Advertisement

Exosomes-Based Biomarkers for the Prognosis of Cardiovascular Diseases

  • Yihua Bei
  • Pujiao Yu
  • Dragos Cretoiu
  • Sanda Maria Cretoiu
  • Junjie XiaoEmail author
Chapter
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 998)

Abstract

Cardiovascular diseases (CVDs) have a high prevalence and annually increasing incidence with high mortality and morbidity. Identification of biomarkers with high sensitivity and specificity for assessing the prognosis of CVDs is necessary for optimizing personalized treatment and reducing mortality. Exosomes have been proved to be accessible in nearly all body fluids and they can reflect disease stage or progression. Here we summarized exosomes-based biomarkers for the prognosis of coronary artery diseases, heart failure, stroke, hypertension, cardiac arrhythmia, cardiomyopathy, valvular heart diseases and pulmonary arterial hypertension. If exosome-based biomarkers can achieve additionally benefits as compared to the present prognostic biomarkers remains to be determined and multicenter studies with large cohorts of patients are highly needed.

Keywords

Exosomes Cardiovascular diseases Prognosis Biomarker 

Notes

Acknowledgements

This work was supported by the grants from National Natural Science Foundation of China (81570362, 91639101 and 81200169 to J.J. Xiao and 81400647 to Y. Bei), and the development fund for Shanghai talents (to J.J. Xiao).

Competing Financial Interests The authors declare no competing financial interests.

