Skip to main content

Exosomes-Based Biomarkers for the Prognosis of Cardiovascular Diseases

  • Chapter
  • First Online:
Book cover Exosomes in Cardiovascular Diseases

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 998))

Abstract

Cardiovascular diseases (CVDs) have a high prevalence and annually increasing incidence with high mortality and morbidity. Identification of biomarkers with high sensitivity and specificity for assessing the prognosis of CVDs is necessary for optimizing personalized treatment and reducing mortality. Exosomes have been proved to be accessible in nearly all body fluids and they can reflect disease stage or progression. Here we summarized exosomes-based biomarkers for the prognosis of coronary artery diseases, heart failure, stroke, hypertension, cardiac arrhythmia, cardiomyopathy, valvular heart diseases and pulmonary arterial hypertension. If exosome-based biomarkers can achieve additionally benefits as compared to the present prognostic biomarkers remains to be determined and multicenter studies with large cohorts of patients are highly needed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Mathers CD, Loncar D (2006) Projections of global mortality and burden of disease from 2002 to 2030. PLoS Med 3(11):e442–e442

    Article  PubMed  PubMed Central  Google Scholar 

  2. Mendis S, Lindholm LH, Mancia G, Whitworth J, Alderman M, Lim S, Heagerty T (2007) World Health Organization (WHO) and International Society of Hypertension (ISH) risk prediction charts: assessment of cardiovascular risk for prevention and control of cardiovascular disease in low and middle-income countries. J Hypertens 25(8):1578–1582

    Article  CAS  PubMed  Google Scholar 

  3. WHO, Federation WH, Organization WS (2012) Global atlas on cardiovascular disease prevention and control

    Google Scholar 

  4. Simpson RJ, Jensen SS, Lim JW (2008) Proteomic profiling of exosomes: current perspectives. Proteomics 8(19):4083–4099

    Article  CAS  PubMed  Google Scholar 

  5. Valadi H, Ekstrom K, Bossios A, Sjostrand M, Lee JJ, Lotvall JO (2007) Exosome-mediated transfer of mRNAs and microRNAs is a novel mechanism of genetic exchange between cells. Nat Cell Biol 9(6):654–659

    Article  CAS  PubMed  Google Scholar 

  6. Caby MP, Lankar D, Vincendeau-Scherrer C, Raposo G, Bonnerot C (2005) Exosomal-like vesicles are present in human blood plasma. Int Immunol 17(7):879–887

    Article  CAS  PubMed  Google Scholar 

  7. Pisitkun T, Shen RF, Knepper MA (2004) Identification and proteomic profiling of exosomes in human urine. Proc Natl Acad Sci U S A 101(36):13368–13373

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Hoorn EJ, Pisitkun T, Zietse R, Gross P, Frokiaer J, Wang NS, Gonzales PA, Star RA, Knepper MA (2005) Prospects for urinary proteomics: exosomes as a source of urinary biomarkers. Nephrology (Carlton) 10(3):283–290

    Article  CAS  Google Scholar 

  9. Koga K, Matsumoto K, Akiyoshi T, Kubo M, Yamanaka N, Tasaki A, Nakashima H, Nakamura M, Kuroki S, Tanaka M, Katano M (2005) Purification, characterization and biological significance of tumor-derived exosomes. Anticancer Res 25(6a):3703–3707

    CAS  PubMed  Google Scholar 

  10. Andre F, Schartz NE, Movassagh M, Flament C, Pautier P, Morice P, Pomel C, Lhomme C, Escudier B, Le Chevalier T, Tursz T, Amigorena S, Raposo G, Angevin E, Zitvogel L (2002) Malignant effusions and immunogenic tumour-derived exosomes. Lancet 360(9329):295–305

    Article  CAS  PubMed  Google Scholar 

  11. Bard MP, Hegmans JP, Hemmes A, Luider TM, Willemsen R, Severijnen LA, van Meerbeeck JP, Burgers SA, Hoogsteden HC, Lambrecht BN (2004) Proteomic analysis of exosomes isolated from human malignant pleural effusions. Am J Respir Cell Mol Biol 31(1):114–121

    Article  CAS  PubMed  Google Scholar 

  12. Mincheva-Nilsson L, Baranov V (2010) The role of placental exosomes in reproduction. Am J Reprod Immunol 63(6):520–533

    Article  CAS  PubMed  Google Scholar 

  13. Chaput N, Thery C (2011) Exosomes: immune properties and potential clinical implementations. Semin Immunopathol 33(5):419–440

    Article  CAS  PubMed  Google Scholar 

  14. Silverman JM, Reiner NE (2011) Exosomes and other microvesicles in infection biology: organelles with unanticipated phenotypes. Cell Microbiol 13(1):1–9

    Article  CAS  PubMed  Google Scholar 

  15. Schorey JS, Bhatnagar S (2008) Exosome function: from tumor immunology to pathogen biology. Traffic 9(6):871–881

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Vella LJ, Sharples RA, Nisbet RM, Cappai R, Hill AF (2008) The role of exosomes in the processing of proteins associated with neurodegenerative diseases. Eur Biophys J 37(3):323–332

    Article  CAS  PubMed  Google Scholar 

  17. Tickner JA, Urquhart AJ, Stephenson SA, Richard DJ, O'Byrne KJ (2014) Functions and therapeutic roles of exosomes in cancer. Front Oncol 4:127

    Article  PubMed  PubMed Central  Google Scholar 

  18. Runz S, Keller S, Rupp C, Stoeck A, Issa Y, Koensgen D, Mustea A, Sehouli J, Kristiansen G, Altevogt P (2007) Malignant ascites-derived exosomes of ovarian carcinoma patients contain CD24 and EpCAM. Gynecol Oncol 107(3):563–571

    Article  CAS  PubMed  Google Scholar 

  19. Logozzi M, De Milito A, Lugini L, Borghi M, Calabro L, Spada M, Perdicchio M, Marino ML, Federici C, Iessi E, Brambilla D, Venturi G, Lozupone F, Santinami M, Huber V, Maio M, Rivoltini L, Fais S (2009) High levels of exosomes expressing CD63 and caveolin-1 in plasma of melanoma patients. PLoS One 4(4):e5219

    Article  PubMed  PubMed Central  Google Scholar 

  20. Choi D, Lee TH, Spinelli C, Chennakrishnaiah S, D’Asti E, Rak J (2017) Extracellular vesicle communication pathways as regulatory targets of oncogenic transformation. Semin Cell Dev Biol 67:11–22

    Google Scholar 

  21. Wang WT, Chen YQ (2014) Circulating miRNAs in cancer: from detection to therapy. J Hematol Oncol 7:86

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Rabinowits G, Gercel-Taylor C, Day JM, Taylor DD, Kloecker GH (2009) Exosomal microRNA: a diagnostic marker for lung cancer. Clin Lung Cancer 10(1):42–46

    Article  CAS  PubMed  Google Scholar 

  23. Lau C, Kim Y, Chia D, Spielmann N, Eibl G, Elashoff D, Wei F, Lin YL, Moro A, Grogan T, Chiang S, Feinstein E, Schafer C, Farrell J, Wong DT (2013) Role of pancreatic cancer-derived exosomes in salivary biomarker development. J Biol Chem 288(37):26888–26897

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Nilsson J, Skog J, Nordstrand A, Baranov V, Mincheva-Nilsson L, Breakefield XO, Widmark A (2009) Prostate cancer-derived urine exosomes: a novel approach to biomarkers for prostate cancer. Br J Cancer 100(10):1603–1607

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Corcoran C, Friel AM, Duffy MJ, Crown J, O'Driscoll L (2011) Intracellular and extracellular microRNAs in breast cancer. Clin Chem 57(1):18–32

    Article  CAS  PubMed  Google Scholar 

  26. Huang X, Yuan T, Liang M, Du M, Xia S, Dittmar R, Wang D, See W, Costello BA, Quevedo F, Tan W, Nandy D, Bevan GH, Longenbach S, Sun Z, Lu Y, Wang T, Thibodeau SN, Boardman L, Kohli M, Wang L (2015) Exosomal miR-1290 and miR-375 as prognostic markers in castration-resistant prostate cancer. Eur Urol 67(1):33–41

    Article  CAS  PubMed  Google Scholar 

  27. Corcoran C, Rani S, O’Driscoll L (2014) miR-34a is an intracellular and exosomal predictive biomarker for response to docetaxel with clinical relevance to prostate cancer progression. Prostate 74(13):1320–1334

    Article  CAS  PubMed  Google Scholar 

  28. Heneghan HM, Miller N, Lowery AJ, Sweeney KJ, Newell J, Kerin MJ (2010) Circulating microRNAs as novel minimally invasive biomarkers for breast cancer. Ann Surg 251(3):499–505

    Google Scholar 

  29. Aktas IY, Bugdayci M, Usubutun A (2012) Expression of p16, p53, CD24, EpCAM and calretinin in serous borderline tumors of the ovary. Turk Patoloji Derg 28(3):220–230

    PubMed  Google Scholar 

  30. Peinado H, Aleckovic M, Lavotshkin S, Matei I, Costa-Silva B, Moreno-Bueno G, Hergueta-Redondo M, Williams C, Garcia-Santos G, Ghajar C, Nitadori-Hoshino A, Hoffman C, Badal K, Garcia BA, Callahan MK, Yuan J, Martins VR, Skog J, Kaplan RN, Brady MS, Wolchok JD, Chapman PB, Kang Y, Bromberg J, Lyden D (2012) Melanoma exosomes educate bone marrow progenitor cells toward a pro-metastatic phenotype through MET. Nat Med 18(6):883–891

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Wong ND (2014) Epidemiological studies of CHD and the evolution of preventive cardiology. Nat Rev Cardiol 11(5):276–289

    Article  PubMed  Google Scholar 

  32. Mortality GBD, Causes of Death C (2015) Global, regional, and national age–sex specific all-cause and cause-specific mortality for 240 causes of death, 1990–2013: a systematic analysis for the Global Burden of Disease Study 2013. Lancet 385(9963):117–171

    Google Scholar 

  33. Killip T, Kimball JT (1967) Treatment of myocardial infarction in a coronary care unit. Am J Cardiol 20(4):457–464

    Article  PubMed  Google Scholar 

  34. Kaul P, Naylor CD, Armstrong PW, Mark DB, Theroux P, Dagenais GR (2009) Assessment of activity status and survival according to the Canadian Cardiovascular Society angina classification. Can J Cardiol 25(7):e225–e231

    Article  PubMed  PubMed Central  Google Scholar 

  35. Ndrepepa G, Colleran R, Braun S, Cassese S, Hieber J, Fusaro M, Kufner S, Ott I, Byrne RA, Husser O, Hengstenberg C, Laugwitz KL, Schunkert H, Kastrati A (2016) High-sensitivity Troponin T and mortality after elective percutaneous coronary intervention. J Am Coll Cardiol 68(21):2259–2268

    Google Scholar 

  36. Prasad A, Rihal CS, Lennon RJ, Singh M, Jaffe AS, Holmes DR (2008) Significance of periprocedural myonecrosis on outcomes after percutaneous coronary intervention. An analysis of preintervention and postintervention troponin T levels in 5487 patients. Circ Cardiovasc Interv 1(1):10–19

    Article  PubMed  Google Scholar 

  37. Miller WL, Garratt KN, Burritt MF, Lennon RJ, Reeder GS, Jaffe AS (2006) Baseline troponin level: key to understanding the importance of post-PCI troponin elevations. Eur Heart J 27(9):1061–1069

    Article  CAS  PubMed  Google Scholar 

  38. Chiva-Blanch G, Suades R, Crespo J, Vilahur G, Arderiu G, Padro T, Corella D, Salas-Salvado J, Aros F, Martinez-Gonzalez MA, Ros E, Fito M, Estruch R, Badimon L (2016) CD3(+)/CD45(+) and SMA-alpha(+) circulating microparticles are increased in individuals at high cardiovascular risk who will develop a major cardiovascular event. Int J Cardiol 208:147–149

    Article  PubMed  Google Scholar 

  39. Nozaki T, Sugiyama S, Koga H, Sugamura K, Ohba K, Matsuzawa Y, Sumida H, Matsui K, Jinnouchi H, Ogawa H (2009) Significance of a multiple biomarkers strategy including endothelial dysfunction to improve risk stratification for cardiovascular events in patients at high risk for coronary heart disease. J Am Coll Cardiol 54(7):601–608

    Article  PubMed  Google Scholar 

  40. Sinning JM, Losch J, Walenta K, Bohm M, Nickenig G, Werner N (2011) Circulating CD31+/Annexin V+ microparticles correlate with cardiovascular outcomes. Eur Heart J 32(16):2034–2041

    Article  CAS  PubMed  Google Scholar 

  41. de Jong OG, Verhaar MC, Chen Y, Vader P, Gremmels H, Posthuma G, Schiffelers RM, Gucek M, van Balkom BW (2012) Cellular stress conditions are reflected in the protein and RNA content of endothelial cell-derived exosomes. J Extracell Vesicles 1. doi:10.3402/jev.v1i0.18396

  42. Kanhai DA, Visseren FL, van der Graaf Y, Schoneveld AH, Catanzariti LM, Timmers L, Kappelle LJ, Uiterwaal CS, Lim SK, Sze SK, Pasterkamp G, de Kleijn DP (2013) Microvesicle protein levels are associated with increased risk for future vascular events and mortality in patients with clinically manifest vascular disease. Int J Cardiol 168(3):2358–2363

    Article  PubMed  Google Scholar 

  43. Hergenreider E, Heydt S, Treguer K, Boettger T, Horrevoets AJ, Zeiher AM, Scheffer MP, Frangakis AS, Yin X, Mayr M, Braun T, Urbich C, Boon RA, Dimmeler S (2012) Atheroprotective communication between endothelial cells and smooth muscle cells through miRNAs. Nat Cell Biol 14(3):249–256

    Article  CAS  PubMed  Google Scholar 

  44. Barile L, Lionetti V, Cervio E, Matteucci M, Gherghiceanu M, Popescu LM, Torre T, Siclari F, Moccetti T, Vassalli G (2014) Extracellular vesicles from human cardiac progenitor cells inhibit cardiomyocyte apoptosis and improve cardiac function after myocardial infarction. Cardiovasc Res 103(4):530–541

    Article  CAS  PubMed  Google Scholar 

  45. Matsumoto S, Sakata Y, Suna S, Nakatani D, Usami M, Hara M, Kitamura T, Hamasaki T, Nanto S, Kawahara Y, Komuro I (2013) Circulating p53-responsive microRNAs are predictive indicators of heart failure after acute myocardial infarction. Circ Res 113(3):322–326

    Article  CAS  PubMed  Google Scholar 

  46. Jansen F, Yang X, Proebsting S, Hoelscher M, Przybilla D, Baumann K, Schmitz T, Dolf A, Endl E, Franklin BS, Sinning JM, Vasa-Nicotera M, Nickenig G, Werner N (2014) MicroRNA expression in circulating microvesicles predicts cardiovascular events in patients with coronary artery disease. J Am Heart Assoc 3(6):e001249

    Article  PubMed  PubMed Central  Google Scholar 

  47. Hunt SA, Abraham WT, Chin MH, Feldman AM, Francis GS, Ganiats TG, Jessup M, Konstam MA, Mancini DM, Michl K, Oates JA, Rahko PS, Silver MA, Stevenson LW, Yancy CW, Antman EM, Smith Jr SC, Adams CD, Anderson JL, Faxon DP, Fuster V, Halperin JL, Hiratzka LF, Hunt SA, Jacobs AK, Nishimura R, Ornato JP, Page RL, Riegel B (2005) ACC/AHA 2005 guideline update for the diagnosis and management of chronic heart failure in the adult—summary article: a report of the American College of Cardiology/American Heart Association Task Force on practice guidelines (Writing Committee to update the 2001 guidelines for the evaluation and management of heart failure). J Am Coll Cardiol 46(6):1116–1143

    Article  Google Scholar 

  48. McMurray JJV, Adamopoulos S, Anker SD, Auricchio A, Bohm M, Dickstein K, Falk V, Filippatos G, Fonseca C, Gómez Sánchez MA, Jaarsma T, Kober L, Lip GYH, Maggioni AP, Parkhomenko A, Pieske BM, Popescu BA, Ronnevik PK, Rutten FH, Schwitter J, Seferovic P, Stepinska J, Trindade PT, Voors AA, Zannad F, Zeiher A (2013) ESC guidelines for the diagnosis and treatment of acute and chronic heart failure 2012. Revista Portuguesa de Cardiologia (English Edition) 32(7–8):641–642

    Article  Google Scholar 

  49. Dubin R, Li Y, Ix JH, Shlipak MG, Whooley M, Peralta CA (2012) Associations of pentraxin-3 with cardiovascular events, incident heart failure, and mortality among persons with coronary heart disease: data from the Heart and Soul Study. Am Heart J 163(2):274–279

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Raphael C, Briscoe C, Davies J, Whinnett ZI, Manisty C, Sutton R, Mayet J, Francis DP (2007) Limitations of the New York Heart Association functional classification system and self-reported walking distances in chronic heart failure. Heart 93(4):476–482

    Article  PubMed  Google Scholar 

  51. Schneider HG, Lam L, Lokuge A, Krum H, Naughton MT, De Villiers Smit P, Bystrzycki A, Eccleston D, Federman J, Flannery G, Cameron P (2009) B-type natriuretic peptide testing, clinical outcomes, and health services use in emergency department patients with dyspnea: a randomized trial. Ann Intern Med 150(6):365–371

    Article  PubMed  Google Scholar 

  52. Waldenstrom A, Ronquist G (2014) Role of exosomes in myocardial remodeling. Circ Res 114(2):315–324

    Article  PubMed  Google Scholar 

  53. Berezin AE, Kremzer AA, Martovitskaya YV, Samura TA, Berezina TA (2015) The predictive role of circulating microparticles in patients with chronic heart failure. BBA Clin 3:18–24

    Article  PubMed  Google Scholar 

  54. Nozaki T, Sugiyama S, Sugamura K, Ohba K, Matsuzawa Y, Konishi M, Matsubara J, Akiyama E, Sumida H, Matsui K, Jinnouchi H, Ogawa H (2010) Prognostic value of endothelial microparticles in patients with heart failure. Eur J Heart Fail 12(11):1223–1228

    Article  PubMed  Google Scholar 

  55. Berezin AE, Kremzer AA, Samura TA, Martovitskaya YV, Malinovskiy YV, Oleshko SV, Berezina TA (2015) Predictive value of apoptotic microparticles to mononuclear progenitor cells ratio in advanced chronic heart failure patients. J Cardiol 65(5):403–411

    Article  PubMed  Google Scholar 

  56. Evans S, Mann DL (2013) Circulating p53-responsive microRNAs as predictive biomarkers in heart failure after acute myocardial infarction: the long and arduous road from scientific discovery to clinical utility. Circ Res 113(3):242–244

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Lackland DT, Roccella EJ, Deutsch AF, Fornage M, George MG, Howard G, Kissela BM, Kittner SJ, Lichtman JH, Lisabeth LD, Schwamm LH, Smith EE, Towfighi A (2014) Factors influencing the decline in stroke mortality. A statement from the American Heart Association/American Stroke Association. Stroke 45(1):315–353

    Article  PubMed  Google Scholar 

  58. Lo EH, Dalkara T, Moskowitz MA (2003) Mechanisms, challenges and opportunities in stroke. Nat Rev Neurosci 4(5):399–414

    Article  CAS  PubMed  Google Scholar 

  59. Donnan GA, Fisher M, Macleod M, Davis SM (2008) Stroke. Lancet 371(9624):1612–1623

    Article  CAS  PubMed  Google Scholar 

  60. Harrison SL, de Craen AJ, Kerse N, Teh R, Granic A, Davies K, Wesnes KA, den Elzen WP, Gussekloo J, Kirkwood TB, Robinson L, Jagger C, Siervo M, Stephan BC (2017) Predicting risk of cognitive decline in very old adults using three models: the Framingham stroke risk profile; the cardiovascular risk factors, aging, and dementia model; and oxi-inflammatory biomarkers. J Am Geriatr Soc 65(2):381–389. doi:10.1111/jgs.14532

    Article  PubMed  Google Scholar 

  61. Christophersen IE, Yin X, Larson MG, Lubitz SA, Magnani JW, McManus DD, Ellinor PT, Benjamin EJ (2016) A comparison of the CHARGE-AF and the CHA2DS2-VASc risk scores for prediction of atrial fibrillation in the Framingham Heart Study. Am Heart J 178:45–54

    Article  PubMed  PubMed Central  Google Scholar 

  62. Fischer U, Arnold M, Nedeltchev K, Brekenfeld C, Ballinari P, Remonda L, Schroth G, Mattle HP (2005) NIHSS score and arteriographic findings in acute ischemic stroke. Stroke 36(10):2121–2125

    Article  PubMed  Google Scholar 

  63. Raman K, O’Donnell MJ, Czlonkowska A, Duarte YC, Lopez-Jaramillo P, Penaherrera E, Sharma M, Shoamanesh A, Skowronska M, Yusuf S, Pare G (2016) Peripheral blood MCEMP1 gene expression as a biomarker for stroke prognosis. Stroke 47(3):652–658

    CAS  PubMed  Google Scholar 

  64. Fruhbeis C, Frohlich D, Kuo WP, Kramer-Albers EM (2013) Extracellular vesicles as mediators of neuron-glia communication. Front Cell Neurosci 7:182

    Article  PubMed  PubMed Central  Google Scholar 

  65. Zhang ZG, Chopp M (2016) Exosomes in stroke pathogenesis and therapy. J Clin Investig 126(4):1190–1197

    Article  PubMed  PubMed Central  Google Scholar 

  66. Zhuang X, Xiang X, Grizzle W, Sun D, Zhang S, Axtell RC, Ju S, Mu J, Zhang L, Steinman L, Miller D, Zhang H-G (2011) Treatment of brain inflammatory diseases by delivering exosome encapsulated anti-inflammatory drugs from the nasal region to the brain. Mol Ther 19(10):1769–1779

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Lee YJ, Jy W, Horstman LL, Janania J, Reyes Y, Kelley RE, Ahn YS (1993) Elevated platelet microparticles in transient ischemic attacks, lacunar infarcts, and multiinfarct dementias. Thromb Res 72(4):295–304

    Article  CAS  PubMed  Google Scholar 

  68. Kanhai DA, de Kleijn DPV, Kappelle LJ, Uiterwaal C, van der Graaf Y, Pasterkamp G, Geerlings MI, Visseren FLJ (2014) Extracellular vesicle protein levels are related to brain atrophy and cerebral white matter lesions in patients with manifest vascular disease: the SMART-MR study. BMJ Open 4(1)

    Google Scholar 

  69. Koomen JM, Datta A, Chen CP, Sze SK (2014) Discovery of prognostic biomarker candidates of lacunar infarction by quantitative proteomics of microvesicles enriched plasma. PLoS One 9(4):e94663

    Article  Google Scholar 

  70. Rink C, Khanna S (2011) MicroRNA in ischemic stroke etiology and pathology. Physiol Genomics 43(10):521–528

    Article  CAS  PubMed  Google Scholar 

  71. Cipollone F, Felicioni L, Sarzani R, Ucchino S, Spigonardo F, Mandolini C, Malatesta S, Bucci M, Mammarella C, Santovito D, de Lutiis F, Marchetti A, Mezzetti A, Buttitta F (2011) A unique microRNA signature associated with plaque instability in humans. Stroke 42(9):2556–2563

    Article  PubMed  Google Scholar 

  72. Ji Q, Ji Y, Peng J, Zhou X, Chen X, Zhao H, Xu T, Chen L, Xu Y (2016) Increased brain-specific MiR-9 and MiR-124 in the serum exosomes of acute ischemic stroke patients. PLoS One 11(9):e0163645

    Article  PubMed  PubMed Central  Google Scholar 

  73. Campbell NR, Lackland DT, Lisheng L, Niebylski ML, Nilsson PM, Zhang XH (2015) Using the Global Burden of Disease Study to assist development of nation-specific fact sheets to promote prevention and control of hypertension and reduction in dietary salt: a resource from the World Hypertension League. J Clin Hypertens (Greenwich) 17(3):165–167

    Article  Google Scholar 

  74. Zou Y, Akazawa H, Qin Y, Sano M, Takano H, Minamino T, Makita N, Iwanaga K, Zhu W, Kudoh S, Toko H, Tamura K, Kihara M, Nagai T, Fukamizu A, Umemura S, Iiri T, Fujita T, Komuro I (2004) Mechanical stress activates angiotensin II type 1 receptor without the involvement of angiotensin II. Nat Cell Biol 6(6):499–506

    Article  CAS  PubMed  Google Scholar 

  75. Pironti G, Strachan RT, Abraham D, Mon-Wei Yu S, Chen M, Chen W, Hanada K, Mao L, Watson LJ, Rockman HA (2015) Circulating exosomes induced by cardiac pressure overload contain functional angiotensin II type 1 receptors. Circulation 131(24):2120–2130

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Guescini M, Leo G, Genedani S, Carone C, Pederzoli F, Ciruela F, Guidolin D, Stocchi V, Mantuano M, Borroto-Escuela DO, Fuxe K, Agnati LF (2012) Microvesicle and tunneling nanotube mediated intercellular transfer of g-protein coupled receptors in cell cultures. Exp Cell Res 318(5):603–613

    Article  CAS  PubMed  Google Scholar 

  77. Zoni-Berisso M, Lercari F, Carazza T, Domenicucci S (2014) Epidemiology of atrial fibrillation: European perspective. Clin Epidemiol 6:213–220

    Article  PubMed  PubMed Central  Google Scholar 

  78. Munger TM, LQ W, Shen WK (2014) Atrial fibrillation. J Biomed Res 28(1):1–17

    PubMed  Google Scholar 

  79. Jesel L, Abbas M, Toti F, Cohen A, Arentz T, Morel O (2013) Microparticles in atrial fibrillation: a link between cell activation or apoptosis, tissue remodelling and thrombogenicity. Int J Cardiol 168(2):660–669

    Article  CAS  PubMed  Google Scholar 

  80. Choudhury A, Chung I, Blann AD, Lip GY (2007) Elevated platelet microparticle levels in nonvalvular atrial fibrillation: relationship to p-selectin and antithrombotic therapy. Chest 131(3):809–815

    Article  CAS  PubMed  Google Scholar 

  81. Chirinos JA, Castrellon A, Zambrano JP, Jimenez JJ, Jy W, Horstman LL, Willens HJ, Castellanos A, Myerburg RJ, Ahn YS (2005) Digoxin use is associated with increased platelet and endothelial cell activation in patients with nonvalvular atrial fibrillation. Heart Rhythm 2(5):525–529

    Article  PubMed  Google Scholar 

  82. Wang H, Yan HM, Tang MX, Wang ZH, Zhong M, Zhang Y, Deng JT, Zhang W (2010) Increased serum levels of microvesicles in nonvalvular atrial fibrillation determinated by ELISA using a specific monoclonal antibody AD-1. Clin Chim Acta 411(21–22):1700–1704

    Article  CAS  PubMed  Google Scholar 

  83. Azzam H, Zagloul M (2009) Elevated platelet microparticle levels in valvular atrial fibrillation. Hematology 14(6):357–360

    Article  PubMed  Google Scholar 

  84. Maron BJ, Towbin JA, Thiene G, Antzelevitch C, Corrado D, Arnett D, Moss AJ, Seidman CE, Young JB (2006) Contemporary definitions and classification of the cardiomyopathies. An American Heart Association Scientific Statement from the Council on Clinical Cardiology, Heart Failure and Transplantation Committee; Quality of Care and Outcomes Research and Functional Genomics and Translational Biology Interdisciplinary Working Groups; and Council on Epidemiology and Prevention. Circulation 113(14):1807–1816

    Article  PubMed  Google Scholar 

  85. Vandergriff AC, de Andrade JB, Tang J, Hensley MT, Piedrahita JA, Caranasos TG, Cheng K (2015) Intravenous cardiac stem cell-derived exosomes ameliorate cardiac dysfunction in doxorubicin induced dilated cardiomyopathy. Stem Cells Int 2015:960926

    Article  PubMed  PubMed Central  Google Scholar 

  86. Wang X, Gu H, Huang W, Peng J, Li Y, Yang L, Qin D, Essandoh K, Wang Y, Peng T, Fan GC (2016) Hsp20-mediated activation of exosome biogenesis in cardiomyocytes improves cardiac function and angiogenesis in diabetic mice. Diabetes 65(10):3111–3128

    Article  CAS  PubMed  Google Scholar 

  87. Bulut D, Scheeler M, Niedballa LM, Miebach T, Mugge A (2011) Effects of immunoadsorption on endothelial function, circulating endothelial progenitor cells and circulating microparticles in patients with inflammatory dilated cardiomyopathy. Clin Res Cardiol 100(7):603–610

    Article  CAS  PubMed  Google Scholar 

  88. Bonow RO, Carabello BA, Chatterjee K, de Leon AC, Faxon DP, Freed MD, Gaasch WH, Lytle BW, Nishimura RA, O’Gara PT, O’Rourke RA, Otto CM, Shah PM, Shanewise JS (2006) ACC/AHA 2006 guidelines for the Management of Patients with valvular heart disease. A report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines (Writing Committee to revise the 1998 Guidelines for the Management of Patients with Valvular Heart Disease): developed in collaboration with the Society of Cardiovascular Anesthesiologists: endorsed by the Society for Cardiovascular Angiography and Interventions and the Society of Thoracic Surgeons. Circulation 114(5):e84–e231

    Article  PubMed  Google Scholar 

  89. Kasner M, Gast M, Galuszka O, Stroux A, Rutschow S, Wang X, Dohmen P, Skurk C, Landmesser U, Poller W, Gross M (2016) Circulating exosomal microRNAs predict functional recovery after MitraClip repair of severe mitral regurgitation. Int J Cardiol 215:402–405

    Article  CAS  PubMed  Google Scholar 

  90. Lohani O, Colvin KL, Yeager ME (2015) Biomarkers for pediatric pulmonary arterial hypertension: challenges and recommendations. Paediatr Respir Rev 16(4):225–231

    PubMed  Google Scholar 

  91. McLaughlin VV, Archer SL, Badesch DB, Barst RJ, Farber HW, Lindner JR, Mathier MA, McGoon MD, Park MH, Rosenson RS, Rubin LJ, Tapson VF, Varga J (2009) ACCF/AHA 2009 expert consensus document on pulmonary hypertension a report of the American College of Cardiology Foundation Task Force on Expert Consensus Documents and the American Heart Association developed in collaboration with the American College of Chest Physicians; American Thoracic Society, Inc.; and the Pulmonary Hypertension Association. J Am Coll Cardiol 53(17):1573–1619

    Article  PubMed  Google Scholar 

  92. Hoeper MM, Bogaard HJ, Condliffe R, Frantz R, Khanna D, Kurzyna M, Langleben D, Manes A, Satoh T, Torres F, Wilkins MR, Badesch DB (2013) Definitions and diagnosis of pulmonary hypertension. J Am Coll Cardiol 62(25, Suppl):D42–D50

    Google Scholar 

  93. Aliotta JM, Pereira M, Wen S, Dooner MS, Del Tatto M, Papa E, Goldberg LR, Baird GL, Ventetuolo CE, Quesenberry PJ, Klinger JR (2016) Exosomes induce and reverse monocrotaline-induced pulmonary hypertension in mice. Cardiovasc Res 110(3):319–330

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by the grants from National Natural Science Foundation of China (81570362, 91639101 and 81200169 to J.J. Xiao and 81400647 to Y. Bei), and the development fund for Shanghai talents (to J.J. Xiao).

Competing Financial Interests The authors declare no competing financial interests.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Junjie Xiao .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Nature Singapore Pte Ltd.

About this chapter

Cite this chapter

Bei, Y., Yu, P., Cretoiu, D., Cretoiu, S.M., Xiao, J. (2017). Exosomes-Based Biomarkers for the Prognosis of Cardiovascular Diseases. In: Xiao, J., Cretoiu, S. (eds) Exosomes in Cardiovascular Diseases. Advances in Experimental Medicine and Biology, vol 998. Springer, Singapore. https://doi.org/10.1007/978-981-10-4397-0_5

Download citation

Publish with us

Policies and ethics