Advertisement

Exosomes as New Intercellular Mediators in Development and Therapeutics of Cardiomyocyte Hypertrophy

  • Qi Huang
  • Benzhi CaiEmail author
Chapter
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 998)

Abstract

Myocardial hypertrophy is a common cardiac condition in response to hemodynamic and neurohormonal alterations. Pathological hypertrophic growth in hearts caused the decline of cardiac functions, and finally developed into congestive heart failure. The exosomes are small membrane vesicles which are secreted by various cells and play important roles in cellular communication, migration, proliferation and differentiation. Recent studies uncovered that the exosomes from cardiac fibroblasts and other tissues participates in the development of myocardial hypertrophy. Nevertheless, cardiac progenitor cells and mesenchymal stem cells-derived exosomes confer protective action on myocardial hypertrophy. Thus, the exosomes serve as new intercellular mediators between cardiomyocytes and other cells, and show broad application potential in the diagnostic and therapy of cardiomyocyte hypertrophy.

Keywords

Myocardial hypertrophy Exosomes Stem cells Cardiomyocytes Fibroblast 

References

  1. 1.
    Widiapradja A, Chunduri P, Levick SP (2017) The role of neuropeptides in adverse myocardial remodeling and heart failure. Cell Mol Life Sci 74(11):2019–2038. doi: 10.1007/s00018-017-2452-x CrossRefPubMedGoogle Scholar
  2. 2.
    McMullen JR, Jennings GL (2007) Differences between pathological and physiological cardiac hypertrophy: novel therapeutic strategies to treat heart failure. Clin Exp Pharmacol Physiol 34(4):255–262CrossRefPubMedGoogle Scholar
  3. 3.
    Baker JS, Grace F, Kilgore L, Smith DJ, Norris SR, Gardner AW, Ringseis R, Eder K, Shephard RJ, Kokkinos P (2012) Physiological cardiac hypertrophy: encyclopedia of exercise medicine in health and disease. Springer Berlin Heidelberg p 711. doi:  10.1007/978-3-540-29807-6_2877
  4. 4.
    Bernardo BC, Weeks KL, Pretorius L, McMullen JR (2010) Molecular distinction between physiological and pathological cardiac hypertrophy: experimental findings and therapeutic strategies. Pharmacol Ther 128(1):191–227CrossRefPubMedGoogle Scholar
  5. 5.
    Berenji K, Drazner MH, Rothermel BA, Hill JA (2005) Does load-induced ventricular hypertrophy progress to systolic heart failure? Physiol Heart Circ Physiol 289:H8–H16CrossRefGoogle Scholar
  6. 6.
    Opie LH, Commerford PJ, Gersh BJ, Pfeffer MA (2006) Controversies in ventricular remodelling. Lancet 367(9507):356–367CrossRefPubMedGoogle Scholar
  7. 7.
    van Rooij E, Sutherland LB, Liu N, Williams AH, McAnally J, Gerard RD, Richardson JA, Olson EN (2006) A signature pattern of stress-responsive microRNAs that can evoke cardiac hypertrophy and heart failure. Proc Natl Acad Sci U S A 103(48):18255–18260CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Steinberg SF (2000) Many pathways to cardiac hypertrophy. J Mol Cell Cardiol 32(8):1381–1384CrossRefPubMedGoogle Scholar
  9. 9.
    Zablocki D, Sadoshima J (2013) Solving the cardiac hypertrophy riddle: the angiotensin II-mechanical stress connection. Circ Res 113(11):1192–1195CrossRefPubMedGoogle Scholar
  10. 10.
    Gava AL, Balarini CM, Peotta VA, Abreu GR, Cabral AM, Vasquez EC, Meyrelles SS (2012) Baroreflex control of renal sympathetic nerve activity in mice with cardiac hypertrophy. Auton Neurosci 170(1–2):62–65CrossRefPubMedGoogle Scholar
  11. 11.
    Bupha-Intr THK (2012) Role of endothelin in the induction of cardiac. PLoS One 7:e43179CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    van de Schans VA, van den Borne SW, Strzelecka AE, Janssen BJ, van der Velden JL, Langen RC, Wynshaw-Boris A, Smits JF, Blankesteijn WM (2007) Interruption of Wnt signaling attenuates the onset of pressure overload-induced cardiac hypertrophy. Hypertension 49(3):473–480CrossRefPubMedGoogle Scholar
  13. 13.
    Yamazaki T, Komuro I, Yazaki Y (1998) Signalling pathways for cardiac hypertrophy. Cell Signal 10:693–698CrossRefPubMedGoogle Scholar
  14. 14.
    Sayed D, Hong C, Chen IY, Lypowy J, Abdellatif M (2007) MicroRNAs play an essential role in the development of cardiac hypertrophy. Circ Res 100(3):416–424CrossRefPubMedGoogle Scholar