References

  1. 1.
    Mathers CD, Loncar D (2006) Projections of global mortality and burden of disease from 2002 to 2030. PLoS Med 3(11):e442–e442CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Mendis S, Lindholm LH, Mancia G, Whitworth J, Alderman M, Lim S, Heagerty T (2007) World Health Organization (WHO) and International Society of Hypertension (ISH) risk prediction charts: assessment of cardiovascular risk for prevention and control of cardiovascular disease in low and middle-income countries. J Hypertens 25(8):1578–1582CrossRefPubMedGoogle Scholar
  3. 3.
    WHO, Federation WH, Organization WS (2012) Global atlas on cardiovascular disease prevention and controlGoogle Scholar
  4. 4.
    Simpson RJ, Jensen SS, Lim JW (2008) Proteomic profiling of exosomes: current perspectives. Proteomics 8(19):4083–4099CrossRefPubMedGoogle Scholar
  5. 5.
    Valadi H, Ekstrom K, Bossios A, Sjostrand M, Lee JJ, Lotvall JO (2007) Exosome-mediated transfer of mRNAs and microRNAs is a novel mechanism of genetic exchange between cells. Nat Cell Biol 9(6):654–659CrossRefPubMedGoogle Scholar
  6. 6.
    Caby MP, Lankar D, Vincendeau-Scherrer C, Raposo G, Bonnerot C (2005) Exosomal-like vesicles are present in human blood plasma. Int Immunol 17(7):879–887CrossRefPubMedGoogle Scholar
  7. 7.
    Pisitkun T, Shen RF, Knepper MA (2004) Identification and proteomic profiling of exosomes in human urine. Proc Natl Acad Sci U S A 101(36):13368–13373CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Hoorn EJ, Pisitkun T, Zietse R, Gross P, Frokiaer J, Wang NS, Gonzales PA, Star RA, Knepper MA (2005) Prospects for urinary proteomics: exosomes as a source of urinary biomarkers. Nephrology (Carlton) 10(3):283–290CrossRefGoogle Scholar
  9. 9.
    Koga K, Matsumoto K, Akiyoshi T, Kubo M, Yamanaka N, Tasaki A, Nakashima H, Nakamura M, Kuroki S, Tanaka M, Katano M (2005) Purification, characterization and biological significance of tumor-derived exosomes. Anticancer Res 25(6a):3703–3707PubMedGoogle Scholar
  10. 10.
    Andre F, Schartz NE, Movassagh M, Flament C, Pautier P, Morice P, Pomel C, Lhomme C, Escudier B, Le Chevalier T, Tursz T, Amigorena S, Raposo G, Angevin E, Zitvogel L (2002) Malignant effusions and immunogenic tumour-derived exosomes. Lancet 360(9329):295–305CrossRefPubMedGoogle Scholar
  11. 11.
    Bard MP, Hegmans JP, Hemmes A, Luider TM, Willemsen R, Severijnen LA, van Meerbeeck JP, Burgers SA, Hoogsteden HC, Lambrecht BN (2004) Proteomic analysis of exosomes isolated from human malignant pleural effusions. Am J Respir Cell Mol Biol 31(1):114–121CrossRefPubMedGoogle Scholar
  12. 12.
    Mincheva-Nilsson L, Baranov V (2010) The role of placental exosomes in reproduction. Am J Reprod Immunol 63(6):520–533CrossRefPubMedGoogle Scholar
  13. 13.
    Chaput N, Thery C (2011) Exosomes: immune properties and potential clinical implementations. Semin Immunopathol 33(5):419–440CrossRefPubMedGoogle Scholar
  14. 14.
    Silverman JM, Reiner NE (2011) Exosomes and other microvesicles in infection biology: organelles with unanticipated phenotypes. Cell Microbiol 13(1):1–9CrossRefPubMedGoogle Scholar
  15. 15.
    Schorey JS, Bhatnagar S (2008) Exosome function: from tumor immunology to pathogen biology. Traffic 9(6):871–881CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Vella LJ, Sharples RA, Nisbet RM, Cappai R, Hill AF (2008) The role of exosomes in the processing of proteins associated with neurodegenerative diseases. Eur Biophys J 37(3):323–332CrossRefPubMedGoogle Scholar
  17. 17.
    Tickner JA, Urquhart AJ, Stephenson SA, Richard DJ, O'Byrne KJ (2014) Functions and therapeutic roles of exosomes in cancer. Front Oncol 4:127CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Runz S, Keller S, Rupp C, Stoeck A, Issa Y, Koensgen D, Mustea A, Sehouli J, Kristiansen G, Altevogt P (2007) Malignant ascites-derived exosomes of ovarian carcinoma patients contain CD24 and EpCAM. Gynecol Oncol 107(3):563–571CrossRefPubMedGoogle Scholar
