Skip to main content

Dual Behavior of Exosomes in Septic Cardiomyopathy

  • Chapter
  • First Online:
Exosomes in Cardiovascular Diseases

Abstract

Sepsis is one of the main causes of ICU hospitalization worldwide, with a high mortality rate, and is associated with a large number of comorbidities. One of the main comorbidities associated with sepsis is septic cardiomyopathy. This process occurs mainly due to mechanisms of damage in the cardiovascular system that will lead to changes in cardiovascular physiology, such as decreased Ca2+ response, mitochondrial dysfunction and decreased β-adrenergic receptor response. Within this process the exosomes play an important role in the pathophysiology of this disease, in which the exosomal content is related to mechanisms that will trigger its development. After platelet activation through ROS exposition, exosomes containing high concentrations of NADPH are released in heart blood vessels, those exosomes will be internalized in endothelial cells leading to cell death and cardiac dysfunction. On the opposite, exosomes derived from mesenchymal stem cells contain miR-223, that have anti-inflammatory properties, are released in less quantities in septic patients causing an imbalance that leads to cardiac dysfunction.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Dellinger R, Levy M, Rhodes A (2013) Surviving Sepsis Campaign: international guidelines for management of severe sepsis and septic shock, 2012. Intensive Care 41(2):580–637

    Google Scholar 

  2. Singer M, Deutschman CS, Seymour CW, Shankar-Hari M, Annane D, Bauer M, Bellomo R, Bernard GR, Chiche J-D, Coopersmith CM, Hotchkiss RS, Levy MM, Marshall JC, Martin GS, Opal SM, Rubenfeld GD, van der Poll T, Vincent J-L, Angus DC (2016) The third international consensus definitions for sepsis and septic shock (sepsis-3). JAMA 315(8):801–810

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Dombrovskiy VY, Martin AA, Sunderram J, Paz HL (2007) Rapid increase in hospitalization and mortality rates for severe sepsis in the United States: a trend analysis from 1993 to 2003. Crit Care Med 35(5):1244–1250

    Article  PubMed  Google Scholar 

  4. Remick DG (2007) Pathophysiology of sepsis. Am J Pathol 170(5):1435–1444

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Fallach R, Shainberg A, Avlas O, Fainblut M, Chepurko Y, Porat E, Hochhauser E (2010) Cardiomyocyte Toll-like receptor 4 is involved in heart dysfunction following septic shock or myocardial ischemia. J Mol Cell Cardiol 48(6):1236–1244

    Article  CAS  PubMed  Google Scholar 

  6. Boomer JS, Green JM, Hotchkiss RS (2014) The changing immune system in sepsis: is individualized immuno-modulatory therapy the answer? Virulence 5(1):45–56

    Article  PubMed  Google Scholar 

  7. Jacobi J (2002) Pathophysiology of sepsis. Am J Health Syst Pharm 59(Suppl 1):S3–S8

    PubMed  Google Scholar 

  8. Turner MD, Nedjai B, Hurst T, Pennington DJ (2014) Cytokines and chemokines: at the crossroads of cell signalling and inflammatory disease. Biochim Biophys Acta, Mol Cell Res 1843(11):2563–2582

    Article  CAS  PubMed  Google Scholar 

  9. Abraham E (2003) Nuclear factor-kappaB and its role in sepsis-associated organ failure. J Infect Dis 187(Suppl):S364–S369

    Article  CAS  PubMed  Google Scholar 

  10. Nakae H, Motoyama S, Kurosawa S, Inaba H (1999) The effective removal of proinflammatory cytokines by continuous hemofiltration with a polymethylmethacrylate membrane following severe burn injury: report of three cases. Surg Today 29(8):762–765

    Article  CAS  PubMed  Google Scholar 

  11. Shimaoka M, Park EJ (2008) Advances in understanding sepsis. Eur J Anaesthesiol Suppl 42:146–153

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. de Oliveira S, Rosowski EE, Huttenlocher A (2016) Neutrophil migration in infection and wound repair: going forward in reverse. Nat Rev Immunol 16(6):378–391

    Article  PubMed  PubMed Central  Google Scholar 

  13. Drifte G, Dunn-Siegrist I, Tissieres P, Pugin J (2013) Innate immune functions of immature neutrophils in patients with sepsis and severe systemic inflammatory response syndrome. Crit Care Med 41(3):820–832

