Skip to main content

Exosomes as New Intercellular Mediators in Development and Therapeutics of Cardiomyocyte Hypertrophy

  • Chapter
  • First Online:

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 998))

Abstract

Myocardial hypertrophy is a common cardiac condition in response to hemodynamic and neurohormonal alterations. Pathological hypertrophic growth in hearts caused the decline of cardiac functions, and finally developed into congestive heart failure. The exosomes are small membrane vesicles which are secreted by various cells and play important roles in cellular communication, migration, proliferation and differentiation. Recent studies uncovered that the exosomes from cardiac fibroblasts and other tissues participates in the development of myocardial hypertrophy. Nevertheless, cardiac progenitor cells and mesenchymal stem cells-derived exosomes confer protective action on myocardial hypertrophy. Thus, the exosomes serve as new intercellular mediators between cardiomyocytes and other cells, and show broad application potential in the diagnostic and therapy of cardiomyocyte hypertrophy.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Widiapradja A, Chunduri P, Levick SP (2017) The role of neuropeptides in adverse myocardial remodeling and heart failure. Cell Mol Life Sci 74(11):2019–2038. doi:10.1007/s00018-017-2452-x

    Article  CAS  PubMed  Google Scholar 

  2. McMullen JR, Jennings GL (2007) Differences between pathological and physiological cardiac hypertrophy: novel therapeutic strategies to treat heart failure. Clin Exp Pharmacol Physiol 34(4):255–262

    Article  CAS  PubMed  Google Scholar 

  3. Baker JS, Grace F, Kilgore L, Smith DJ, Norris SR, Gardner AW, Ringseis R, Eder K, Shephard RJ, Kokkinos P (2012) Physiological cardiac hypertrophy: encyclopedia of exercise medicine in health and disease. Springer Berlin Heidelberg p 711. doi: 10.1007/978-3-540-29807-6_2877

  4. Bernardo BC, Weeks KL, Pretorius L, McMullen JR (2010) Molecular distinction between physiological and pathological cardiac hypertrophy: experimental findings and therapeutic strategies. Pharmacol Ther 128(1):191–227

    Article  CAS  PubMed  Google Scholar 

  5. Berenji K, Drazner MH, Rothermel BA, Hill JA (2005) Does load-induced ventricular hypertrophy progress to systolic heart failure? Physiol Heart Circ Physiol 289:H8–H16

    Article  CAS  Google Scholar 

  6. Opie LH, Commerford PJ, Gersh BJ, Pfeffer MA (2006) Controversies in ventricular remodelling. Lancet 367(9507):356–367

    Article  PubMed  Google Scholar 

  7. van Rooij E, Sutherland LB, Liu N, Williams AH, McAnally J, Gerard RD, Richardson JA, Olson EN (2006) A signature pattern of stress-responsive microRNAs that can evoke cardiac hypertrophy and heart failure. Proc Natl Acad Sci U S A 103(48):18255–18260

    Article  PubMed  PubMed Central  Google Scholar 

  8. Steinberg SF (2000) Many pathways to cardiac hypertrophy. J Mol Cell Cardiol 32(8):1381–1384

    Article  CAS  PubMed  Google Scholar 

  9. Zablocki D, Sadoshima J (2013) Solving the cardiac hypertrophy riddle: the angiotensin II-mechanical stress connection. Circ Res 113(11):1192–1195

    Article  CAS  PubMed  Google Scholar 

  10. Gava AL, Balarini CM, Peotta VA, Abreu GR, Cabral AM, Vasquez EC, Meyrelles SS (2012) Baroreflex control of renal sympathetic nerve activity in mice with cardiac hypertrophy. Auton Neurosci 170(1–2):62–65

    Article  PubMed  Google Scholar 

  11. Bupha-Intr THK (2012) Role of endothelin in the induction of cardiac. PLoS One 7:e43179

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. van de Schans VA, van den Borne SW, Strzelecka AE, Janssen BJ, van der Velden JL, Langen RC, Wynshaw-Boris A, Smits JF, Blankesteijn WM (2007) Interruption of Wnt signaling attenuates the onset of pressure overload-induced cardiac hypertrophy. Hypertension 49(3):473–480

    Article  PubMed  Google Scholar 

  13. Yamazaki T, Komuro I, Yazaki Y (1998) Signalling pathways for cardiac hypertrophy. Cell Signal 10:693–698

    Article  CAS  PubMed  Google Scholar 

  14. Sayed D, Hong C, Chen IY, Lypowy J, Abdellatif M (2007) MicroRNAs play an essential role in the development of cardiac hypertrophy. Circ Res 100(3):416–424

    Article  CAS  PubMed  Google Scholar 

  15. Kim AS, Miller EJ, Young LH (2009) AMP-activated protein kinase: a core signalling pathway in the heart. Acta Physiol (Oxf) 196(1):37–53