  19. 19.
    Logozzi M, De Milito A, Lugini L, Borghi M, Calabro L, Spada M, Perdicchio M, Marino ML, Federici C, Iessi E, Brambilla D, Venturi G, Lozupone F, Santinami M, Huber V, Maio M, Rivoltini L, Fais S (2009) High levels of exosomes expressing CD63 and caveolin-1 in plasma of melanoma patients. PLoS One 4(4):e5219CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Choi D, Lee TH, Spinelli C, Chennakrishnaiah S, D’Asti E, Rak J (2017) Extracellular vesicle communication pathways as regulatory targets of oncogenic transformation. Semin Cell Dev Biol 67:11–22Google Scholar
  21. 21.
    Wang WT, Chen YQ (2014) Circulating miRNAs in cancer: from detection to therapy. J Hematol Oncol 7:86CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Rabinowits G, Gercel-Taylor C, Day JM, Taylor DD, Kloecker GH (2009) Exosomal microRNA: a diagnostic marker for lung cancer. Clin Lung Cancer 10(1):42–46CrossRefPubMedGoogle Scholar
  23. 23.
    Lau C, Kim Y, Chia D, Spielmann N, Eibl G, Elashoff D, Wei F, Lin YL, Moro A, Grogan T, Chiang S, Feinstein E, Schafer C, Farrell J, Wong DT (2013) Role of pancreatic cancer-derived exosomes in salivary biomarker development. J Biol Chem 288(37):26888–26897CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Nilsson J, Skog J, Nordstrand A, Baranov V, Mincheva-Nilsson L, Breakefield XO, Widmark A (2009) Prostate cancer-derived urine exosomes: a novel approach to biomarkers for prostate cancer. Br J Cancer 100(10):1603–1607CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Corcoran C, Friel AM, Duffy MJ, Crown J, O'Driscoll L (2011) Intracellular and extracellular microRNAs in breast cancer. Clin Chem 57(1):18–32CrossRefPubMedGoogle Scholar
  26. 26.
    Huang X, Yuan T, Liang M, Du M, Xia S, Dittmar R, Wang D, See W, Costello BA, Quevedo F, Tan W, Nandy D, Bevan GH, Longenbach S, Sun Z, Lu Y, Wang T, Thibodeau SN, Boardman L, Kohli M, Wang L (2015) Exosomal miR-1290 and miR-375 as prognostic markers in castration-resistant prostate cancer. Eur Urol 67(1):33–41CrossRefPubMedGoogle Scholar
  27. 27.
    Corcoran C, Rani S, O’Driscoll L (2014) miR-34a is an intracellular and exosomal predictive biomarker for response to docetaxel with clinical relevance to prostate cancer progression. Prostate 74(13):1320–1334CrossRefPubMedGoogle Scholar
  28. 28.
    Heneghan HM, Miller N, Lowery AJ, Sweeney KJ, Newell J, Kerin MJ (2010) Circulating microRNAs as novel minimally invasive biomarkers for breast cancer. Ann Surg 251(3):499–505Google Scholar
  29. 29.
    Aktas IY, Bugdayci M, Usubutun A (2012) Expression of p16, p53, CD24, EpCAM and calretinin in serous borderline tumors of the ovary. Turk Patoloji Derg 28(3):220–230PubMedGoogle Scholar
  30. 30.
    Peinado H, Aleckovic M, Lavotshkin S, Matei I, Costa-Silva B, Moreno-Bueno G, Hergueta-Redondo M, Williams C, Garcia-Santos G, Ghajar C, Nitadori-Hoshino A, Hoffman C, Badal K, Garcia BA, Callahan MK, Yuan J, Martins VR, Skog J, Kaplan RN, Brady MS, Wolchok JD, Chapman PB, Kang Y, Bromberg J, Lyden D (2012) Melanoma exosomes educate bone marrow progenitor cells toward a pro-metastatic phenotype through MET. Nat Med 18(6):883–891CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    Wong ND (2014) Epidemiological studies of CHD and the evolution of preventive cardiology. Nat Rev Cardiol 11(5):276–289CrossRefPubMedGoogle Scholar
  32. 32.
    Mortality GBD, Causes of Death C (2015) Global, regional, and national age–sex specific all-cause and cause-specific mortality for 240 causes of death, 1990–2013: a systematic analysis for the Global Burden of Disease Study 2013. Lancet 385(9963):117–171Google Scholar
  33. 33.