    Article  CAS  PubMed  Google Scholar 

  14. Bhagat K (1998) Endothelial function and myocardial infarction. Cardiovasc Res 39(2):312–317

    Article  CAS  PubMed  Google Scholar 

  15. Szent-Gyorgyi AG (1975) Calcium regulation of muscle contraction. Biophys J 15(7):707–723

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Wakabayashi T (2015) Mechanism of the calcium-regulation of muscle contraction—in pursuit of its structural basis. Proc Jpn Acad Ser B Phys Biol Sci 91(7):321–350

    Article  PubMed  PubMed Central  Google Scholar 

  17. Tavernier B, Li JM, El-Omar MM, Lanone S, Yang ZK, Trayer IP, Mebazaa A, Shah AM (2001) Cardiac contractile impairment associated with increased phosphorylation of troponin I in endotoxemic rats. FASEB J 15(2):294–296

    CAS  PubMed  Google Scholar 

  18. Abi-Gerges N, Tavernier B, Mebazaa A, Faivre V, Paqueron X, Payen D, Fischmeister R, Mery PF (1999) Sequential changes in autonomic regulation of cardiac myocytes after in vivo endotoxin injection in rat. Am J Respir Crit Care Med 160(4):1196–1204

    Article  CAS  PubMed  Google Scholar 

  19. Liu S, Schreur KD (1995) G protein-mediated suppression of L-type Ca2+ current by interleukin-1 beta in cultured rat ventricular myocytes. Am J Phys 268(2 Pt 1):C339–C349

    CAS  Google Scholar 

  20. Tsai T-Y, Lou S-L, Wong K-L, Wang M-L, Su T-H, Liu Z-M, Yeh L-J, Chan P, Gong C-L, Leung Y-M (2015) Suppression of Ca(2+) influx in endotoxin-treated mouse cerebral cortex endothelial bEND.3 cells. Eur J Pharmacol 755:80–87

    Article  CAS  PubMed  Google Scholar 

  21. Zhong J, Hwang TC, Adams HR, Rubin LJ (1997) Reduced L-type calcium current in ventricular myocytes from endotoxemic guinea pigs. Am J Phys 273(5 Pt 2):H2312–H2324

    CAS  Google Scholar 

  22. Wu LL, Liu MS (1992) Altered ryanodine receptor of canine cardiac sarcoplasmic reticulum and its underlying mechanism in endotoxin shock. J Surg Res 53(1):82–90

    Article  CAS  PubMed  Google Scholar 

  23. Zhu X, Bernecker OY, Manohar NS, Hajjar RJ, Hellman J, Ichinose F, Valdivia HH, Schmidt U (2005) Increased leakage of sarcoplasmic reticulum Ca2+ contributes to abnormal myocyte Ca2+ handling and shortening in sepsis. Crit Care Med 33(3):598–604

    Article  PubMed  Google Scholar 

  24. Ayers L, Nieuwland R, Kohler M, Kraenkel N, Ferry B, Leeson P (2015) Dynamic microvesicle release and clearance within the cardiovascular system: triggers and mechanisms. Clin Sci (Lond) 129(11):915–931

    Article  CAS  Google Scholar 

  25. Dai D-F, Rabinovitch PS, Ungvari Z (2012) Mitochondria and cardiovascular aging. Circ Res 110(8):1109–1124

    Article  CAS  PubMed  Google Scholar 

  26. Marzetti E, Csiszar A, Dutta D, Balagopal G, Calvani R, Leeuwenburgh C (2013) Role of mitochondrial dysfunction and altered autophagy in cardiovascular aging and disease: from mechanisms to therapeutics. Am J Phys Heart Circ Phys 305(4):H459–H476

    CAS  Google Scholar 

  27. Giustarini D, Dalle-Donne I, Tsikas D, Rossi R (2009) Oxidative stress and human diseases: origin, link, measurement, mechanisms, and biomarkers. Crit Rev Clin Lab Sci 46(5–6):241–281

    Article  CAS  PubMed  Google Scholar 

  28. Reis JF, Monteiro VVS, de Souza Gomes R, do Carmo MM, da Costa GV, Ribera PC, Monteiro MC (2016) Action mechanism and cardiovascular effect of anthocyanins: a systematic review of animal and human studies. J Transl Med 14(1):315–315

