Skip to main content

Exosomes: Outlook for Future Cell-Free Cardiovascular Disease Therapy

  • Chapter
  • First Online:
Exosomes in Cardiovascular Diseases

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 998))

Abstract

Cardiovascular diseases are the number one cause of death globally with an estimated 7.4 million people dying from coronary heart disease. Studies have been conducted to identify the therapeutic utility of exosomes in many diseases, including cardiovascular diseases. It has been demonstrated that exosomes are immune modulators, can be used to treat cardiac ischemic injury, pulmonary hypertension and many other diseases, including cancers. Exosomes can be used as a biomarker for disease and cell-free drug delivery system for targeting the cells. Many studies suggest that exosomes can be used as a cell-free vaccine for many diseases. In this chapter, we explore the possibility of future therapeutic potential of exosomes in various cardiovascular diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

AAA:

Abdominal aortic aneurysm

AdMSCs:

Adipose-derived MSCs

ASCs:

Adipose stem cells

BMMSCs:

Bone marrow-derived MSCs

CVDs:

Cardiovascular diseases

EnMSCs:

Endometrium-derived MSCs

ESCs:

Embryonic stem cells

EVs:

Extracellular vesicles

FIZZ1:

Found in inflammatory zone 1

HIMF:

Hypoxia-induced mitogenic factor

HSP:

Heat shock protein

IL:

Interleukin

iPSCs:

Induced pluripotent stem cells

MCP1:

Monocyte chemotactic protein 1

MI:

Myocardial infarction

miRNA:

Micro RNA

mRNA:

Messenger RNA

MSC-CM:

MSC-derived condition medium

MSCs:

Mesenchymal stem cells

MVB:

Microvesicular body

nCPC:

Neonatal cardiac progenitor cell

nTCM:

Neonatal total condition medium

siRNAs:

Small interfering RNAs

VEGF:

Vascular endothelial growth factor

References

  1. Heidenreich PA, Trogdon JG, Khavjou OA, Butler J, Dracup K, Ezekowitz MD, Finkelstein EA, Hong Y, Johnston SC, Khera A, Lloyd-Jones DM, Nelson SA, Nichol G, Orenstein D, Wilson PW, Woo YJ (2011) Forecasting the future of cardiovascular disease in the United States: a policy statement from the American Heart Association. Circulation 123(8):933–944

    Article  PubMed  Google Scholar 

  2. Lee N, Thorne T, Losordo DW, Yoon YS (2005) Repair of ischemic heart disease with novel bone marrow-derived multipotent stem cells. Cell Cycle 4(7):861–864

    Article  CAS  PubMed  Google Scholar 

  3. Losordo DW, Henry TD, Davidson C, Sup Lee J, Costa MA, Bass T, Mendelsohn F, Fortuin FD, Pepine CJ, Traverse JH, Amrani D, Ewenstein BM, Riedel N, Story K, Barker K, Povsic TJ, Harrington RA, Schatz RA (2011) Intramyocardial, autologous CD34+ cell therapy for refractory angina. Circ Res 109(4):428–436

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Williams AR, Trachtenberg B, Velazquez DL, McNiece I, Altman P, Rouy D, Mendizabal AM, Pattany PM, Lopera GA, Fishman J, Zambrano JP, Heldman AW, Hare JM (2011) Intramyocardial stem cell injection in patients with ischemic cardiomyopathy: functional recovery and reverse remodeling. Circ Res 108(7):792–796

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Bolli R, Chugh AR, D'Amario D, Loughran JH, Stoddard MF, Ikram S, Beache GM, Wagner SG, Leri A, Hosoda T, Sanada F, Elmore JB, Goichberg P, Cappetta D, Solankhi NK, Fahsah I, Rokosh DG, Slaughter MS, Kajstura J, Anversa P (2011) Cardiac stem cells in patients with ischaemic cardiomyopathy (SCIPIO): initial results of a randomised phase 1 trial. Lancet 378(9806):1847–1857

    Article  PubMed  PubMed Central  Google Scholar 

  6. Uemura R, Xu M, Ahmad N, Ashraf M (2006) Bone marrow stem cells prevent left ventricular remodeling of ischemic heart through paracrine signaling. Circ Res 98(11):1414–1421

    Article  CAS  PubMed  Google Scholar 

  7. Angoulvant D, Ivanes F, Ferrera R, Matthews PG, Nataf S, Ovize M (2011) Mesenchymal stem cell conditioned media attenuates in vitro and ex vivo myocardial reperfusion injury. J Heart Lung Transplant 30(1):95–102

    Article  PubMed  Google Scholar 

  8. Sahoo S, Klychko E, Thorne T, Misener S, Schultz KM, Millay M, Ito A, Liu T, Kamide C, Agrawal H, Perlman H, Qin G, Kishore R, Losordo DW (2011) Exosomes from human CD34(+) stem cells mediate their proangiogenic paracrine activity. Circ Res 109(7):724–728

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Arslan F, Lai RC, Smeets MB, Akeroyd L, Choo A, Aguor EN, Timmers L, van Rijen HV, Doevendans PA, Pasterkamp G, Lim SK, de Kleijn DP (2013) Mesenchymal stem cell-derived exosomes increase ATP levels, decrease oxidative stress and activate PI3K/Akt pathway to enhance myocardial viability and prevent adverse remodeling after myocardial ischemia/reperfusion injury. Stem Cell Res 10(3):301–312

    Article  CAS  PubMed  Google Scholar 

  10. Braccioli L, van Velthoven C, Heijnen CJ (2014) Exosomes: a new weapon to treat the central nervous system. Mol Neurobiol 49(1):113–119

    Article  CAS  PubMed  Google Scholar 

  11. Dorronsoro A, Robbins PD (2013) Regenerating the injured kidney with human umbilical cord mesenchymal stem cell-derived exosomes. Stem Cell Res Ther 4(2):39

    Article  PubMed  PubMed Central  Google Scholar 

  12. Kalani A, Tyagi N (2015) Exosomes in neurological disease, neuroprotection, repair and therapeutics: problems and perspectives. Neural Regen Res 10(10):1565–1567

    Article  PubMed  PubMed Central  Google Scholar 

  13. Valadi H, Ekstrom K, Bossios A, Sjostrand M, Lee JJ, Lotvall JO (2007) Exosome-mediated transfer of mRNAs and microRNAs is a novel mechanism of genetic exchange between cells. Nat Cell Biol 9(6):654–659

    Article  CAS  PubMed  Google Scholar 

  14. Marote A, Teixeira FG, Mendes-Pinheiro B, Salgado AJ (2016) MSCs-derived exosomes: cell-secreted nanovesicles with regenerative potential. Front Pharmacol 7:231

    Article  PubMed  PubMed Central  Google Scholar 

  15. Balasubramanian S, Rajasingh S, Thangavel J, Dawn B, Rajasingh J (2015) Chapter 3—Exosome function in miRNA-mediated paracrine effects. In: Mesenchymal stem cell derived exosomes. Academic, Boston, pp 37–62

    Chapter  Google Scholar 

  16. Yellon DM, Davidson SM (2014) Exosomes: nanoparticles involved in cardioprotection? Circ Res 114(2):325–332

    Article  CAS  PubMed  Google Scholar 

  17. Thery C, Duban L, Segura E, Veron P, Lantz O, Amigorena S (2002) Indirect activation of naive CD4+ T cells by dendritic cell-derived exosomes. Nat Immunol 3(12):1156–1162

    Article  CAS  PubMed  Google Scholar 

  18. Konstantinell A, Bruun JA, Olsen R, Aspar A, Skalko-Basnet N, Sveinbjornsson B, Moens U (2016) Secretomic analysis of extracellular vesicles originating from polyomavirus-negative and polyomavirus-positive Merkel cell carcinoma cell lines. Proteomics 16(19):2587–2591

    Article  CAS  PubMed  Google Scholar 

  19. Glembotski CC (2017) Expanding the paracrine hypothesis of stem cell-mediated repair in the heart: when the unconventional becomes conventional. Circ Res 120(5):772–774

    Article  CAS  PubMed  Google Scholar 

  20. Zhang M, Schekman R (2013) Cell biology. Unconventional secretion, unconventional solutions. Science 340(6132):559–561

    Article  CAS  PubMed  Google Scholar 

  21. DeClercq V, d'Eon B, McLeod RS (2015) Fatty acids increase adiponectin secretion through both classical and exosome pathways. Biochim Biophys Acta 1851(9):1123–1133

    Article  CAS  PubMed  Google Scholar 

  22. Thery C, Zitvogel L, Amigorena S (2002) Exosomes: composition, biogenesis and function. Nat Rev Immunol 2(8):569–579

    CAS  PubMed  Google Scholar 

  23. Bang C, Thum T (2012) Exosomes: new players in cell-cell communication. Int J Biochem Cell Biol 44(11):2060–2064

    Article  CAS  PubMed  Google Scholar 

  24. Hu G, Drescher KM, Chen XM (2012) Exosomal miRNAs: biological properties and therapeutic potential. Front Genet 3:56

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Lee C, Mitsialis SA, Aslam M, Vitali SH, Vergadi E, Konstantinou G, Sdrimas K, Fernandez-Gonzalez A, Kourembanas S (2012) Exosomes mediate the cytoprotective action of mesenchymal stromal cells on hypoxia-induced pulmonary hypertension. Circulation 126(22):2601–2611

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Rashed MH, Bayraktar E, Helal GK, Abd-Ellah MF, Amero P, Chavez-Reyes A, Rodriguez-Aguayo C (2017) Exosomes: from garbage bins to promising therapeutic targets. Int J Mol Sci 18(3)

    Google Scholar 

  27. Samanta S, Balasubramanian S, Rajasingh S, Patel U, Dhanasekaran A, Dawn B, Rajasingh J (2016) MicroRNA: a new therapeutic strategy for cardiovascular diseases. Trends Cardiovasc Med 26(5):407–419

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Min PK, Chan SY (2015) The biology of circulating microRNAs in cardiovascular disease. Eur J Clin Investig 45(8):860–874

    Article  CAS  Google Scholar 

  29. Kumar S, Vijayan M, Bhatti JS, Reddy PH (2017) MicroRNAs as peripheral biomarkers in aging and age-related diseases. Prog Mol Biol Transl Sci 146:47–94

    Article  CAS  PubMed  Google Scholar 

  30. Soria FN, Pampliega O, Bourdenx M, Meissner WG, Bezard E, Dehay B (2017) Exosomes, an unmasked culprit in neurodegenerative diseases. Front Neurosci 11:26

    Article  PubMed  PubMed Central  Google Scholar 

  31. Camussi G, Deregibus MC, Bruno S, Grange C, Fonsato V, Tetta C (2011) Exosome/microvesicle-mediated epigenetic reprogramming of cells. Am J Cancer Res 1(1):98–110

    PubMed  Google Scholar 

  32. Yang M, Chen J, Su F, Yu B, Su F, Lin L, Liu Y, Huang JD, Song E (2011) Microvesicles secreted by macrophages shuttle invasion-potentiating microRNAs into breast cancer cells. Mol Cancer 10:117

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. van Rooij E, Purcell AL, Levin AA (2012) Developing microRNA therapeutics. Circ Res 110(3):496–507

    Article  PubMed  CAS  Google Scholar 

  34. Charoenviriyakul C, Takahashi Y, Morishita M, Matsumoto A, Nishikawa M, Takakura Y (2017) Cell type-specific and common characteristics of exosomes derived from mouse cell lines: yield, physicochemical properties, and pharmacokinetics. Eur J Pharm Sci 96:316–322

    Article  CAS  PubMed  Google Scholar 

  35. Gnecchi M, Zhang Z, Ni A, Dzau VJ (2008) Paracrine mechanisms in adult stem cell signaling and therapy. Circ Res 103(11):1204–1219

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Duran JM, Makarewich CA, Sharp TE, Starosta T, Zhu F, Hoffman NE, Chiba Y, Madesh M, Berretta RM, Kubo H, Houser SR (2013) Bone-derived stem cells repair the heart after myocardial infarction through transdifferentiation and paracrine signaling mechanisms. Circ Res 113(5):539–552

    Article  CAS  PubMed  Google Scholar 

  37. Khan M, Nickoloff E, Abramova T, Johnson J, Verma SK, Krishnamurthy P, Mackie AR, Vaughan E, Garikipati VN, Benedict C, Ramirez V, Lambers E, Ito A, Gao E, Misener S, Luongo T, Elrod J, Qin G, Houser SR, Koch WJ, Kishore R (2015) Embryonic stem cell-derived exosomes promote endogenous repair mechanisms and enhance cardiac function following myocardial infarction. Circ Res 117(1):52–64

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Gazdhar A, Grad I, Tamo L, Gugger M, Feki A, Geiser T (2014) The secretome of induced pluripotent stem cells reduces lung fibrosis in part by hepatocyte growth factor. Stem Cell Res Ther 5(6):123

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  39. Wang Y, Zhang L, Li Y, Chen L, Wang X, Guo W, Zhang X, Qin G, He SH, Zimmerman A, Liu Y, Kim IM, Weintraub NL, Tang Y (2015) Exosomes/microvesicles from induced pluripotent stem cells deliver cardioprotective miRNAs and prevent cardiomyocyte apoptosis in the ischemic myocardium. Int J Cardiol 192:61–69

    Article  PubMed  PubMed Central  Google Scholar 

  40. Hu GW, Li Q, Niu X, Hu B, Liu J, Zhou SM, Guo SC, Lang HL, Zhang CQ, Wang Y, Deng ZF (2015) Exosomes secreted by human-induced pluripotent stem cell-derived mesenchymal stem cells attenuate limb ischemia by promoting angiogenesis in mice. Stem Cell Res Ther 6:10

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  41. Bobis-Wozowicz S, Kmiotek K, Sekula M, Kedracka-Krok S, Kamycka E, Adamiak M, Jankowska U, Madetko-Talowska A, Sarna M, Bik-Multanowski M, Kolcz J, Boruczkowski D, Madeja Z, Dawn B, Zuba-Surma EK (2015) Human induced pluripotent stem cell-derived microvesicles transmit RNAs and proteins to recipient mature heart cells modulating cell fate and behavior. Stem Cells 33(9):2748–2761

    Article  CAS  PubMed  Google Scholar 

  42. Zhou J, Ghoroghi S, Benito-Martin A, Wu H, Unachukwu UJ, Einbond LS, Guariglia S, Peinado H, Redenti S (2016) Characterization of induced pluripotent stem cell microvesicle genesis, morphology and pluripotent content. Sci Rep 6:19743

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Rajasingh J, Lambers E, Hamada H, Bord E, Thorne T, Goukassian I, Krishnamurthy P, Rosen KM, Ahluwalia D, Zhu Y, Qin G, Losordo DW, Kishore R (2008) Cell-free embryonic stem cell extract-mediated derivation of multipotent stem cells from NIH3T3 fibroblasts for functional and anatomical ischemic tissue repair. Circ Res 102(11):e107–e117

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Chong JJ, Yang X, Don CW, Minami E, Liu YW, Weyers JJ, Mahoney WM, Van Biber B, Cook SM, Palpant NJ, Gantz JA, Fugate JA, Muskheli V, Gough GM, Vogel KW, Astley CA, Hotchkiss CE, Baldessari A, Pabon L, Reinecke H, Gill EA, Nelson V, Kiem HP, Laflamme MA, Murry CE (2014) Human embryonic-stem-cell-derived cardiomyocytes regenerate non-human primate hearts. Nature 510(7504):273–277

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Caspi O, Huber I, Kehat I, Habib M, Arbel G, Gepstein A, Yankelson L, Aronson D, Beyar R, Gepstein L (2007) Transplantation of human embryonic stem cell-derived cardiomyocytes improves myocardial performance in infarcted rat hearts. J Am Coll Cardiol 50(19):1884–1893

    Article  PubMed  Google Scholar 

  46. Rajasingh J, Bord E, Hamada H, Lambers E, Qin G, Losordo DW, Kishore R (2007) STAT3-dependent mouse embryonic stem cell differentiation into cardiomyocytes: analysis of molecular signaling and therapeutic efficacy of cardiomyocyte precommitted mES transplantation in a mouse model of myocardial infarction. Circ Res 101(9):910–918

    Article  CAS  PubMed  Google Scholar 

  47. Rajasingh J, Thangavel J, Siddiqui MR, Gomes I, Gao XP, Kishore R, Malik AB (2011) Improvement of cardiac function in mouse myocardial infarction after transplantation of epigenetically-modified bone marrow progenitor cells. PLoS One 6(7):e22550

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Bobis-Wozowicz S, Kmiotek K, Kania K, Karnas E, Labedz-Maslowska A, Sekula M, Kedracka-Krok S, Kolcz J, Boruczkowski D, Madeja Z, Zuba-Surma EK (2017) Diverse impact of xeno-free conditions on biological and regenerative properties of hUC-MSCs and their extracellular vesicles. J Mol Med (Berlin, Germany) 95(2):205–220

    Article  CAS  Google Scholar 

  49. Ge X, Wang IN, Toma I, Sebastiano V, Liu J, Butte MJ, Reijo Pera RA, Yang PC (2012) Human amniotic mesenchymal stem cell-derived induced pluripotent stem cells may generate a universal source of cardiac cells. Stem Cells Dev 21(15):2798–2808

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Kim PJ, Mahmoudi M, Ge X, Matsuura Y, Toma I, Metzler S, Kooreman NG, Ramunas J, Holbrook C, McConnell MV, Blau H, Harnish P, Rulifson E, Yang PC (2015) Direct evaluation of myocardial viability and stem cell engraftment demonstrates salvage of the injured myocardium. Circ Res 116(7):e40–e50

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Jiang X, Sucharov J, Stauffer BL, Miyamoto SD, Sucharov CC (2017) Exosomes from pediatric dilated cardiomyopathy patients modulate a pathological response in cardiomyocytes. Am J Phys Heart Circ Phys 312(4):H818–H826. doi:10.1152/ajpheart.00673.2016

    Google Scholar 

  52. Garcia NA, Moncayo-Arlandi J, Sepulveda P, Diez-Juan A (2016) Cardiomyocyte exosomes regulate glycolytic flux in endothelium by direct transfer of GLUT transporters and glycolytic enzymes. Cardiovasc Res 109(3):397–408

    Article  CAS  PubMed  Google Scholar 

  53. Chimenti I, Gaetani R, Barile L, Forte E, Ionta V, Angelini F, Frati G, Messina E, Giacomello A (2012) Isolation and expansion of adult cardiac stem/progenitor cells in the form of cardiospheres from human cardiac biopsies and murine hearts. Methods Mol Biol 879:327–338

    Article  CAS  PubMed  Google Scholar 

  54. Cambier L, de Couto G, Ibrahim A, Echavez AK, Valle J, Liu W, Kreke M, Smith RR, Marban L, Marban E (2017) Y RNA fragment in extracellular vesicles confers cardioprotection via modulation of IL-10 expression and secretion. EMBO Mol Med 9(3):337–352

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Shi R, Zhao L, Cai W, Wei M, Zhou X, Yang G, Yuan L (2017) Maternal exosomes in diabetes contribute to the cardiac development deficiency. Biochem Biophys Res Commun 483(1):602–608

    Article  CAS  PubMed  Google Scholar 

  56. Gallo A, Tandon M, Alevizos I, Illei GG (2012) The majority of microRNAs detectable in serum and saliva is concentrated in exosomes. PLoS One 7(3):e30679

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Kim YS, Kim JY, Cho R, Shin DM, Lee SW, Oh YM (2017) Adipose stem cell-derived nanovesicles inhibit emphysema primarily via an FGF2-dependent pathway. Exp Mol Med 49(1):e284

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  58. Pu CM, Liu CW, Liang CJ, Yen YH, Chen SH, Jiang-Shieh YF, Chien CL, Chen YC, Chen YL (2017) Adipose-derived stem cells protect skin flaps against ischemia/reperfusion injury via interleukin-6 expression. J Investig Dermatol. doi:10.1016/j.jid.2016.12.030

  59. Wang K, Jiang Z, Webster KA, Chen J, Hu H, Zhou Y, Zhao J, Wang L, Wang Y, Zhong Z, Ni C, Li Q, Xiang C, Zhang L, Wu R, Zhu W, Yu H, Hu X, Wang J (2016) Enhanced Cardioprotection by human endometrium mesenchymal stem cells driven by exosomal microRNA-21. Stem Cells Transl Med. doi:10.5966/sctm.2015-0386

  60. Timmers L, Lim SK, Arslan F, Armstrong JS, Hoefer IE, Doevendans PA, Piek JJ, El Oakley RM, Choo A, Lee CN, Pasterkamp G, de Kleijn DP (2007) Reduction of myocardial infarct size by human mesenchymal stem cell conditioned medium. Stem Cell Res 1(2):129–137

    Article  CAS  PubMed  Google Scholar 

  61. Lai RC, Arslan F, Lee MM, Sze NS, Choo A, Chen TS, Salto-Tellez M, Timmers L, Lee CN, El Oakley RM, Pasterkamp G, de Kleijn DP, Lim SK (2010) Exosome secreted by MSC reduces myocardial ischemia/reperfusion injury. Stem Cell Res 4(3):214–222

    Article  CAS  PubMed  Google Scholar 

  62. Sharma RR, Pollock K, Hubel A, McKenna D (2014) Mesenchymal stem or stromal cells: a review of clinical applications and manufacturing practices. Transfusion 54(5):1418–1437

    Article  CAS  PubMed  Google Scholar 

  63. Trounson A, McDonald C (2015) Stem cell therapies in clinical trials: progress and challenges. Cell Stem Cell 17(1):11–22

    Article  CAS  PubMed  Google Scholar 

  64. Hass R, Kasper C, Bohm S, Jacobs R (2011) Different populations and sources of human mesenchymal stem cells (MSC): a comparison of adult and neonatal tissue-derived MSC. Cell Commun Signal 9:12

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Shao L, Zhang Y, Lan B, Wang J, Zhang Z, Zhang L, Xiao P, Meng Q, Geng YJ, Yu XY, Li Y (2017) MiRNA-sequence indicates that mesenchymal stem cells and exosomes have similar mechanism to enhance cardiac repair. Biomed Res Int 2017:4150705

    PubMed  PubMed Central  Google Scholar 

  66. Vrijsen KR, Maring JA, Chamuleau SA, Verhage V, Mol EA, Deddens JC, Metz CH, Lodder K, van Eeuwijk EC, van Dommelen SM, Doevendans PA, Smits AM, Goumans MJ, Sluijter JP (2016) Exosomes from cardiomyocyte progenitor cells and mesenchymal stem cells stimulate angiogenesis via EMMPRIN. Adv Healthc Mater 5(19):2555–2565

    Article  CAS  PubMed  Google Scholar 

  67. Ha D, Yang N, Nadithe V (2016) Exosomes as therapeutic drug carriers and delivery vehicles across biological membranes: current perspectives and future challenges. Acta Pharm Sin B 6(4):287–296

    Article  PubMed  PubMed Central  Google Scholar 

  68. Raemdonck K, Braeckmans K, Demeester J, De Smedt SC (2014) Merging the best of both worlds: hybrid lipid-enveloped matrix nanocomposites in drug delivery. Chem Soc Rev 43(1):444–472

    Article  CAS  PubMed  Google Scholar 

  69. Li C, Zhang J, Zu YJ, Nie SF, Cao J, Wang Q, Nie SP, Deng ZY, Xie MY, Wang S (2015) Biocompatible and biodegradable nanoparticles for enhancement of anti-cancer activities of phytochemicals. Chin J Nat Med 13(9):641–652

    CAS  PubMed  Google Scholar 

  70. Sun D, Zhuang X, Xiang X, Liu Y, Zhang S, Liu C, Barnes S, Grizzle W, Miller D, Zhang HG (2010) A novel nanoparticle drug delivery system: the anti-inflammatory activity of curcumin is enhanced when encapsulated in exosomes. Mol Ther 18(9):1606–1614

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Tian Y, Li S, Song J, Ji T, Zhu M, Anderson GJ, Wei J, Nie G (2014) A doxorubicin delivery platform using engineered natural membrane vesicle exosomes for targeted tumor therapy. Biomaterials 35(7):2383–2390

    Article  CAS  PubMed  Google Scholar 

  72. Banizs AB, Huang T, Dryden K, Berr SS, Stone JR, Nakamoto RK, Shi W, He J (2014) In vitro evaluation of endothelial exosomes as carriers for small interfering ribonucleic acid delivery. Int J Nanomedicine 9:4223–4230

    CAS  PubMed  PubMed Central  Google Scholar 

  73. Ohno SI, Takanashi M, Sudo K, Ueda S, Ishikawa A, Matsuyama N, Fujita K, Mizutani T, Ohgi T, Ochiya T, Gotoh N, Kuroda M (2013) Systemically injected exosomes targeted to EGFR deliver antitumor microRNA to breast cancer cells. Mol Ther 21(1):185–191

    Article  CAS  PubMed  Google Scholar 

  74. Arnold AE, Czupiel P, Shoichet M (2017) Engineered polymeric nanoparticles to guide the cellular internalization and trafficking of small interfering ribonucleic acids. J Control Release. doi:10.1016/j.jconrel.2017.02.019

  75. Hadla M, Palazzolo S, Corona G, Caligiuri I, Canzonieri V, Toffoli G, Rizzolio F (2016) Exosomes increase the therapeutic index of doxorubicin in breast and ovarian cancer mouse models. Nanomedicine (Lond) 11(18):2431–2441

    Article  CAS  Google Scholar 

  76. Lekshmi KM, Che HL, Cho CS, Park IK (2017) Drug- and gene-eluting stents for preventing coronary restenosis. Chonnam Med J 53(1):14–27

    Article  PubMed  PubMed Central  Google Scholar 

  77. Zhang Y, Li L, Yu J, Zhu D, Zhang Y, Li X, Gu H, Zhang CY, Zen K (2014) Microvesicle-mediated delivery of transforming growth factor beta1 siRNA for the suppression of tumor growth in mice. Biomaterials 35(14):4390–4400

    Article  CAS  PubMed  Google Scholar 

  78. Kumar L, Verma S, Vaidya B, Gupta V (2015) Exosomes: natural carriers for siRNA delivery. Curr Pharm Des 21(31):4556–4565

    Article  CAS  PubMed  Google Scholar 

  79. Lasser C (2015) Exosomes in diagnostic and therapeutic applications: biomarker, vaccine and RNA interference delivery vehicle. Expert Opin Biol Ther 15(1):103–117

    Article  PubMed  CAS  Google Scholar 

  80. Alvarez-Erviti L, Seow Y, Yin H, Betts C, Lakhal S, Wood MJ (2011) Delivery of siRNA to the mouse brain by systemic injection of targeted exosomes. Nat Biotechnol 29(4):341–345

    Article  CAS  PubMed  Google Scholar 

  81. Gyorgy B, Sage C, Indzhykulian AA, Scheffer DI, Brisson AR, Tan S, Wu X, Volak A, Mu D, Tamvakologos PI, Li Y, Fitzpatrick Z, Ericsson M, Breakefield XO, Corey DP, Maguire CA (2017) Rescue of hearing by gene delivery to inner-ear hair cells using exosome-associated AAV. Mol Ther 25(2):379–391

    Article  CAS  PubMed  Google Scholar 

  82. Barile L, Vassalli G (2017) Exosomes: therapy delivery tools and biomarkers of diseases. Pharmacol Ther. doi:10.1016/j.pharmthera.2017.02.020

  83. Kooijmans SA, Vader P, van Dommelen SM, van Solinge WW, Schiffelers RM (2012) Exosome mimetics: a novel class of drug delivery systems. Int J Nanomedicine 7:1525–1541

    CAS  PubMed  PubMed Central  Google Scholar 

  84. Edgar JR, Manna PT, Nishimura S, Banting G, Robinson MS (2016) Tetherin is an exosomal tether. elife 22:5

    Google Scholar 

  85. Sperry BW, Tang WH (2017) Amyloid heart disease: genetics translated into disease-modifying therapy. Heart. doi:10.1136/heartjnl-2016-309914

  86. Lee MJ, Park DH, Kang JH (2016) Exosomes as the source of biomarkers of metabolic diseases. Ann Pediatr Endocrinol Metab 21(3):119–125

    Article  PubMed  PubMed Central  Google Scholar 

  87. Hoefer IE, Steffens S, Ala-Korpela M, Back M, Badimon L, Bochaton-Piallat ML, Boulanger CM, Caligiuri G, Dimmeler S, Egido J, Evans PC, Guzik T, Kwak BR, Landmesser U, Mayr M, Monaco C, Pasterkamp G, Tunon J, Weber C (2015) Novel methodologies for biomarker discovery in atherosclerosis. Eur Heart J 36(39):2635–2642

    Article  PubMed  Google Scholar 

  88. Yuan MJ, Maghsoudi T, Wang T (2016) Exosomes mediate the intercellular communication after myocardial infarction. Int J Med Sci 13(2):113–116

    Article  PubMed  PubMed Central  Google Scholar 

  89. Fernandez-Garcia CE, Burillo E, Lindholt JS, Martinez-Lopez D, Pilely K, Mazzeo C, Michel JB, Egido J, Garred P, Blanco-Colio LM, Martin-Ventura JL (2017) Association of ficolin-3 with abdominal aortic aneurysm presence and progression. J Thromb Haemost 15(3):575–585

    Article  CAS  PubMed  Google Scholar 

  90. Kuwabara Y, Ono K, Horie T, Nishi H, Nagao K, Kinoshita M, Watanabe S, Baba O, Kojima Y, Shizuta S, Imai M, Tamura T, Kita T, Kimura T (2011) Increased microRNA-1 and microRNA-133a levels in serum of patients with cardiovascular disease indicate myocardial damage. Circ Cardiovasc Genet 4(4):446–454

    Article  CAS  PubMed  Google Scholar 

  91. Liu J, Sun H, Wang X, Yu Q, Li S, Yu X, Gong W (2014) Increased exosomal microRNA-21 and microRNA-146a levels in the cervicovaginal lavage specimens of patients with cervical cancer. Int J Mol Sci 15(1):758–773

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  92. Horstman LL, Jy W, Jimenez JJ, Ahn YS (2004) Endothelial microparticles as markers of endothelial dysfunction. Front Biosci 9:1118–1135

    Article  CAS  PubMed  Google Scholar 

  93. Garrido V, Mendoza-Torres E, Riquelme JA, Diaz A, Pizarro M, Bustamante M, Chavez MN, Ocaranza MP, Mellado R, Corbalan R, Allende ML, Lavandero S (2017) Novel therapies targeting cardioprotection and regeneration. Curr Pharm Des

    Google Scholar 

  94. Utsugi-Kobukai S, Fujimaki H, Hotta C, Nakazawa M, Minami M (2003) MHC class I-mediated exogenous antigen presentation by exosomes secreted from immature and mature bone marrow derived dendritic cells. Immunol Lett 89(2–3):125–131

    Article  CAS  PubMed  Google Scholar 

  95. Banchereau J, Steinman RM (1998) Dendritic cells and the control of immunity. Nature 392(6673):245–252

    Article  CAS  PubMed  Google Scholar 

  96. Kollgaard T, Enevold C, Bendtzen K, Hansen PR, Givskov M, Holmstrup P, Nielsen CH (2017) Cholesterol crystals enhance TLR2- and TLR4-mediated pro-inflammatory cytokine responses of monocytes to the proatherogenic oral bacterium Porphyromonas gingivalis. PLoS One 12(2):e0172773

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  97. Wang C, Zhang C, Liu L, A X, Chen B, Li Y, Du J (2017) Macrophage-derived mir-155-containing exosomes suppress fibroblast proliferation and promote fibroblast inflammation during cardiac injury. Mol Ther 25(1):192–204

    Article  CAS  PubMed  Google Scholar 

  98. Sadallah S, Eken C, Schifferli JA (2011) Ectosomes as modulators of inflammation and immunity. Clin Exp Immunol 163(1):26–32

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Zhao B, Zhang Y, Han S, Zhang W, Zhou Q, Guan H, Liu J, Shi J, Su L, Hu D (2017) Exosomes derived from human amniotic epithelial cells accelerate wound healing and inhibit scar formation. J Mol Histol 48(2):121–132

    Article  CAS  PubMed  Google Scholar 

  100. Osada-Oka M, Shiota M, Izumi Y, Nishiyama M, Tanaka M, Yamaguchi T, Sakurai E, Miura K, Iwao H (2016) Macrophage-derived exosomes induce inflammatory factors in endothelial cells under hypertensive conditions. Hypertens Res 40:353–360

    Article  PubMed  CAS  Google Scholar 

  101. Zhu YG, Hao Q, Monsel A, Feng XM, Lee JW (2013) Adult stem cells for acute lung injury: remaining questions and concerns. Respirology 18(5):744–756

    Article  PubMed  PubMed Central  Google Scholar 

  102. Walther T, Tschope C, Sterner-Kock A, Westermann D, Heringer-Walther S, Riad A, Nikolic A, Wang Y, Ebermann L, Siems WE, Bader M, Shakibaei M, Schultheiss HP, Dorner A (2007) Accelerated mitochondrial adenosine diphosphate/adenosine triphosphate transport improves hypertension-induced heart disease. Circulation 115(3):333–344

    Article  CAS  PubMed  Google Scholar 

  103. Roger VL, Go AS, Lloyd-Jones DM, Benjamin EJ, Berry JD, Borden WB, Bravata DM, Dai S, Ford ES, Fox CS, Fullerton HJ, Gillespie C, Hailpern SM, Heit JA, Howard VJ, Kissela BM, Kittner SJ, Lackland DT, Lichtman JH, Lisabeth LD, Makuc DM, Marcus GM, Marelli A, Matchar DB, Moy CS, Mozaffarian D, Mussolino ME, Nichol G, Paynter NP, Soliman EZ, Sorlie PD, Sotoodehnia N, Turan TN, Virani SS, Wong ND, Woo D, Turner MB (2012) Heart disease and stroke statistics—2012 update: a report from the American Heart Association. Circulation 125(1):e2–e220

    Article  PubMed  Google Scholar 

  104. Blum B, Benvenisty N (2008) The tumorigenicity of human embryonic stem cells. Adv Cancer Res 100:133–158

    Article  PubMed  Google Scholar 

  105. Ben-David U, Benvenisty N (2011) The tumorigenicity of human embryonic and induced pluripotent stem cells. Nat Rev Cancer 11(4):268–277

    Article  CAS  PubMed  Google Scholar 

  106. Nussbaum J, Minami E, Laflamme MA, Virag JA, Ware CB, Masino A, Muskheli V, Pabon L, Reinecke H, Murry CE (2007) Transplantation of undifferentiated murine embryonic stem cells in the heart: teratoma formation and immune response. FASEB J 21(7):1345–1357

    Article  CAS  PubMed  Google Scholar 

  107. Lee AS, Tang C, Cao F, Xie X, van der Bogt K, Hwang A, Connolly AJ, Robbins RC, Wu JC (2009) Effects of cell number on teratoma formation by human embryonic stem cells. Cell Cycle 8(16):2608–2612

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Bian S, Zhang L, Duan L, Wang X, Min Y, Yu H (2013) Extracellular vesicles derived from human bone marrow mesenchymal stem cells promote angiogenesis in a rat myocardial infarction model. J Mol Med (Berlin, Germany). doi:10.1007/s00109-013-1110-5

  109. Burchfield JS, Dimmeler S (2008) Role of paracrine factors in stem and progenitor cell mediated cardiac repair and tissue fibrosis. Fibrogenesis Tissue Repair 1(1):4

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  110. Beltrami C, Besnier M, Shantikumar S, Shearn AI, Rajakaruna C, Laftah A, Sessa F, Spinetti G, Petretto E, Angelini GD, Emanueli C (2017) Human pericardial fluid contains exosomes enriched with cardiovascular-expressed microRNAs and promotes therapeutic angiogenesis. Mol Ther 25(3):679–693

    Article  CAS  PubMed  Google Scholar 

  111. Cho HM, Kim PH, Chang HK, Shen YM, Bonsra K, Kang BJ, Yum SY, Kim JH, Lee SY, Choi MC, Kim HH, Jang G, Cho JY (2017) Targeted genome engineering to control VEGF expression in human umbilical cord blood-derived mesenchymal stem cells: potential implications for the treatment of myocardial infarction. Stem Cells Transl Med 6(3):1040–1051

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Ma J, Zhao Y, Sun L, Sun X, Zhao X, Sun X, Qian H, Xu W, Zhu W (2017) Exosomes derived from Akt-modified human umbilical cord mesenchymal stem cells improve cardiac regeneration and promote angiogenesis via activating platelet-derived growth factor D. Stem Cells Transl Med 6(1):51–59

    Article  CAS  PubMed  Google Scholar 

  113. Zhu LP, Zhou JP, Zhang JX, Wang JY, Wang ZY, Pan M, Li LF, Li CC, Wang KK, Bai YP, Zhang GG (2017) MiR-15b-5p regulates collateral artery formation by targeting AKT3 (protein kinase B-3). Arterioscler Thromb Vasc Biol 116:308905

    Google Scholar 

  114. Novak J, Bienertova-Vasku J, Kara T, Novak M (2014) MicroRNAs involved in the lipid metabolism and their possible implications for atherosclerosis development and treatment. Mediat Inflamm 2014:275867

    Article  CAS  Google Scholar 

  115. Foglio E, Puddighinu G, Fasanaro P, D'Arcangelo D, Perrone GA, Mocini D, Campanella C, Coppola L, Logozzi M, Azzarito T, