (2003) Streptozotocin-induced hyperglycemia exacerbates left ventricular remodeling and failure after experimental myocardial infarction. J Am Coll Cardiol 42(1):165–172PubMedCrossRefGoogle Scholar
  107. 107.
    Song GY, Wu YJ, Yang YJ, Li JJ, Zhang HL, Pei HJ, Zhao ZY, Zeng ZH, Hui RT (2009) The accelerated post-infarction progression of cardiac remodelling is associated with genetic changes in an untreated streptozotocin-induced diabetic rat model. Eur J Heart Fail 11(10):911–921PubMedCrossRefGoogle Scholar
  108. 108.
    Miki T, Yuda S, Kouzu H, Miura T (2013) Diabetic cardiomyopathy: pathophysiology and clinical features. Heart Fail Rev 18(2):149–166PubMedCrossRefGoogle Scholar
  109. 109.
    Voulgari C, Papadogiannis D, Tentolouris N (2010) Diabetic cardiomyopathy: from the pathophysiology of the cardiac myocytes to current diagnosis and management strategies. Vasc Health Risk Manag 6:883–903PubMedPubMedCentralCrossRefGoogle Scholar
  110. 110.
    Morgan JP (1991) Abnormal intracellular modulation of calcium as a major cause of cardiac contractile dysfunction. N Engl J Med 325(9):625–632PubMedCrossRefGoogle Scholar
  111. 111.
    Hattori Y, Matsuda N, Kimura J, Ishitani T, Tamada A, Gando S, Kemmotsu O, Kanno M (2000) Diminished function and expression of the cardiac Na+-Ca2+ exchanger in diabetic rats: implication in Ca2+ overload. J Physiol 527(Pt 1):85–94PubMedPubMedCentralCrossRefGoogle Scholar
  112. 112.
    Lanner JT (2012) Ryanodine receptor physiology and its role in disease. Adv Exp Med Biol 740:217–234PubMedCrossRefGoogle Scholar
  113. 113.
    Periasamy M, Bhupathy P, Babu GJ (2008) Regulation of sarcoplasmic reticulum Ca2+ ATPase pump expression and its relevance to cardiac muscle physiology and pathology. Cardiovasc Res 77(2):265–273PubMedCrossRefGoogle Scholar
  114. 114.
    Teshima Y, Takahashi N, Saikawa T, Hara M, Yasunaga S, Hidaka S, Sakata T (2000) Diminished expression of sarcoplasmic reticulum Ca(2+)-ATPase and ryanodine sensitive Ca(2+)Channel mRNA in streptozotocin-induced diabetic rat heart. J Mol Cell Cardiol 32(4):655–664PubMedCrossRefGoogle Scholar
  115. 115.
    Trost SU, Belke DD, Bluhm WF, Meyer M, Swanson E, Dillmann WH (2002) Overexpression of the sarcoplasmic reticulum Ca(2+)-ATPase improves myocardial contractility in diabetic cardiomyopathy. Diabetes 51(4):1166–1171PubMedCrossRefGoogle Scholar
  116. 116.
    Asrih M, Steffens S (2013) Emerging role of epigenetics and miRNA in diabetic cardiomyopathy. Cardiovasc Pathol 22(2):117–125PubMedCrossRefGoogle Scholar
  117. 117.
    Chavali V, Tyagi SC, Mishra PK (2013) Predictors and prevention of diabetic cardiomyopathy. Diabetes Metab Syndr Obes 6:151–160PubMedPubMedCentralGoogle Scholar
  118. 118.
    Finck BN, Han X, Courtois M, Aimond F, Nerbonne JM, Kovacs A, Gross RW, Kelly DP (2003) A critical role for PPARalpha-mediated lipotoxicity in the pathogenesis of diabetic cardiomyopathy: modulation by dietary fat content. Proc Natl Acad Sci U S A 100(3):1226–1231PubMedPubMedCentralCrossRefGoogle Scholar
  119. 119.
    Narula J, Pandey P, Arbustini E, Haider N, Narula N, Kolodgie FD, Dal Bello B, Semigran MJ, Bielsa-Masdeu A, Dec GW, Israels S, Ballester M, Virmani R, Saxena S, Kharbanda S (1999) Apoptosis in heart failure: release of cytochrome c from mitochondria and activation of caspase-3 in human cardiomyopathy. Proc Natl Acad Sci U S A 96(14):8144–8149PubMedPubMedCentralCrossRefGoogle Scholar
  120. 120.
    Rutter MK, Parise H, Benjamin EJ, Levy D, Larson MG, Meigs JB, Nesto RW, Wilson PW, Vasan RS (2003) Impact of glucose intolerance and insulin resistance on cardiac structure and function: sex-related differences in the Framingham Heart Study. Circulation 107(3):448–454PubMedCrossRefGoogle Scholar
  121. 121.
    Witteles RM, Tang WH, Jamali AH, Chu JW, Reaven GM, Fowler MB (2004) Insulin resistance in idiopathic dilated cardiomyopathy: a possible etiologic link. J Am Coll Cardiol 44(1):78–81PubMedCrossRefGoogle Scholar
  122. 122.
    Johansen JS, Harris AK, Rychly DJ, Ergul A (2005) Oxidative stress and the use of antioxidants in diabetes: linking basic science to clinical practice. Cardiovasc Diabetol 4:5PubMedPubMedCentralCrossRefGoogle Scholar
  123. 123.
    Vassort G, Turan B (2010) Protective role of antioxidants in diabetes-induced cardiac dysfunction. Cardiovasc Toxicol 10(2):73–86PubMedCrossRefGoogle Scholar
  124. 124.
    Fein FS (1990) Diabetic cardiomyopathy. Diabetes Care 13(11):1169–1179PubMedCrossRefGoogle Scholar
  125. 125.
    Bartel DP (2004) MicroRNAs: genomics, biogenesis, mechanism, and function. Cell 116(2):281–297PubMedCrossRefGoogle Scholar
  126. 126.
    Zheng D, Ma J, Yu Y, Li M, Ni R, Wang G, Chen R, Li J, Fan GC, Lacefield JC, Peng T (2015) Silencing of miR-195 reduces diabetic cardiomyopathy in C57BL/6 mice. Diabetologia 58(8):1949–1958PubMedPubMedCentralCrossRefGoogle Scholar
  127. 127.
    Horie T, Ono K, Nishi H, Iwanaga Y, Nagao K, Kinoshita M, Kuwabara Y, Takanabe R, Hasegawa K, Kita T, Kimura T (2009) MicroRNA-133 regulates the expression of GLUT4 by targeting KLF15 and is involved in metabolic control in cardiac myocytes. Biochem Biophys Res Commun 389(2):315–320PubMedCrossRefGoogle Scholar
  128. 128.
    Chen S, Puthanveetil P, Feng B, Matkovich SJ, Dorn GW II, Chakrabarti S (2014) Cardiac miR-133a overexpression prevents early cardiac fibrosis in diabetes. J Cell Mol Med 18(3):415–421PubMedPubMedCentralCrossRefGoogle Scholar
  129. 129.
    Chavali V, Tyagi SC, Mishra PK (2012) MicroRNA-133a regulates DNA methylation in diabetic cardiomyocytes. Biochem Biophys Res Commun 425(3):668–672PubMedPubMedCentralCrossRefGoogle Scholar
  130. 130.
    Feng B, Chen S, George B, Feng Q, Chakrabarti S (2010) miR133a regulates cardiomyocyte hypertrophy in diabetes. Diabetes Metab Res Rev 26(1):40–49PubMedCrossRefGoogle Scholar
  131. 131.
    Yildirim SS, Akman D, Catalucci D, Turan B (2013) Relationship between downregulation of miRNAs and increase of oxidative stress in the development of diabetic cardiac dysfunction: junctin as a target protein of miR-1. Cell Biochem Biophys 67(3):1397–1408PubMedCrossRefGoogle Scholar
  132. 132.
    Lu H, Buchan RJ, Cook SA (2010) MicroRNA-223 regulates Glut4 expression and cardiomyocyte glucose metabolism. Cardiovasc Res 86(3):410–420PubMedCrossRefGoogle Scholar
  133. 133.
    Baseler WA, Thapa D, Jagannathan R, Dabkowski ER, Croston TL, Hollander JM (2012) miR-141 as a regulator of the mitochondrial phosphate carrier (Slc25a3) in the type 1 diabetic heart. Am J Physiol Cell Physiol 303(12):C1244–C1251PubMedPubMedCentralCrossRefGoogle Scholar
  134. 134.
    Kuwabara Y, Horie T, Baba O, Watanabe S, Nishiga M, Usami S, Izuhara M, Nakao T, Nishino T, Otsu K, Kita T, Kimura T, Ono K (2015) MicroRNA-451 exacerbates lipotoxicity in cardiac myocytes and high-fat diet-induced cardiac hypertrophy in mice through suppression of the LKB1/AMPK pathway. Circ Res 116(2):279–288PubMedCrossRefGoogle Scholar
  135. 135.
    Blumensatt M, Greulich S, Herzfeld de Wiza D, Mueller H, Maxhera B, Rabelink MJ, Hoeben RC, Akhyari P, Al-Hasani H, Ruige JB, Ouwens DM (2013) Activin A impairs insulin action in cardiomyocytes via up-regulation of miR-143. Cardiovasc Res 100(2):201–210PubMedCrossRefGoogle Scholar
  136. 136.
    Arnold N, Koppula PR, Gul R, Luck C, Pulakat L (2014) Regulation of cardiac expression of the diabetic marker microRNA miR-29. PLoS One 9(7):e103284PubMedPubMedCentralCrossRefGoogle Scholar
  137. 137.
    Marchand A, Atassi F, Mougenot N, Clergue M, Codoni V, Berthuin J, Proust C, Tregouet DA, Hulot JS, Lompre AM (2016) miR-322 regulates insulin signaling pathway and protects against metabolic syndrome-induced cardiac dysfunction in mice. Biochim Biophys Acta 1862(4):611–621PubMedCrossRefGoogle Scholar
  138. 138.
    Thery C, Zitvogel L, Amigorena S (2002) Exosomes: composition, biogenesis and function. Nat Rev Immunol 2(8):569–579PubMedGoogle Scholar
  139. 139.
    Stoorvogel W, Kleijmeer MJ, Geuze HJ, Raposo G (2002) The biogenesis and functions of exosomes. Traffic 3(5):321–330PubMedCrossRefGoogle Scholar
  140. 140.
    Simons M, Raposo G (2009) Exosomes—vesicular carriers for intercellular communication. Curr Opin Cell Biol 21(4):575–581PubMedCrossRefGoogle Scholar
  141. 141.
    Fevrier B, Raposo G (2004) Exosomes: endosomal-derived vesicles shipping extracellular messages. Curr Opin Cell Biol 16(4):415–421PubMedCrossRefGoogle Scholar
  142. 142.
    Babst M (2011) MVB vesicle formation: ESCRT-dependent, ESCRT-independent and everything in between. Curr Opin Cell Biol 23(4):452–457PubMedPubMedCentralCrossRefGoogle Scholar
  143. 143.
    Ostrowski M, Carmo NB, Krumeich S, Fanget I, Raposo G, Savina A, Moita CF, Schauer K, Hume AN, Freitas RP, Goud B, Benaroch P, Hacohen N, Fukuda M, Desnos C, Seabra MC, Darchen F, Amigorena S, Moita LF, Thery C (2010) Rab27a and Rab27b control different steps of the exosome secretion pathway. Nat Cell Biol 12(1):19–30PubMedCrossRefGoogle Scholar
  144. 144.
    Raiborg C, Stenmark H (2009) The ESCRT machinery in endosomal sorting of ubiquitylated membrane proteins. Nature 458(7237):445–452PubMedCrossRefGoogle Scholar
  145. 145.
    Slagsvold T, Pattni K, Malerod L, Stenmark H (2006) Endosomal and non-endosomal functions of ESCRT proteins. Trends Cell Biol 16(6):317–326PubMedCrossRefGoogle Scholar
  146. 146.
    Blott EJ, Griffiths GM (2002) Secretory lysosomes. Nat Rev Mol Cell Biol 3(2):122–131PubMedCrossRefGoogle Scholar
  147. 147.
    Luzio JP, Rous BA, Bright NA, Pryor PR, Mullock BM, Piper RC (2000) Lysosome-endosome fusion and lysosome biogenesis. J Cell Sci 113(Pt 9):1515–1524PubMedGoogle Scholar
  148. 148.
    Raposo G, Stoorvogel W (2013) Extracellular vesicles: exosomes, microvesicles, and friends. J Cell Biol 200(4):373–383PubMedPubMedCentralCrossRefGoogle Scholar
  149. 149.
    de Jong OG, Verhaar MC, Chen Y, Vader P, Gremmels H, Posthuma G, Schiffelers RM, Gucek M, van Balkom BW (2012) Cellular stress conditions are reflected in the protein and RNA content of endothelial cell-derived exosomes. J Extracell Vesicles 1. doi: 10.3402/jev.v1i0.18396
  150. 150.
    Rice GE, Scholz-Romero K, Sweeney E, Peiris H, Kobayashi M, Duncombe G, Mitchell MD, Salomon C (2015) The effect of glucose on the release and bioactivity of exosomes from first trimester trophoblast cells. J Clin Endocrinol Metab 100(10):E1280–E1288PubMedCrossRefGoogle Scholar
  151. 151.
    Dehwah MA, Xu A, Huang Q (2012) MicroRNAs and type 2 diabetes/obesity. J Genet Genomics 39(1):11–18PubMedCrossRefGoogle Scholar
  152. 152.
    Williams MD, Mitchell GM (2012) MicroRNAs in insulin resistance and obesity. Exp Diabetes Res 2012:484696PubMedPubMedCentralCrossRefGoogle Scholar
  153. 153.
    Guay C, Roggli E, Nesca V, Jacovetti C, Regazzi R (2011) Diabetes mellitus, a microRNA-related disease? Transl Res 157(4):253–264PubMedCrossRefGoogle Scholar
  154. 154.
    Kong L, Zhu J, Han W, Jiang X, Xu M, Zhao Y, Dong Q, Pang Z, Guan Q, Gao L, Zhao J, Zhao L (2011) Significance of serum microRNAs in pre-diabetes and newly diagnosed type 2 diabetes: a clinical study. Acta Diabetol 48(1):61–69PubMedCrossRefGoogle Scholar
  155. 155.
    Salido-Guadarrama I, Romero-Cordoba S, Peralta-Zaragoza O, Hidalgo-Miranda A, Rodriguez-Dorantes M (2014) MicroRNAs transported by exosomes in body fluids as mediators of intercellular communication in cancer. Onco Targets Ther 7:1327–1338PubMedPubMedCentralGoogle Scholar
  156. 156.
    Esteller M (2011) Non-coding RNAs in human disease. Nat Rev Genet 12(12):861–874PubMedCrossRefGoogle Scholar
  157. 157.
    Ha TY (2011) MicroRNAs in human diseases: from cancer to cardiovascular disease. Immune Network 11(3):135–154PubMedPubMedCentralCrossRefGoogle Scholar
  158. 158.
    Iborra M, Bernuzzi F, Invernizzi P, Danese S (2012) MicroRNAs in autoimmunity and inflammatory bowel disease: crucial regulators in immune response. Autoimmun Rev 11(5):305–314PubMedCrossRefGoogle Scholar
  159. 159.
    Aswad H, Forterre A, Wiklander OP, Vial G, Danty-Berger E, Jalabert A, Lamaziere A, Meugnier E, Pesenti S, Ott C, Chikh K, El-Andaloussi S, Vidal H, Lefai E, Rieusset J, Rome S (2014) Exosomes participate in the alteration of muscle homeostasis during lipid-induced insulin resistance in mice. Diabetologia 57(10):2155–2164PubMedPubMedCentralCrossRefGoogle Scholar
  160. 160.
    Deng ZB, Poliakov A, Hardy RW, Clements R, Liu C, Liu Y, Wang J, Xiang X, Zhang S, Zhuang X, Shah SV, Sun D, Michalek S, Grizzle WE, Garvey T, Mobley J, Zhang HG (2009) Adipose tissue exosome-like vesicles mediate activation of macrophage-induced insulin resistance. Diabetes 58(11):2498–2505PubMedPubMedCentralCrossRefGoogle Scholar
  161. 161.
    Karolina DS, Armugam A, Tavintharan S, Wong MT, Lim SC, Sum CF, Jeyaseelan K (2011) MicroRNA 144 impairs insulin signaling by inhibiting the expression of insulin receptor substrate 1 in type 2 diabetes mellitus. PLoS One 6(8):e22839PubMedPubMedCentralCrossRefGoogle Scholar
  162. 162.
    Guay C, Jacovetti C, Nesca V, Motterle A, Tugay K, Regazzi R (2012) Emerging roles of non-coding RNAs in pancreatic beta-cell function and dysfunction. Diabetes Obes Metab 14(Suppl 3):12–21PubMedCrossRefGoogle Scholar
  163. 163.
    Ventriglia G, Nigi L, Sebastiani G, Dotta F (2015) MicroRNAs: novel players in the dialogue between pancreatic islets and immune system in autoimmune diabetes. Biomed Res Int 2015:749734PubMedPubMedCentralCrossRefGoogle Scholar
  164. 164.
    Guay C, Regazzi R (2013) Circulating microRNAs as novel biomarkers for diabetes mellitus. Nat Rev Endocrinol 9(9):513–521PubMedCrossRefGoogle Scholar
  165. 165.
    Rottiers V, Naar AM (2012) MicroRNAs in metabolism and metabolic disorders. Nat Rev Mol Cell Biol 13(4):239–250PubMedPubMedCentralCrossRefGoogle Scholar
  166. 166.
    Lovis P, Roggli E, Laybutt DR, Gattesco S, Yang JY, Widmann C, Abderrahmani A, Regazzi R (2008) Alterations in microRNA expression contribute to fatty acid-induced pancreatic beta-cell dysfunction. Diabetes 57(10):2728–2736PubMedPubMedCentralCrossRefGoogle Scholar
  167. 167.
    Roggli E, Britan A, Gattesco S, Lin-Marq N, Abderrahmani A, Meda P, Regazzi R (2010) Involvement of microRNAs in the cytotoxic effects exerted by proinflammatory cytokines on pancreatic beta-cells. Diabetes 59(4):978–986PubMedPubMedCentralCrossRefGoogle Scholar
  168. 168.
    Roggli E, Gattesco S, Caille D, Briet C, Boitard C, Meda P, Regazzi R (2012) Changes in microRNA expression contribute to pancreatic beta-cell dysfunction in prediabetic NOD mice. Diabetes 61(7):1742–1751PubMedPubMedCentralCrossRefGoogle Scholar
  169. 169.
    Guay C, Menoud V, Rome S, Regazzi R (2015) Horizontal transfer of exosomal microRNAs transduce apoptotic signals between pancreatic beta-cells. Cell Commun Signal 13:17PubMedPubMedCentralCrossRefGoogle Scholar
  170. 170.
    Pfeifer P, Werner N, Jansen F (2015) Role and function of microRNAs in extracellular vesicles in cardiovascular biology. Biomed Res Int 2015:161393PubMedPubMedCentralCrossRefGoogle Scholar
  171. 171.
    Patel D, Ythier D, Brozzi F, Eizirik DL, Thorens B (2015) Clic4, a novel protein that sensitizes beta-cells to apoptosisa. Mol Metab 4(4):253–264PubMedPubMedCentralCrossRefGoogle Scholar
  172. 172.
    Zhao X, Mohan R, Ozcan S, Tang X (2012) MicroRNA-30d induces insulin transcription factor MafA and insulin production by targeting mitogen-activated protein 4 kinase 4 (MAP4K4) in pancreatic beta-cells. J Biol Chem 287(37):31155–31164PubMedPubMedCentralCrossRefGoogle Scholar
  173. 173.
    Osmai M, Osmai Y, Bang-Berthelsen CH, Pallesen EM, Vestergaard AL, Novotny GW, Pociot F, Mandrup-Poulsen T (2016) MicroRNAs as regulators of beta-cell function and dysfunction. Diabetes Metab Res Rev 32(4):334–349PubMedCrossRefGoogle Scholar
  174. 174.
    Nesca V, Guay C, Jacovetti C, Menoud V, Peyot ML, Laybutt DR, Prentki M, Regazzi R (2013) Identification of particular groups of microRNAs that positively or negatively impact on beta cell function in obese models of type 2 diabetes. Diabetologia 56(10):2203–2212PubMedCrossRefGoogle Scholar
  175. 175.
    Lin X, Guan H, Huang Z, Liu J, Li H, Wei G, Cao X, Li Y (2014) Downregulation of Bcl-2 expression by miR-34a mediates palmitate-induced Min6 cells apoptosis. J Diabetes Res 2014:258695PubMedPubMedCentralGoogle Scholar
  176. 176.
    Ruan Q, Wang T, Kameswaran V, Wei Q, Johnson DS, Matschinsky F, Shi W, Chen YH (2011) The microRNA-21-PDCD4 axis prevents type 1 diabetes by blocking pancreatic beta cell death. Proc Natl Acad Sci U S A 108(29):12030–12035PubMedPubMedCentralCrossRefGoogle Scholar
  177. 177.
    Belgardt BF, Ahmed K, Spranger M, Latreille M, Denzler R, Kondratiuk N, von Meyenn F, Villena FN, Herrmanns K, Bosco D, Kerr-Conte J, Pattou F, Rulicke T, Stoffel M (2015) The microRNA-200 family regulates pancreatic beta cell survival in type 2 diabetes. Nat Med 21(6):619–627PubMedCrossRefGoogle Scholar
  178. 178.
    Mocharla P, Briand S, Giannotti G, Dorries C, Jakob P, Paneni F, Luscher T, Landmesser U (2013) AngiomiR-126 expression and secretion from circulating CD34(+) and CD14(+) PBMCs: role for proangiogenic effects and alterations in type 2 diabetics. Blood 121(1):226–236PubMedCrossRefGoogle Scholar
  179. 179.
    Cocucci E, Racchetti G, Meldolesi J (2009) Shedding microvesicles: artefacts no more. Trends Cell Biol 19(2):43–51PubMedCrossRefGoogle Scholar
  180. 180.
    Gyorgy B, Szabo TG, Pasztoi M, Pal Z, Misjak P, Aradi B, Laszlo V, Pallinger E, Pap E, Kittel A, Nagy G, Falus A, Buzas EI (2011) Membrane vesicles, current state-of-the-art: emerging role of extracellular vesicles. Cell Mol Life Sci 68(16):2667–2688PubMedPubMedCentralCrossRefGoogle Scholar
  181. 181.
    Schatteman GC, Hanlon HD, Jiao C, Dodds SG, Christy BA (2000) Blood-derived angioblasts accelerate blood-flow restoration in diabetic mice. J Clin Investig 106(4):571–578PubMedPubMedCentralCrossRefGoogle Scholar
  182. 182.
    Lawson C, Vicencio JM, Yellon DM, Davidson SM (2016) Microvesicles and exosomes: new players in metabolic and cardiovascular disease. J Endocrinol 228(2):R57–R71PubMedCrossRefGoogle Scholar
  183. 183.
    Tabit CE, Chung WB, Hamburg NM, Vita JA (2010) Endothelial dysfunction in diabetes mellitus: molecular mechanisms and clinical implications. Rev Endocr Metab Disord 11(1):61–74PubMedPubMedCentralCrossRefGoogle Scholar
  184. 184.
    Burger D, Thibodeau JF, Holterman CE, Burns KD, Touyz RM, Kennedy CR (2014) Urinary podocyte microparticles identify prealbuminuric diabetic glomerular injury. J Am Soc Nephrol 25(7):1401–1407PubMedPubMedCentralCrossRefGoogle Scholar
  185. 185.
    Fais S, O’Driscoll L, Borras FE, Buzas E, Camussi G, Cappello F, Carvalho J, Cordeiro da Silva A, Del Portillo H, El Andaloussi S, Ficko Trcek T, Furlan R, Hendrix A, Gursel I, Kralj-Iglic V, Kaeffer B, Kosanovic M, Lekka ME, Lipps G, Logozzi M, Marcilla A, Sammar M, Llorente A, Nazarenko I, Oliveira C, Pocsfalvi G, Rajendran L, Raposo G, Rohde E, Siljander P, van Niel G, Vasconcelos MH, Yanez-Mo M, Yliperttula ML, Zarovni N, Zavec AB, Giebel B (2016) Evidence-based clinical use of nanoscale extracellular vesicles in nanomedicine. ACS Nano 10(4):3886–3899PubMedCrossRefGoogle Scholar
  186. 186.
    Kranendonk ME, de Kleijn DP, Kalkhoven E, Kanhai DA, Uiterwaal CS, van der Graaf Y, Pasterkamp G, Visseren FL, Group SS (2014) Extracellular vesicle markers in relation to obesity and metabolic complications in patients with manifest cardiovascular disease. Cardiovasc Diabetol 13:37Google Scholar
  187. 187.
    van der Pol E, Boing AN, Harrison P, Sturk A, Nieuwland R (2012) Classification, functions, and clinical relevance of extracellular vesicles. Pharmacol Rev 64(3):676–705PubMedCrossRefGoogle Scholar
  188. 188.
    Jansen F, Yang X, Franklin BS, Hoelscher M, Schmitz T, Bedorf J, Nickenig G, Werner N (2013) High glucose condition increases NADPH oxidase activity in endothelial microparticles that promote vascular inflammation. Cardiovasc Res 98(1):94–106PubMedCrossRefGoogle Scholar
  189. 189.
    Lakhter AJ, Sims EK (2015) Minireview: emerging roles for extracellular vesicles in diabetes and related metabolic disorders. Mol Endocrinol 29(11):1535–1548PubMedPubMedCentralCrossRefGoogle Scholar
  190. 190.
    Barutta F, Tricarico M, Corbelli A, Annaratone L, Pinach S, Grimaldi S, Bruno G, Cimino D, Taverna D, Deregibus MC, Rastaldi MP, Perin PC, Gruden G (2013) Urinary exosomal microRNAs in incipient diabetic nephropathy. PLoS One 8(11):e73798PubMedPubMedCentralCrossRefGoogle Scholar
  191. 191.
    Li R, Chung AC, Yu X, Lan HY (2014) MicroRNAs in diabetic kidney disease. Int J Endocrinol 2014:593956PubMedPubMedCentralGoogle Scholar
  192. 192.
    Mann JF, Rossing P, Wiecek A, Rosivall L, Mark P, Mayer G (2015) Diagnosis and treatment of early renal disease in patients with type 2 diabetes mellitus: what are the clinical needs? Nephrol Dial Transplant 30(Suppl 4):iv1–iv5PubMedCrossRefGoogle Scholar
  193. 193.
    Joglekar MV, Joglekar VM, Hardikar AA (2009) Expression of islet-specific microRNAs during human pancreatic development. Gene Expr Patterns 9(2):109–113PubMedCrossRefGoogle Scholar
  194. 194.
    Melkman-Zehavi T, Oren R, Kredo-Russo S, Shapira T, Mandelbaum AD, Rivkin N, Nir T, Lennox KA, Behlke MA, Dor Y, Hornstein E (2011) miRNAs control insulin content in pancreatic beta-cells via downregulation of transcriptional repressors. EMBO J 30(5):835–845PubMedPubMedCentralCrossRefGoogle Scholar
  195. 195.
    Tang X, Muniappan L, Tang G, Ozcan S (2009) Identification of glucose-regulated miRNAs from pancreatic {beta} cells reveals a role for miR-30d in insulin transcription. RNA 15(2):287–293PubMedPubMedCentralCrossRefGoogle Scholar
  196. 196.
    Wang Y, Liu J, Liu C, Naji A, Stoffers DA (2013) MicroRNA-7 regulates the mTOR pathway and proliferation in adult pancreatic beta-cells. Diabetes 62(3):887–895PubMedPubMedCentralCrossRefGoogle Scholar
  197. 197.
    Esguerra JL, Bolmeson C, Cilio CM, Eliasson L (2011) Differential glucose-regulation of microRNAs in pancreatic islets of non-obese type 2 diabetes model Goto-Kakizaki rat. PLoS One 6(4):e18613PubMedPubMedCentralCrossRefGoogle Scholar
  198. 198.
    Zampetaki A, Kiechl S, Drozdov I, Willeit P, Mayr U, Prokopi M, Mayr A, Weger S, Oberhollenzer F, Bonora E, Shah A, Willeit J, Mayr M (2010) Plasma microRNA profiling reveals loss of endothelial miR-126 and other microRNAs in type 2 diabetes. Circ Res 107(6):810–817PubMedCrossRefGoogle Scholar
  199. 199.
    Horikawa Y, Oda N, Cox NJ, Li X, Orho-Melander M, Hara M, Hinokio Y, Lindner TH, Mashima H, Schwarz PE, del Bosque-Plata L, Horikawa Y, Oda Y, Yoshiuchi I, Colilla S, Polonsky KS, Wei S, Concannon P, Iwasaki N, Schulze J, Baier LJ, Bogardus C, Groop L, Boerwinkle E, Hanis CL, Bell GI (2000) Genetic variation in the gene encoding calpain-10 is associated with type 2 diabetes mellitus. Nat Genet 26(2):163–175PubMedCrossRefGoogle Scholar
  200. 200.
    Wicker LS, Clark J, Fraser HI, Garner VE, Gonzalez-Munoz A, Healy B, Howlett S, Hunter K, Rainbow D, Rosa RL, Smink LJ, Todd JA, Peterson LB (2005) Type 1 diabetes genes and pathways shared by humans and NOD mice. J Autoimmun 25(Suppl):29–33PubMedCrossRefGoogle Scholar
  201. 201.
    Lai RC, Yeo RW, Tan KH, Lim SK (2013) Exosomes for drug delivery—a novel application for the mesenchymal stem cell. Biotechnol Adv 31(5):543–551PubMedCrossRefGoogle Scholar
  202. 202.
    Simpson RJ, Lim JW, Moritz RL, Mathivanan S (2009) Exosomes: proteomic insights and diagnostic potential. Expert Rev Proteomics 6(3):267–283PubMedCrossRefGoogle Scholar
  203. 203.
    Camussi G, Deregibus MC, Bruno S, Cantaluppi V, Biancone L (2010) Exosomes/microvesicles as a mechanism of cell-to-cell communication. Kidney Int 78(9):838–848PubMedCrossRefGoogle Scholar
  204. 204.
    Lee Y, El Andaloussi S, Wood MJ (2012) Exosomes and microvesicles: extracellular vesicles for genetic information transfer and gene therapy. Hum Mol Genet 21(R1):R125–R134PubMedCrossRefGoogle Scholar
  205. 205.
    Cortez MA, Calin GA (2009) MicroRNA identification in plasma and serum: a new tool to diagnose and monitor diseases. Expert Opin Biol Ther 9(6):703–711PubMedCrossRefGoogle Scholar
  206. 206.
    Ge Q, Zhou Y, Lu J, Bai Y, Xie X, Lu Z (2014) miRNA in plasma exosome is stable under different storage conditions. Molecules 19(2):1568–1575PubMedCrossRefGoogle Scholar
  207. 207.
    Vickers KC, Palmisano BT, Shoucri BM, Shamburek RD, Remaley AT (2011) MicroRNAs are transported in plasma and delivered to recipient cells by high-density lipoproteins. Nat Cell Biol 13(4):423–433PubMedPubMedCentralCrossRefGoogle Scholar
  208. 208.
    Di Carli MF, Janisse J, Grunberger G, Ager J (2003) Role of chronic hyperglycemia in the pathogenesis of coronary microvascular dysfunction in diabetes. J Am Coll Cardiol 41(8):1387–1393PubMedCrossRefGoogle Scholar
  209. 209.
    Hink U, Li H, Mollnau H, Oelze M, Matheis E, Hartmann M, Skatchkov M, Thaiss F, Stahl RA, Warnholtz A, Meinertz T, Griendling K, Harrison DG, Forstermann U, Munzel T (2001) Mechanisms underlying endothelial dysfunction in diabetes mellitus. Circ Res 88(2):E14–E22PubMedCrossRefGoogle Scholar
  210. 210.
    Chen JX, Zeng H, Reese J, Aschner JL, Meyrick B (2012) Overexpression of angiopoietin-2 impairs myocardial angiogenesis and exacerbates cardiac fibrosis in the diabetic db/db mouse model. Am J Physiol Heart Circ Physiol 302(4):H1003–H1012PubMedCrossRefGoogle Scholar
  211. 211.
    Pandey AK, Agarwal P, Kaur K, Datta M (2009) MicroRNAs in diabetes: tiny players in big disease. Cell Physiol Biochem 23(4–6):221–232PubMedCrossRefGoogle Scholar
  212. 212.
    Wang XH, Qian RZ, Zhang W, Chen SF, Jin HM, Hu RM (2009) MicroRNA-320 expression in myocardial microvascular endothelial cells and its relationship with insulin-like growth factor-1 in type 2 diabetic rats. Clin Exp Pharmacol Physiol 36(2):181–188PubMedCrossRefGoogle Scholar
  213. 213.
    Brutsaert DL (2003) Cardiac endothelial-myocardial signaling: its role in cardiac growth, contractile performance, and rhythmicity. Physiol Rev 83(1):59–115PubMedCrossRefGoogle Scholar
  214. 214.
    Narmoneva DA, Vukmirovic R, Davis ME, Kamm RD, Lee RT (2004) Endothelial cells promote cardiac myocyte survival and spatial reorganization: implications for cardiac regeneration. Circulation 110(8):962–968PubMedPubMedCentralCrossRefGoogle Scholar
  215. 215.
    Shantikumar S, Angelini GD, Emanueli C (2014) Diabetes, microRNAs and exosomes: Les liaisons dangereuses. J Mol Cell Cardiol 74:196–198PubMedCrossRefGoogle Scholar
  216. 216.
    Westermeier F, Riquelme JA, Pavez M, Garrido V, Diaz A, Verdejo HE, Castro PF, Garcia L, Lavandero S (2016) New molecular insights of insulin in diabetic cardiomyopathy. Front Physiol 7:125PubMedPubMedCentralCrossRefGoogle Scholar
  217. 217.
    Das S, Halushka MK (2015) Extracellular vesicle microRNA transfer in cardiovascular disease. Cardiovasc Pathol 24(4):199–206PubMedCrossRefGoogle Scholar
  218. 218.
    Loyer X, Vion AC, Tedgui A, Boulanger CM (2014) Microvesicles as cell-cell messengers in cardiovascular diseases. Circ Res 114(2):345–353PubMedCrossRefGoogle Scholar
  219. 219.
    Vrijsen KR, Sluijter JP, Schuchardt MW, van Balkom BW, Noort WA, Chamuleau SA, Doevendans PA (2010) Cardiomyocyte progenitor cell-derived exosomes stimulate migration of endothelial cells. J Cell Mol Med 14(5):1064–1070PubMedPubMedCentralGoogle Scholar
  220. 220.
    Wang X, Huang W, Liu G, Cai W, Millard RW, Wang Y, Chang J, Peng T, Fan GC (2014) Cardiomyocytes mediate anti-angiogenesis in type 2 diabetic rats through the exosomal transfer of miR-320 into endothelial cells. J Mol Cell Cardiol 74:139–150PubMedPubMedCentralCrossRefGoogle Scholar
  221. 221.
    Guo BB, Bellingham SA, Hill AF (2015) The neutral sphingomyelinase pathway regulates packaging of the prion protein into exosomes. J Biol Chem 290(6):3455–3467PubMedCrossRefGoogle Scholar
  222. 222.
    Sahoo S, Emanueli C (2016) Exosomes in diabetic cardiomyopathy: the next-generation therapeutic targets? Diabetes 65(10):2829–2831PubMedCrossRefGoogle Scholar
  223. 223.
    Garcia NA, Ontoria-Oviedo I, Gonzalez-King H, Diez-Juan A, Sepulveda P (2015) Glucose starvation in cardiomyocytes enhances exosome secretion and promotes angiogenesis in endothelial cells. PLoS One 10(9):e0138849PubMedPubMedCentralCrossRefGoogle Scholar
  224. 224.
    Tan A, Rajadas J, Seifalian AM (2013) Exosomes as nano-theranostic delivery platforms for gene therapy. Adv Drug Deliv Rev 65(3):357–367PubMedCrossRefGoogle Scholar
  225. 225.
    Ribeiro MF, Zhu H, Millard RW, Fan GC (2013) Exosomes function in pro- and anti-angiogenesis. Current Angiogenes 2(1):54–59Google Scholar
  226. 226.
    Wang X, Gu H, Huang W, Peng J, Li Y, Yang L, Qin D, Essandoh K, Wang Y, Peng T, Fan GC (2016) Hsp20-mediated activation of exosome biogenesis in cardiomyocytes improves cardiac function and angiogenesis in diabetic mice. Diabetes 65(10):3111–3128PubMedCrossRefGoogle Scholar
  227. 227.
    Kowal J, Tkach M, Thery C (2014) Biogenesis and secretion of exosomes. Curr Opin Cell Biol 29:116–125PubMedCrossRefGoogle Scholar
  228. 228.
    Pironti G, Strachan RT, Abraham D, Mon-Wei Yu S, Chen M, Chen W, Hanada K, Mao L, Watson LJ, Rockman HA (2015) Circulating exosomes induced by cardiac pressure overload contain functional angiotensin II type 1 receptors. Circulation 131(24):2120–2130PubMedPubMedCentralCrossRefGoogle Scholar
  229. 229.
    Ailawadi S, Wang X, Gu H, Fan GC (2015) Pathologic function and therapeutic potential of exosomes in cardiovascular disease. Biochim Biophys Acta 1852(1):1–11PubMedCrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2017

Authors and Affiliations

  1. 1.Department of Pharmacology and Cell BiophysicsUniversity of Cincinnati College of MedicineCincinnatiUSA

Personalised recommendations