    Article  PubMed  PubMed Central  Google Scholar 

  29. Sawyer DB, Colucci WS (2000) Mitochondrial oxidative stress in heart failure. Circ Res 86(2):119–121

    Article  CAS  PubMed  Google Scholar 

  30. Singer M (2014) The role of mitochondrial dysfunction in sepsis-induced multi-organ failure. Virulence 5(1):66–72

    Article  PubMed  Google Scholar 

  31. Cimolai MC, Alvarez S, Bode C, Bugger H (2015) Mitochondrial mechanisms in septic cardiomyopathy. Int J Mol Sci 16(8):17763–17778

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Wachter SB, Gilbert EM (2012) Beta-adrenergic receptors, from their discovery and characterization through their manipulation to beneficial clinical application. Cardiology 122(2):104–112

    Article  CAS  PubMed  Google Scholar 

  33. Johnson M (2006) Molecular mechanisms of beta(2)-adrenergic receptor function, response, and regulation. J Allergy Clin Immunol 117(1):18–24. Quiz 25

    Article  CAS  PubMed  Google Scholar 

  34. Strosberg AD (1993) Structure, function, and regulation of adrenergic receptors. Protein Sci 2(8):1198–1209

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Hahn PY, Wang P, Tait SM, Ba ZF, Reich SS, Chaudry IH (1995) Sustained elevation in circulating catecholamine levels during polymicrobial sepsis. Shock 4(4):269–273

    Article  CAS  PubMed  Google Scholar 

  36. Reithmann C, Hallstrom S, Pilz G, Kapsner T, Schlag G, Werdan K (1993) Desensitization of rat cardiomyocyte adenylyl cyclase stimulation by plasma of noradrenaline-treated patients with septic shock. Circ Shock 41(1):48–59

    CAS  PubMed  Google Scholar 

  37. Matsuda N, Hattori Y, Akaishi Y, Suzuki Y, Kemmotsu O, Gando S (2000) Impairment of cardiac beta-adrenoceptor cellular signaling by decreased expression of G(s alpha) in septic rabbits. Anesthesiology 93(6):1465–1473

    Article  CAS  PubMed  Google Scholar 

  38. Wu L-L, Yang S-L, Yang R-C, Hsu H-K, Hsu C, Dong L-W, Liu M-S (2003) G protein and adenylate cyclase complex-mediated signal transduction in the rat heart during sepsis. Shock 19(6):533–537

    Article  CAS  PubMed  Google Scholar 

  39. Gilbert EM, Olsen SL, Renlund DG, Bristow MR (1993) beta-Adrenergic receptor regulation and left ventricular function in idiopathic dilated cardiomyopathy. Am J Cardiol 71(9):23C–29C

    Article  CAS  PubMed  Google Scholar 

  40. Boyd JH, Mathur S, Wang Y, Bateman RM, Walley KR (2006) Toll-like receptor stimulation in cardiomyoctes decreases contractility and initiates an NF-kappaB dependent inflammatory response. Cardiovasc Res 72(3):384–393

    Article  CAS  PubMed  Google Scholar 

  41. Essandoh K, Fan G-C (2014) Role of extracellular and intracellular microRNAs in sepsis. Biochim Biophys Acta 1842(11):2155–2162

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Barry OP, Praticò D, Savani RC, FitzGerald GA (1998) Modulation of monocyte-endothelial cell interactions by platelet microparticles. J Clin Investig 102(1):136–144

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Weber A-A, Köppen HO, Schrör K (2000) Platelet-derived microparticles stimulate coronary artery smooth muscle cell mitogenesis by a PDGF-independent mechanism. Thromb Res 98(5):461–466

    Article  CAS  PubMed  Google Scholar 

  44. Nieuwland R, Berckmans RJ, McGregor S, Böing AN, Romijn FP, Westendorp RG, Hack CE, Sturk A (2000) Cellular origin and procoagulant properties of microparticles in meningococcal sepsis. Blood J 95(3):930–935

    CAS  Google Scholar 

  45. Ogura H, Kawasaki T, Tanaka H, Koh T, Tanaka R, Ozeki Y, Hosotsubo H, Kuwagata Y, Shimazu T, Sugimoto H (2001) Activated platelets enhance microparticle formation and platelet-leukocyte interaction in severe trauma and sepsis. J Trauma Acute Care Surg 50(5):801–809

    Article  CAS  Google Scholar 

  46. Irani K (2000) Oxidant signaling in vascular cell growth, death, and survival. Circ Res 87:179–183

    Article  CAS  PubMed  Google Scholar 

  47. Finazzi-Agrò A, Menichelli A, Persiani M, Biancini G, Del Principe D (1982) Hydrogen peroxide release from human blood platelets. Biochim Biophys Acta Gen Subj 718(1):21–25