    Article  CAS  Google Scholar 

  16. Modesti PA, Vanni S, Bertolozzi I, Cecioni I, Lumachi C, Perna AM, Boddi M, Gensini GF (2004) Different growth factor activation in the right and left ventricles in experimental volume overload. Hypertension 43(1):101–108

    Article  CAS  PubMed  Google Scholar 

  17. Horio T, Kamide K, Takiuchi S, Yoshii M, Miwa Y, Matayoshi T, Yoshihara F, Nakamura S, Tokudome T, Miyata T, Kawano Y (2010) Association of insulin-like growth factor-1 receptor gene polymorphisms with left ventricular mass and geometry in essential hypertension. J Hum Hypertens 24(5):320–326

    Article  CAS  PubMed  Google Scholar 

  18. Pan BT, Johnstone RM (1983) Fate of the transferrin receptor during maturation of sheep reticulocytes in vitro: selective externalization of the receptor. Cell Death Dis 33:967–978

    CAS  Google Scholar 

  19. Johnstone RM, Adam M, Hammond JR, Orr L, Turbide C (1987) Vesicle formation during reticulocyte maturation. Association of plasma membrane activities with released vesicles (exosomes). Biol Chem 262:9412–9420

    CAS  Google Scholar 

  20. Huang L, Ma W, Ma Y, Feng D, Chen H, Cai B (2015) Exosomes in mesenchymal stem cells, a new therapeutic strategy for cardiovascular diseases? Int J Biol Sci 11(2):238–245

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Mathivanan S, Ji H, Simpson RJ (2010) Exosomes: extracellular organelles important in intercellular communication. J Proteome 73(10):1907–1920

    Article  CAS  Google Scholar 

  22. Colombo M, Raposo G, Thery C (2014) Biogenesis, secretion, and intercellular interactions of exosomes and other extracellular vesicles. Annu Rev Cell Dev Biol 30:255–289

    Article  CAS  PubMed  Google Scholar 

  23. Fevrier B, Raposo G (2004) Exosomes: endosomal-derived vesicles shipping extracellular messages. Curr Opin Cell Biol 16(4):415–421

    Article  CAS  PubMed  Google Scholar 

  24. Thery C, Boussac M, Veron P, Ricciardi-Castagnoli P, Raposo G, Garin J, Amigorena S (2001) Proteomic analysis of dendritic cell-derived exosomes: a secreted subcellular compartment distinct from apoptotic vesicles. J Immunol 166(12):7309–7318

    Article  CAS  PubMed  Google Scholar 

  25. Jenjaroenpun P, Kremenska Y, Nair VM, Kremenskoy M, Joseph B, Kurochkin IV (2013) Characterization of RNA in exosomes secreted by human breast cancer cell lines using next-generation sequencing. PeerJ 1:e201

    Article  PubMed  PubMed Central  Google Scholar 

  26. Lai RC, Chen TS, Lim SK (2011) Mesenchymal stem cell exosome: a novel stem cell-based therapy for cardiovascular disease. Regen Med 6:481–492

    Article  PubMed  Google Scholar 

  27. Fabbria M, Paonea A, Calorea F, Gallia R, Gaudioa E, Santhanama R, Lovata F, Faddaa P (2012) MicroRNAs bind to Toll-like receptors to induce prometastatic inflammatory response. Proc Natl Acad Sci U S A 109:E2110–E2116

    Article  Google Scholar 

  28. Valadi H, Ekstrom K, Bossios A, Sjostrand M, Lee JJ, Lotvall JO (2007) Exosome-mediated transfer of mRNAs and microRNAs is a novel mechanism of genetic exchange between cells. Nat Cell Biol 9(6):654–659

    Article  CAS  PubMed  Google Scholar 

  29. Zhang Y, Liu D, Chen X, Li J, Li L, Bian Z, Sun F, Lu J, Yin Y, Cai X, Sun Q, Wang K, Ba Y, Wang Q, Wang D, Yang J, Liu P, Xu T, Yan Q, Zhang J, Zen K, Zhang CY (2010) Secreted monocytic miR-150 enhances targeted endothelial cell migration. Mol Cell 39(1):133–144

    Article  CAS  PubMed  Google Scholar 

  30. Wang X, Haitao G, Huang W, Peng J, Li Y, Yang L, Qin D, Essandoh K, Wang Y, Peng T (2016) Hsp20-mediated activation of exosome biogenesis in cardiomyocytes improves cardiac function and angiogenesis in diabetic mice. Diabetes 65:3111–3128

    Article  CAS  PubMed  Google Scholar 

  31. Johnston PV, Sasano T, Mills K, Evers R, Lee ST, Smith RR, Lardo AC, Lai S, Steenbergen C, Gerstenblith G, Lange R, Marban E (2009) Engraftment, differentiation, and functional benefits of autologous cardiosphere-derived cells in porcine ischemic cardiomyopathy. Circulation 120(12):1075–1083, 1077 p following 1083

    Google Scholar 

  32. Gallet R, Dawkins J, Valle J, Simsolo E, de Couto G, Middleton R, Tseliou E, Luthringer D, Kreke M, Smith RR, Marban L, Ghaleh B, Marban E (2016) Exosomes secreted by cardiosphere-derived cells reduce scarring, attenuate adverse remodelling, and improve function in acute and chronic porcine myocardial infarction. Eur Heart J. doi:10.1093/eurheartj/ehw240

  33. Lyu L, Wang H, Li B, Qin Q, Qi L, Nagarkatti M, Nagarkatti P, Janicki JS, Wang XL, Cui T (2015) A critical role of cardiac fibroblast-derived exosomes in activating renin angiotensin system in cardiomyocytes. J Mol Cell Cardiol 89(Pt B):268–279

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Bang C, Batkai S, Dangwal S, Gupta SK, Foinquinos A, Holzmann A, Just A (2014) Cardiac fibroblast–derived microRNA passenger strand-enriched exosomes mediate cardiomyocyte hypertrophy. J Clin Investig 124:2136–2146

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Sluijter JP, van Rooij E (2015) Exosomal microRNA clusters are important for the therapeutic effect of cardiac progenitor cells. Circ Res 116(2):219–221

    Article  CAS  PubMed  Google Scholar 

  36. Chen L, Wang Y, Pan Y, Zhang L, Shen C, Qin G, Ashraf M, Weintraub N, Ma G, Tang Y (2013) Cardiac progenitor-derived exosomes protect ischemic myocardium from acute ischemia/reperfusion injury. Biochem Biophys Res Commun 431(3):566–571

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Cannon RO III (2005) Mechanisms, management and future directions for reperfusion injury after acute myocardial infarction. Nat Clin Pract Cardiovasc Med 2(2):88–94

    Article  CAS  PubMed  Google Scholar 

  38. Xiao J, Pan Y, Li XH, Yang XY, Feng YL, Tan HH, Jiang L, Feng J, Yu XY (2016) Cardiac progenitor cell-derived exosomes prevent cardiomyocytes apoptosis through exosomal miR-21 by targeting PDCD4. Cell Death Dis 7(6):e2277

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Persoon-Rothert M, van der Wees KGC, van der Laarse A (2002) Mechanical overload-induced apoptosis: a study in cultured neonatal ventricular myocytes and fibroblasts. Mol Cell Biochem 241:115–124

    Article  CAS  PubMed  Google Scholar 

  40. Zhang D, Gaussin V, Taffet GE, Belaguli NS, Yamada M, Schwartz RJ, Michael LH (2000) TAK1 is activated in the myocardium after pressure overload and is sufficient to provoke heart failure in transgenic mice. Nat Med 6:556–563

    Article  CAS  PubMed  Google Scholar 

  41. Arslan F, Lai RC, Smeets MB, Akeroyd L, Choo A, Aguor EN, Timmers L, van Rijen HV, Doevendans PA, Pasterkamp G, Lim SK, de Kleijn DP (2013) Mesenchymal stem cell-derived exosomes increase ATP levels, decrease oxidative stress and activate PI3K/Akt pathway to enhance myocardial viability and prevent adverse remodeling after myocardial ischemia/reperfusion injury. Stem Cell Res 10(3):301–312

    Article  CAS  PubMed  Google Scholar 

  42. Feng Y, Huang W, Wani M, Yu X, Ashraf M (2014) Ischemic preconditioning potentiates the protective effect of stem cells through secretion of exosomes by targeting Mecp2 via miR-22. PLoS One 9:e88685

    Article  PubMed  PubMed Central  Google Scholar 

  43. Yu B, Gong M, Wang Y, Millard RW, Pasha Z, Yang Y, Ashraf M, Xu M (2013) Cardiomyocyte protection by GATA-4 gene engineered mesenchymal stem cells is partially mediated by translocation of miR-221 in microvesicles. PLoS One 8(8):e73304

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Son NH, Park TS, Yamashita H, Yokoyama M, Huggins LA, Okajima K, Homma S, Szabolcs MJ, Huang LS, Goldberg IJ (2007) Cardiomyocyte expression of PPARgamma leads to cardiac dysfunction in mice. J Clin Investig 117(10):2791–2801

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Fang X, Stroud MJ, Ouyang K, Fang L, Zhang J, Dalton ND, Gu Y, Wu T, Peterson KL, Huang HD, Chen J, Wang N (2016) Adipocyte-specific loss of PPARgamma attenuates cardiac hypertrophy. JCI Insight 1(16):e89908

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Benzhi Cai .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Nature Singapore Pte Ltd.

About this chapter

Cite this chapter

Huang, Q., Cai, B. (2017). Exosomes as New Intercellular Mediators in Development and Therapeutics of Cardiomyocyte Hypertrophy. In: Xiao, J., Cretoiu, S. (eds) Exosomes in Cardiovascular Diseases. Advances in Experimental Medicine and Biology, vol 998. Springer, Singapore. https://doi.org/10.1007/978-981-10-4397-0_6

Download citation

Publish with us

Policies and ethics