    Killip T, Kimball JT (1967) Treatment of myocardial infarction in a coronary care unit. Am J Cardiol 20(4):457–464CrossRefPubMedGoogle Scholar
  34. 34.
    Kaul P, Naylor CD, Armstrong PW, Mark DB, Theroux P, Dagenais GR (2009) Assessment of activity status and survival according to the Canadian Cardiovascular Society angina classification. Can J Cardiol 25(7):e225–e231CrossRefPubMedPubMedCentralGoogle Scholar
  35. 35.
    Ndrepepa G, Colleran R, Braun S, Cassese S, Hieber J, Fusaro M, Kufner S, Ott I, Byrne RA, Husser O, Hengstenberg C, Laugwitz KL, Schunkert H, Kastrati A (2016) High-sensitivity Troponin T and mortality after elective percutaneous coronary intervention. J Am Coll Cardiol 68(21):2259–2268Google Scholar
  36. 36.
    Prasad A, Rihal CS, Lennon RJ, Singh M, Jaffe AS, Holmes DR (2008) Significance of periprocedural myonecrosis on outcomes after percutaneous coronary intervention. An analysis of preintervention and postintervention troponin T levels in 5487 patients. Circ Cardiovasc Interv 1(1):10–19CrossRefPubMedGoogle Scholar
  37. 37.
    Miller WL, Garratt KN, Burritt MF, Lennon RJ, Reeder GS, Jaffe AS (2006) Baseline troponin level: key to understanding the importance of post-PCI troponin elevations. Eur Heart J 27(9):1061–1069CrossRefPubMedGoogle Scholar
  38. 38.
    Chiva-Blanch G, Suades R, Crespo J, Vilahur G, Arderiu G, Padro T, Corella D, Salas-Salvado J, Aros F, Martinez-Gonzalez MA, Ros E, Fito M, Estruch R, Badimon L (2016) CD3(+)/CD45(+) and SMA-alpha(+) circulating microparticles are increased in individuals at high cardiovascular risk who will develop a major cardiovascular event. Int J Cardiol 208:147–149CrossRefPubMedGoogle Scholar
  39. 39.
    Nozaki T, Sugiyama S, Koga H, Sugamura K, Ohba K, Matsuzawa Y, Sumida H, Matsui K, Jinnouchi H, Ogawa H (2009) Significance of a multiple biomarkers strategy including endothelial dysfunction to improve risk stratification for cardiovascular events in patients at high risk for coronary heart disease. J Am Coll Cardiol 54(7):601–608CrossRefPubMedGoogle Scholar
  40. 40.
    Sinning JM, Losch J, Walenta K, Bohm M, Nickenig G, Werner N (2011) Circulating CD31+/Annexin V+ microparticles correlate with cardiovascular outcomes. Eur Heart J 32(16):2034–2041CrossRefPubMedGoogle Scholar
  41. 41.
    de Jong OG, Verhaar MC, Chen Y, Vader P, Gremmels H, Posthuma G, Schiffelers RM, Gucek M, van Balkom BW (2012) Cellular stress conditions are reflected in the protein and RNA content of endothelial cell-derived exosomes. J Extracell Vesicles 1. doi: 10.3402/jev.v1i0.18396
  42. 42.
    Kanhai DA, Visseren FL, van der Graaf Y, Schoneveld AH, Catanzariti LM, Timmers L, Kappelle LJ, Uiterwaal CS, Lim SK, Sze SK, Pasterkamp G, de Kleijn DP (2013) Microvesicle protein levels are associated with increased risk for future vascular events and mortality in patients with clinically manifest vascular disease. Int J Cardiol 168(3):2358–2363CrossRefPubMedGoogle Scholar
  43. 43.
    Hergenreider E, Heydt S, Treguer K, Boettger T, Horrevoets AJ, Zeiher AM, Scheffer MP, Frangakis AS, Yin X, Mayr M, Braun T, Urbich C, Boon RA, Dimmeler S (2012) Atheroprotective communication between endothelial cells and smooth muscle cells through miRNAs. Nat Cell Biol 14(3):249–256CrossRefPubMedGoogle Scholar
  44. 44.
    Barile L, Lionetti V, Cervio E, Matteucci M, Gherghiceanu M, Popescu LM, Torre T, Siclari F, Moccetti T, Vassalli G (2014) Extracellular vesicles from human cardiac progenitor cells inhibit cardiomyocyte apoptosis and improve cardiac function after myocardial infarction. Cardiovasc Res 103(4):530–541CrossRefPubMedGoogle Scholar
  45. 45.
    Matsumoto S, Sakata Y, Suna S, Nakatani D, Usami M, Hara M, Kitamura T, Hamasaki T, Nanto S, Kawahara Y, Komuro I (2013) Circulating p53-responsive microRNAs are predictive indicators of heart failure after acute myocardial infarction. Circ Res 113(3):322–326CrossRefPubMedGoogle Scholar
  46. 46.
    Jansen F, Yang X, Proebsting S, Hoelscher M, Przybilla D, Baumann K, Schmitz T, Dolf A, Endl E, Franklin BS, Sinning JM, Vasa-Nicotera M, Nickenig G, Werner N (2014) MicroRNA expression in circulating microvesicles predicts cardiovascular events in patients with coronary artery disease. J Am Heart Assoc 3(6):e001249CrossRefPubMedPubMedCentralGoogle Scholar
  47. 47.
    Hunt SA, Abraham WT, Chin MH, Feldman AM, Francis GS, Ganiats TG, Jessup M, Konstam MA, Mancini DM, Michl K, Oates JA, Rahko PS, Silver MA, Stevenson LW, Yancy CW, Antman EM, Smith Jr SC, Adams CD, Anderson JL, Faxon DP, Fuster V, Halperin JL, Hiratzka LF, Hunt SA, Jacobs AK, Nishimura R, Ornato JP, Page RL, Riegel B (2005) ACC/AHA 2005 guideline update for the diagnosis and management of chronic heart failure in the adult—summary article: a report of the American College of Cardiology/American Heart Association Task Force on practice guidelines (Writing Committee to update the 2001 guidelines for the evaluation and management of heart failure). J Am Coll Cardiol 46(6):1116–1143CrossRefGoogle Scholar
  48. 48.
    McMurray JJV, Adamopoulos S, Anker SD, Auricchio A, Bohm M, Dickstein K, Falk V, Filippatos G, Fonseca C, Gómez Sánchez MA, Jaarsma T, Kober L, Lip GYH, Maggioni AP, Parkhomenko A, Pieske BM, Popescu BA, Ronnevik PK, Rutten FH, Schwitter J, Seferovic P, Stepinska J, Trindade PT, Voors AA, Zannad F, Zeiher A (2013) ESC guidelines for the diagnosis and treatment of acute and chronic heart failure 2012. Revista Portuguesa de Cardiologia (English Edition) 32(7–8):641–642CrossRefGoogle Scholar
  49. 49.
    Dubin R, Li Y, Ix JH, Shlipak MG, Whooley M, Peralta CA (2012) Associations of pentraxin-3 with cardiovascular events, incident heart failure, and mortality among persons with coronary heart disease: data from the Heart and Soul Study. Am Heart J 163(2):274–279CrossRefPubMedPubMedCentralGoogle Scholar
  50. 50.
    Raphael C, Briscoe C, Davies J, Whinnett ZI, Manisty C, Sutton R, Mayet J, Francis DP (2007) Limitations of the New York Heart Association functional classification system and self-reported walking distances in chronic heart failure. Heart 93(4):476–482CrossRefPubMedGoogle Scholar
  51. 51.
    Schneider HG, Lam L, Lokuge A, Krum H, Naughton MT, De Villiers Smit P, Bystrzycki A, Eccleston D, Federman J, Flannery G, Cameron P (2009) B-type natriuretic peptide testing, clinical outcomes, and health services use in emergency department patients with dyspnea: a randomized trial. Ann Intern Med 150(6):365–371CrossRefPubMedGoogle Scholar
  52. 52.
    Waldenstrom A, Ronquist G (2014) Role of exosomes in myocardial remodeling. Circ Res 114(2):315–324CrossRefPubMedGoogle Scholar
  53. 53.
    Berezin AE, Kremzer AA, Martovitskaya YV, Samura TA, Berezina TA (2015) The predictive role of circulating microparticles in patients with chronic heart failure. BBA Clin 3:18–24CrossRefPubMedGoogle Scholar
  54. 54.
    Nozaki T, Sugiyama S, Sugamura K, Ohba K, Matsuzawa Y, Konishi M, Matsubara J, Akiyama E, Sumida H, Matsui K, Jinnouchi H, Ogawa H (2010) Prognostic value of endothelial microparticles in patients with heart failure. Eur J Heart Fail 12(11):1223–1228CrossRefPubMedGoogle Scholar
  55. 55.
    Berezin AE, Kremzer AA, Samura TA, Martovitskaya YV, Malinovskiy YV, Oleshko SV, Berezina TA (2015) Predictive value of apoptotic microparticles to mononuclear progenitor cells ratio in advanced chronic heart failure patients. J Cardiol 65(5):403–411CrossRefPubMedGoogle Scholar
  56. 56.
    Evans S, Mann DL (2013) Circulating p53-responsive microRNAs as predictive biomarkers in heart failure after acute myocardial infarction: the long and arduous road from scientific discovery to clinical utility. Circ Res 113(3):242–244CrossRefPubMedPubMedCentralGoogle Scholar
  57. 57.
    Lackland DT, Roccella EJ, Deutsch AF, Fornage M, George MG, Howard G, Kissela BM, Kittner SJ, Lichtman JH, Lisabeth LD, Schwamm LH, Smith EE, Towfighi A (2014) Factors influencing the decline in stroke mortality. A statement from the American Heart Association/American Stroke Association. Stroke 45(1):315–353CrossRefPubMedGoogle Scholar
  58. 58.
    Lo EH, Dalkara T, Moskowitz MA (2003) Mechanisms, challenges and opportunities in stroke. Nat Rev Neurosci 4(5):399–414CrossRefPubMedGoogle Scholar
  59. 59.
    Donnan GA, Fisher M, Macleod M, Davis SM (2008) Stroke. Lancet 371(9624):1612–1623CrossRefPubMedGoogle Scholar
  60. 60.
    Harrison SL, de Craen AJ, Kerse N, Teh R, Granic A, Davies K, Wesnes KA, den Elzen WP, Gussekloo J, Kirkwood TB, Robinson L, Jagger C, Siervo M, Stephan BC (2017) Predicting risk of cognitive decline in very old adults using three models: the Framingham stroke risk profile; the cardiovascular risk factors, aging, and dementia model; and oxi-inflammatory biomarkers. J Am Geriatr Soc 65(2):381–389. doi: 10.1111/jgs.14532 CrossRefPubMedGoogle Scholar
  61. 61.
    Christophersen IE, Yin X, Larson MG, Lubitz SA, Magnani JW, McManus DD, Ellinor PT, Benjamin EJ (2016) A comparison of the CHARGE-AF and the CHA2DS2-VASc risk scores for prediction of atrial fibrillation in the Framingham Heart Study. Am Heart J 178:45–54CrossRefPubMedPubMedCentralGoogle Scholar
  62. 62.
    Fischer U, Arnold M, Nedeltchev K, Brekenfeld C, Ballinari P, Remonda L, Schroth G, Mattle HP (2005) NIHSS score and arteriographic findings in acute ischemic stroke. Stroke 36(10):2121–2125CrossRefPubMedGoogle Scholar
  63. 63.
    Raman K, O’Donnell MJ, Czlonkowska A, Duarte YC, Lopez-Jaramillo P, Penaherrera E, Sharma M, Shoamanesh A, Skowronska M, Yusuf S, Pare G (2016) Peripheral blood MCEMP1 gene expression as a biomarker for stroke prognosis. Stroke 47(3):652–658PubMedGoogle Scholar
  64. 64.
    Fruhbeis C, Frohlich D, Kuo WP, Kramer-Albers EM (2013) Extracellular vesicles as mediators of neuron-glia communication. Front Cell Neurosci 7:182CrossRefPubMedPubMedCentralGoogle Scholar
  65. 65.
    Zhang ZG, Chopp M (2016) Exosomes in stroke pathogenesis and therapy. J Clin Investig 126(4):1190–1197CrossRefPubMedPubMedCentralGoogle Scholar
  66. 66.
    Zhuang X, Xiang X, Grizzle W, Sun D, Zhang S, Axtell RC, Ju S, Mu J, Zhang L, Steinman L, Miller D, Zhang H-G (2011) Treatment of brain inflammatory diseases by delivering exosome encapsulated anti-inflammatory drugs from the nasal region to the brain. Mol Ther 19(10):1769–1779CrossRefPubMedPubMedCentralGoogle Scholar
  67. 67.
    Lee YJ, Jy W, Horstman LL, Janania J, Reyes Y, Kelley RE, Ahn YS (1993) Elevated platelet microparticles in transient ischemic attacks, lacunar infarcts, and multiinfarct dementias. Thromb Res 72(4):295–304CrossRefPubMedGoogle Scholar
  68. 68.
    Kanhai DA, de Kleijn DPV, Kappelle LJ, Uiterwaal C, van der Graaf Y, Pasterkamp G, Geerlings MI, Visseren FLJ (2014) Extracellular vesicle protein levels are related to brain atrophy and cerebral white matter lesions in patients with manifest vascular disease: the SMART-MR study. BMJ Open 4(1)Google Scholar
  69. 69.
    Koomen JM, Datta A, Chen CP, Sze SK (2014) Discovery of prognostic biomarker candidates of lacunar infarction by quantitative proteomics of microvesicles enriched plasma. PLoS One 9(4):e94663CrossRefGoogle Scholar
  70. 70.
    Rink C, Khanna S (2011) MicroRNA in ischemic stroke etiology and pathology. Physiol Genomics 43(10):521–528CrossRefPubMedGoogle Scholar
  71. 71.
    Cipollone F, Felicioni L, Sarzani R, Ucchino S, Spigonardo F, Mandolini C, Malatesta S, Bucci M, Mammarella C, Santovito D, de Lutiis F, Marchetti A, Mezzetti A, Buttitta F (2011) A unique microRNA signature associated with plaque instability in humans. Stroke 42(9):2556–2563CrossRefPubMedGoogle Scholar
  72. 72.
    Ji Q, Ji Y, Peng J, Zhou X, Chen X, Zhao H, Xu T, Chen L, Xu Y (2016) Increased brain-specific MiR-9 and MiR-124 in the serum exosomes of acute ischemic stroke patients. PLoS One 11(9):e0163645CrossRefPubMedPubMedCentralGoogle Scholar
  73. 73.
    Campbell NR, Lackland DT, Lisheng L, Niebylski ML, Nilsson PM, Zhang XH (2015) Using the Global Burden of Disease Study to assist development of nation-specific fact sheets to promote prevention and control of hypertension and reduction in dietary salt: a resource from the World Hypertension League. J Clin Hypertens (Greenwich) 17(3):165–167CrossRefGoogle Scholar
  74. 74.
    Zou Y, Akazawa H, Qin Y, Sano M, Takano H, Minamino T, Makita N, Iwanaga K, Zhu W, Kudoh S, Toko H, Tamura K, Kihara M, Nagai T, Fukamizu A, Umemura S, Iiri T, Fujita T, Komuro I (2004) Mechanical stress activates angiotensin II type 1 receptor without the involvement of angiotensin II. Nat Cell Biol 6(6):499–506CrossRefPubMedGoogle Scholar
  75. 75.
    Pironti G, Strachan RT, Abraham D, Mon-Wei Yu S, Chen M, Chen W, Hanada K, Mao L, Watson LJ, Rockman HA (2015) Circulating exosomes induced by cardiac pressure overload contain functional angiotensin II type 1 receptors. Circulation 131(24):2120–2130CrossRefPubMedPubMedCentralGoogle Scholar
  76. 76.
    Guescini M, Leo G, Genedani S, Carone C, Pederzoli F, Ciruela F, Guidolin D, Stocchi V, Mantuano M, Borroto-Escuela DO, Fuxe K, Agnati LF (2012) Microvesicle and tunneling nanotube mediated intercellular transfer of g-protein coupled receptors in cell cultures. Exp Cell Res 318(5):603–613CrossRefPubMedGoogle Scholar
  77. 77.
    Zoni-Berisso M, Lercari F, Carazza T, Domenicucci S (2014) Epidemiology of atrial fibrillation: European perspective. Clin Epidemiol 6:213–220CrossRefPubMedPubMedCentralGoogle Scholar
  78. 78.
    Munger TM, LQ W, Shen WK (2014) Atrial fibrillation. J Biomed Res 28(1):1–17PubMedGoogle Scholar
  79. 79.
    Jesel L, Abbas M, Toti F, Cohen A, Arentz T, Morel O (2013) Microparticles in atrial fibrillation: a link between cell activation or apoptosis, tissue remodelling and thrombogenicity. Int J Cardiol 168(2):660–669CrossRefPubMedGoogle Scholar
  80. 80.
    Choudhury A, Chung I, Blann AD, Lip GY (2007) Elevated platelet microparticle levels in nonvalvular atrial fibrillation: relationship to p-selectin and antithrombotic therapy. Chest 131(3):809–815CrossRefPubMedGoogle Scholar
  81. 81.
    Chirinos JA, Castrellon A, Zambrano JP, Jimenez JJ, Jy W, Horstman LL, Willens HJ, Castellanos A, Myerburg RJ, Ahn YS (2005) Digoxin use is associated with increased platelet and endothelial cell activation in patients with nonvalvular atrial fibrillation. Heart Rhythm 2(5):525–529CrossRefPubMedGoogle Scholar
  82. 82.
    Wang H, Yan HM, Tang MX, Wang ZH, Zhong M, Zhang Y, Deng JT, Zhang W (2010) Increased serum levels of microvesicles in nonvalvular atrial fibrillation determinated by ELISA using a specific monoclonal antibody AD-1. Clin Chim Acta 411(21–22):1700–1704CrossRefPubMedGoogle Scholar
  83. 83.
    Azzam H, Zagloul M (2009) Elevated platelet microparticle levels in valvular atrial fibrillation. Hematology 14(6):357–360CrossRefPubMedGoogle Scholar
  84. 84.
    Maron BJ, Towbin JA, Thiene G, Antzelevitch C, Corrado D, Arnett D, Moss AJ, Seidman CE, Young JB (2006) Contemporary definitions and classification of the cardiomyopathies. An American Heart Association Scientific Statement from the Council on Clinical Cardiology, Heart Failure and Transplantation Committee; Quality of Care and Outcomes Research and Functional Genomics and Translational Biology Interdisciplinary Working Groups; and Council on Epidemiology and Prevention. Circulation 113(14):1807–1816CrossRefPubMedGoogle Scholar
  85. 85.
    Vandergriff AC, de Andrade JB, Tang J, Hensley MT, Piedrahita JA, Caranasos TG, Cheng K (2015) Intravenous cardiac stem cell-derived exosomes ameliorate cardiac dysfunction in doxorubicin induced dilated cardiomyopathy. Stem Cells Int 2015:960926CrossRefPubMedPubMedCentralGoogle Scholar
  86. 86.
    Wang X, Gu H, Huang W, Peng J, Li Y, Yang L, Qin D, Essandoh K, Wang Y, Peng T, Fan GC (2016) Hsp20-mediated activation of exosome biogenesis in cardiomyocytes improves cardiac function and angiogenesis in diabetic mice. Diabetes 65(10):3111–3128CrossRefPubMedGoogle Scholar
  87. 87.
    Bulut D, Scheeler M, Niedballa LM, Miebach T, Mugge A (2011) Effects of immunoadsorption on endothelial function, circulating endothelial progenitor cells and circulating microparticles in patients with inflammatory dilated cardiomyopathy. Clin Res Cardiol 100(7):603–610CrossRefPubMedGoogle Scholar
  88. 88.
    Bonow RO, Carabello BA, Chatterjee K, de Leon AC, Faxon DP, Freed MD, Gaasch WH, Lytle BW, Nishimura RA, O’Gara PT, O’Rourke RA, Otto CM, Shah PM, Shanewise JS (2006) ACC/AHA 2006 guidelines for the Management of Patients with valvular heart disease. A report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines (Writing Committee to revise the 1998 Guidelines for the Management of Patients with Valvular Heart Disease): developed in collaboration with the Society of Cardiovascular Anesthesiologists: endorsed by the Society for Cardiovascular Angiography and Interventions and the Society of Thoracic Surgeons. Circulation 114(5):e84–e231CrossRefPubMedGoogle Scholar
  89. 89.
    Kasner M, Gast M, Galuszka O, Stroux A, Rutschow S, Wang X, Dohmen P, Skurk C, Landmesser U, Poller W, Gross M (2016) Circulating exosomal microRNAs predict functional recovery after MitraClip repair of severe mitral regurgitation. Int J Cardiol 215:402–405CrossRefPubMedGoogle Scholar
  90. 90.
    Lohani O, Colvin KL, Yeager ME (2015) Biomarkers for pediatric pulmonary arterial hypertension: challenges and recommendations. Paediatr Respir Rev 16(4):225–231PubMedGoogle Scholar
  91. 91.
    McLaughlin VV, Archer SL, Badesch DB, Barst RJ, Farber HW, Lindner JR, Mathier MA, McGoon MD, Park MH, Rosenson RS, Rubin LJ, Tapson VF, Varga J (2009) ACCF/AHA 2009 expert consensus document on pulmonary hypertension a report of the American College of Cardiology Foundation Task Force on Expert Consensus Documents and the American Heart Association developed in collaboration with the American College of Chest Physicians; American Thoracic Society, Inc.; and the Pulmonary Hypertension Association. J Am Coll Cardiol 53(17):1573–1619CrossRefPubMedGoogle Scholar
  92. 92.
    Hoeper MM, Bogaard HJ, Condliffe R, Frantz R, Khanna D, Kurzyna M, Langleben D, Manes A, Satoh T, Torres F, Wilkins MR, Badesch DB (2013) Definitions and diagnosis of pulmonary hypertension. J Am Coll Cardiol 62(25, Suppl):D42–D50Google Scholar
  93. 93.
    Aliotta JM, Pereira M, Wen S, Dooner MS, Del Tatto M, Papa E, Goldberg LR, Baird GL, Ventetuolo CE, Quesenberry PJ, Klinger JR (2016) Exosomes induce and reverse monocrotaline-induced pulmonary hypertension in mice. Cardiovasc Res 110(3):319–330CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2017

Authors and Affiliations

  • Yihua Bei
    • 1
  • Pujiao Yu
    • 2
  • Dragos Cretoiu
    • 3
    • 4
  • Sanda Maria Cretoiu
    • 3
    • 4
  • Junjie Xiao
    • 1
    Email author
  1. 1.Cardiac Regeneration and Ageing LabSchool of Life Science, Shanghai UniversityShanghaiChina
  2. 2.Department of CardiologyTongji Hospital, Tongji University School of MedicineShanghaiChina
  3. 3.Victor Babes National Institute of PathologyBucharestRomania
  4. 4.Division of Cellular and Molecular Biology and HistologyCarol Davila University of Medicine and PharmacyBucharestRomania

Personalised recommendations