    Article  Google Scholar 

  48. Leoncini G, Maresca M, Colao C (1991) Oxidative metabolism of human platelets. Biochem Int 25(4):647–655

    CAS  PubMed  Google Scholar 

  49. Marcus AJ, Silk ST, Safier LB, Ullman HL (1977) Superoxide production and reducing activity in human platelets. J Clin Invest 59:149–158

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Janiszewski M, Do Carmo AO, Ma P, Silva E, Knobel E, Laurindo FRM (2004) Platelet-derived exosomes of septic individuals possess proapoptotic NAD(P)H oxidase activity: a novel vascular redox pathway. Crit Care Med 32(3):818–825

    Article  CAS  PubMed  Google Scholar 

  51. Caccese D, Praticò D, Ghiselli A, Natoli S, Pignatelli P, Sanguigni V, Iuliano L, Violi F (2000) Superoxide anion and hydroxyl radical release by collagen-induced platelet aggregation—role of arachidonic acid metabolism. Thromb Haemost 83(3):485–490

    CAS  PubMed  Google Scholar 

  52. Azevedo LCP, Janiszewski M, Pontieri V, Pedro MA, Bassi E, Tucci PJF, Laurindo FRM (2007) Platelet-derived exosomes from septic shock patients induce myocardial dysfunction. Crit Care 11(6):R120–R120

    Article  PubMed  PubMed Central  Google Scholar 

  53. Kumar A, Haery C, Parrillo JE (2001) Myocardial dysfunction in septic shock: part I. Clinical manifestation of cardiovascular dysfunction. J Cardiothorac Vasc Anesth 15(3):364–376

    Article  CAS  PubMed  Google Scholar 

  54. Paulus WJ, Bronzwaer JGF (2002) Myocardial contractile effects of nitric oxide. Heart Fail Rev 7(4):371–383

    Article  CAS  PubMed  Google Scholar 

  55. Ullrich R, Scherrer-Crosbie M, Bloch KD, Ichinose F, Nakajima H, Picard MH, Zapol WM, Quezado ZM (2000) Congenital deficiency of nitric oxide synthase 2 protects against endotoxin-induced myocardial dysfunction in mice. Circulation 102(12):1440–1446

    Article  CAS  PubMed  Google Scholar 

  56. Ferdinandy P, Danial H, Ambrus I, Rothery RA, Schulz R (2000) Peroxynitrite is a major contributor to cytokine-induced myocardial contractile failure. Circ Res 87(3):241–247

    Article  CAS  PubMed  Google Scholar 

  57. Gambim MH, do Carmo Ade O, Marti L, Verissimo-Filho S, Lopes LR, Janiszewski M (2007) Platelet-derived exosomes induce endothelial cell apoptosis through peroxynitrite generation: experimental evidence for a novel mechanism of septic vascular dysfunction. Crit Care 11(5):R107–R107

    Article  PubMed  PubMed Central  Google Scholar 

  58. Zhu C, Wang X, Qiu L, Peeters-Scholte C, Hagberg H, Blomgren K (2004) Nitrosylation precedes caspase-3 activation and translocation of apoptosis-inducing factor in neonatal rat cerebral hypoxia-ischaemia. J Neurochem 90(2):462–471

    Article  CAS  PubMed  Google Scholar 

  59. Albina JE, Cui S, Mateo RB, Reichner JS (1993) Nitric oxide-mediated apoptosis in murine peritoneal macrophages. J Immunol 150(11):5080–5085

    CAS  PubMed  Google Scholar 

  60. Rössig L, Fichtlscherer B, Breitschopf K, Haendeler J, Zeiher AM, Mülsch A, Dimmeler S (1999) Nitric oxide inhibits caspase-3 by S-nitrosation in vivo. J Biol Chem 274(11):6823–6826

    Article  PubMed  Google Scholar 

  61. Humphreys DT, Westman BJ, Martin DIK, Preiss T (2005) MicroRNAs control translation initiation by inhibiting eukaryotic initiation factor 4E/cap and poly(A) tail function. Proc Natl Acad Sci U S A 102(47):16961–16966

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Fabian MR, Sonenberg N (2012) The mechanics of miRNA-mediated gene silencing: a look under the hood of miRISC. Nat Struct Mol Biol 19(6):586–593

    Article  CAS  PubMed  Google Scholar 

  63. Jackson RJ, Standart N (2007) How do microRNAs regulate gene expression? Sci STKE 367(367):re1

    Google Scholar 

  64. Sayed D, Abdellatif M (2011) MicroRNAs in development and disease. Physiol Rev 91(3):827–887

    Article  CAS  PubMed  Google Scholar 

  65. Zhu H, Fan G-C (2011) Extracellular/circulating microRNAs and their potential role in cardiovascular disease. Am J Cardiovasc Dis 1(2):138–149

    CAS  PubMed  PubMed Central  Google Scholar 

  66. Zhu H, Fan G-C (2012) Role of microRNAs in the reperfused myocardium towards post-infarct remodelling. Cardiovasc Res 94(2):284–292

    Article  CAS  PubMed  Google Scholar 

  67. Wang H, Zhang P, Chen W, Feng D, Jia Y, Xie L (2012) Serum microRNA signatures identified by Solexa sequencing predict sepsis patients’ mortality: a prospective observational study. PLoS One 7(6):e38885

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Benz F, Roy S, Trautwein C, Roderburg C, Luedde T (2016) Circulating microRNAs as biomarkers for sepsis. Int J Mol Sci 17(78):1–17

    Google Scholar 

  69. Taïbi F, Meuth VM-l, Massy ZA, Metzinger L (2014) miR-223 : an inflammatory oncomiR enters the cardiovascular field. Biochim Biophys Acta 1842:1001–1009

    Article  PubMed  Google Scholar 

  70. Wang X, Huang W, Yang Y, Wang Y, Peng T, Chang J, Caldwell CC, Zingarelli B, Fan GC (2014) Loss of duplexmiR-223 (5p and 3p) aggravates myocardial depression and mortality in polymicrobial sepsis. Biochim Biophys Acta Mol Basis Dis 1842(5):701–711

    Article  CAS  Google Scholar 

  71. Akira S, Nishio Y, Inoue M, Wang X-J, We S, Matsusaka T, Yoshida K, Sudo T, Naruto M, Kishimoto T (1994) Molecular cloning of APRF, a novel IFN-stimulated gene factor 3 p91-related transcription factor involved in the gp130-mediated signaling pathway. Cell 77(1):63–71

    Article  CAS  PubMed  Google Scholar 

  72. Yang XO, Panopoulos AD, Nurieva R, Chang SH, Wang D, Watowich SS, Dong C (2007) STAT3 regulates cytokine-mediated generation of inflammatory helper T cells. J Biol Chem 282(13):9358–9363

    Article  CAS  PubMed  Google Scholar 

  73. Ieda M, Kanazawa H, Kimura K, Hattori F, Ieda Y, Taniguchi M, Lee J-K, Matsumura K, Tomita Y, Miyoshi S, Shimoda K, Makino S, Sano M, Kodama I, Ogawa S, Fukuda K (2007) Sema3a maintains normal heart rhythm through sympathetic innervation patterning. Nat Med 13(5):604–612

    Article  CAS  PubMed  Google Scholar 

  74. Tabet F, Vickers KC, Cuesta Torres LF, Wiese CB, Shoucri BM, Lambert G, Catherinet C, Prado-Lourenco L, Levin MG, Thacker S, Sethupathy P, Barter PJ, Remaley AT, Rye K-A (2014) HDL-transferred microRNA-223 regulates ICAM-1 expression in endothelial cells. Nat Commun 5:3292–3292

    Article  PubMed  PubMed Central  Google Scholar 

  75. Wang X, Gu H, Qin D, Yang L, Huang W, Essandoh K, Wang Y, Caldwell CC, Peng T, Zingarelli B, Fan G-C (2015) Exosomal miR-223 contributes to mesenchymal stem cell-elicited cardioprotection in polymicrobial sepsis. Sci Rep 5:1–16

    Google Scholar 

Download references

Conflicts of Interest

The authors declare no conflicts of interest in relation to this article.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marta Chagas Monteiro .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Nature Singapore Pte Ltd.

About this chapter

Cite this chapter

Monteiro, V.V.S., Reis, J.F., de Souza Gomes, R., Navegantes, K.C., Monteiro, M.C. (2017). Dual Behavior of Exosomes in Septic Cardiomyopathy. In: Xiao, J., Cretoiu, S. (eds) Exosomes in Cardiovascular Diseases. Advances in Experimental Medicine and Biology, vol 998. Springer, Singapore. https://doi.org/10.1007/978-981-10-4397-0_7

Download citation

Publish with us

Policies and ethics