  15. 15.
    Kim AS, Miller EJ, Young LH (2009) AMP-activated protein kinase: a core signalling pathway in the heart. Acta Physiol (Oxf) 196(1):37–53CrossRefGoogle Scholar
  16. 16.
    Modesti PA, Vanni S, Bertolozzi I, Cecioni I, Lumachi C, Perna AM, Boddi M, Gensini GF (2004) Different growth factor activation in the right and left ventricles in experimental volume overload. Hypertension 43(1):101–108CrossRefPubMedGoogle Scholar
  17. 17.
    Horio T, Kamide K, Takiuchi S, Yoshii M, Miwa Y, Matayoshi T, Yoshihara F, Nakamura S, Tokudome T, Miyata T, Kawano Y (2010) Association of insulin-like growth factor-1 receptor gene polymorphisms with left ventricular mass and geometry in essential hypertension. J Hum Hypertens 24(5):320–326CrossRefPubMedGoogle Scholar
  18. 18.
    Pan BT, Johnstone RM (1983) Fate of the transferrin receptor during maturation of sheep reticulocytes in vitro: selective externalization of the receptor. Cell Death Dis 33:967–978Google Scholar
  19. 19.
    Johnstone RM, Adam M, Hammond JR, Orr L, Turbide C (1987) Vesicle formation during reticulocyte maturation. Association of plasma membrane activities with released vesicles (exosomes). Biol Chem 262:9412–9420Google Scholar
  20. 20.
    Huang L, Ma W, Ma Y, Feng D, Chen H, Cai B (2015) Exosomes in mesenchymal stem cells, a new therapeutic strategy for cardiovascular diseases? Int J Biol Sci 11(2):238–245CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Mathivanan S, Ji H, Simpson RJ (2010) Exosomes: extracellular organelles important in intercellular communication. J Proteome 73(10):1907–1920CrossRefGoogle Scholar
  22. 22.
    Colombo M, Raposo G, Thery C (2014) Biogenesis, secretion, and intercellular interactions of exosomes and other extracellular vesicles. Annu Rev Cell Dev Biol 30:255–289CrossRefPubMedGoogle Scholar
  23. 23.
    Fevrier B, Raposo G (2004) Exosomes: endosomal-derived vesicles shipping extracellular messages. Curr Opin Cell Biol 16(4):415–421CrossRefPubMedGoogle Scholar
  24. 24.
    Thery C, Boussac M, Veron P, Ricciardi-Castagnoli P, Raposo G, Garin J, Amigorena S (2001) Proteomic analysis of dendritic cell-derived exosomes: a secreted subcellular compartment distinct from apoptotic vesicles. J Immunol 166(12):7309–7318CrossRefPubMedGoogle Scholar
  25. 25.
    Jenjaroenpun P, Kremenska Y, Nair VM, Kremenskoy M, Joseph B, Kurochkin IV (2013) Characterization of RNA in exosomes secreted by human breast cancer cell lines using next-generation sequencing. PeerJ 1:e201CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Lai RC, Chen TS, Lim SK (2011) Mesenchymal stem cell exosome: a novel stem cell-based therapy for cardiovascular disease. Regen Med 6:481–492CrossRefPubMedGoogle Scholar
  27. 27.
    Fabbria M, Paonea A, Calorea F, Gallia R, Gaudioa E, Santhanama R, Lovata F, Faddaa P (2012) MicroRNAs bind to Toll-like receptors to induce prometastatic inflammatory response. Proc Natl Acad Sci U S A 109:E2110–E2116CrossRefGoogle Scholar
  28. 28.
    Valadi H, Ekstrom K, Bossios A, Sjostrand M, Lee JJ, Lotvall JO (2007) Exosome-mediated transfer of mRNAs and microRNAs is a novel mechanism of genetic exchange between cells. Nat Cell Biol 9(6):654–659CrossRefPubMedGoogle Scholar
  29. 29.
    Zhang Y, Liu D, Chen X, Li J, Li L, Bian Z, Sun F, Lu J, Yin Y, Cai X, Sun Q, Wang K, Ba Y, Wang Q, Wang D, Yang J, Liu P, Xu T, Yan Q, Zhang J, Zen K, Zhang CY (2010) Secreted monocytic miR-150 enhances targeted endothelial cell migration. Mol Cell 39(1):133–144CrossRefPubMedGoogle Scholar
  30. 30.
    Wang X, Haitao G, Huang W, Peng J, Li Y, Yang L, Qin D, Essandoh K, Wang Y, Peng T (2016) Hsp20-mediated activation of exosome biogenesis in cardiomyocytes improves cardiac function and angiogenesis in diabetic mice. Diabetes 65:3111–3128CrossRefPubMedGoogle Scholar
  31. 31.
    Johnston PV, Sasano T, Mills K, Evers R, Lee ST, Smith RR, Lardo AC, Lai S, Steenbergen C, Gerstenblith G, Lange R, Marban E (2009) Engraftment, differentiation, and functional benefits of autologous cardiosphere-derived cells in porcine ischemic cardiomyopathy. Circulation 120(12):1075–1083, 1077 p following 1083Google Scholar
  32. 32.
    Gallet R, Dawkins J, Valle J, Simsolo E, de Couto G, Middleton R, Tseliou E, Luthringer D, Kreke M, Smith RR, Marban L, Ghaleh B, Marban E (2016) Exosomes secreted by cardiosphere-derived cells reduce scarring, attenuate adverse remodelling, and improve function in acute and chronic porcine myocardial infarction. Eur Heart J. doi: 10.1093/eurheartj/ehw240
  33. 33.
    Lyu L, Wang H, Li B, Qin Q, Qi L, Nagarkatti M, Nagarkatti P, Janicki JS, Wang XL, Cui T (2015) A critical role of cardiac fibroblast-derived exosomes in activating renin angiotensin system in cardiomyocytes. J Mol Cell Cardiol 89(Pt B):268–279CrossRefPubMedPubMedCentralGoogle Scholar
  34. 34.
    Bang C, Batkai S, Dangwal S, Gupta SK, Foinquinos A, Holzmann A, Just A (2014) Cardiac fibroblast–derived microRNA passenger strand-enriched exosomes mediate cardiomyocyte hypertrophy. J Clin Investig 124:2136–2146CrossRefPubMedPubMedCentralGoogle Scholar
  35. 35.
    Sluijter JP, van Rooij E (2015) Exosomal microRNA clusters are important for the therapeutic effect of cardiac progenitor cells. Circ Res 116(2):219–221CrossRefPubMedGoogle Scholar
  36. 36.
    Chen L, Wang Y, Pan Y, Zhang L, Shen C, Qin G, Ashraf M, Weintraub N, Ma G, Tang Y (2013) Cardiac progenitor-derived exosomes protect ischemic myocardium from acute ischemia/reperfusion injury. Biochem Biophys Res Commun 431(3):566–571CrossRefPubMedPubMedCentralGoogle Scholar
  37. 37.
    Cannon RO III (2005) Mechanisms, management and future directions for reperfusion injury after acute myocardial infarction. Nat Clin Pract Cardiovasc Med 2(2):88–94CrossRefPubMedGoogle Scholar
  38. 38.
    Xiao J, Pan Y, Li XH, Yang XY, Feng YL, Tan HH, Jiang L, Feng J, Yu XY (2016) Cardiac progenitor cell-derived exosomes prevent cardiomyocytes apoptosis through exosomal miR-21 by targeting PDCD4. Cell Death Dis 7(6):e2277CrossRefPubMedPubMedCentralGoogle Scholar
  39. 39.
    Persoon-Rothert M, van der Wees KGC, van der Laarse A (2002) Mechanical overload-induced apoptosis: a study in cultured neonatal ventricular myocytes and fibroblasts. Mol Cell Biochem 241:115–124CrossRefPubMedGoogle Scholar
  40. 40.
    Zhang D, Gaussin V, Taffet GE, Belaguli NS, Yamada M, Schwartz RJ, Michael LH (2000) TAK1 is activated in the myocardium after pressure overload and is sufficient to provoke heart failure in transgenic mice. Nat Med 6:556–563CrossRefPubMedGoogle Scholar
  41. 41.
    Arslan F, Lai RC, Smeets MB, Akeroyd L, Choo A, Aguor EN, Timmers L, van Rijen HV, Doevendans PA, Pasterkamp G, Lim SK, de Kleijn DP (2013) Mesenchymal stem cell-derived exosomes increase ATP levels, decrease oxidative stress and activate PI3K/Akt pathway to enhance myocardial viability and prevent adverse remodeling after myocardial ischemia/reperfusion injury. Stem Cell Res 10(3):301–312CrossRefPubMedGoogle Scholar
  42. 42.
    Feng Y, Huang W, Wani M, Yu X, Ashraf M (2014) Ischemic preconditioning potentiates the protective effect of stem cells through secretion of exosomes by targeting Mecp2 via miR-22. PLoS One 9:e88685CrossRefPubMedPubMedCentralGoogle Scholar
  43. 43.
    Yu B, Gong M, Wang Y, Millard RW, Pasha Z, Yang Y, Ashraf M, Xu M (2013) Cardiomyocyte protection by GATA-4 gene engineered mesenchymal stem cells is partially mediated by translocation of miR-221 in microvesicles. PLoS One 8(8):e73304CrossRefPubMedPubMedCentralGoogle Scholar
  44. 44.
    Son NH, Park TS, Yamashita H, Yokoyama M, Huggins LA, Okajima K, Homma S, Szabolcs MJ, Huang LS, Goldberg IJ (2007) Cardiomyocyte expression of PPARgamma leads to cardiac dysfunction in mice. J Clin Investig 117(10):2791–2801CrossRefPubMedPubMedCentralGoogle Scholar
  45. 45.
    Fang X, Stroud MJ, Ouyang K, Fang L, Zhang J, Dalton ND, Gu Y, Wu T, Peterson KL, Huang HD, Chen J, Wang N (2016) Adipocyte-specific loss of PPARgamma attenuates cardiac hypertrophy. JCI Insight 1(16):e89908CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2017

Authors and Affiliations

  1. 1.Department of PharmacyThe Affiliated Second Hospital of Harbin Medical UniversityHarbinChina
  2. 2.Department of Pharmacology, College of PharmacyHarbin Medical UniversityHarbinChina

Personalised recommendations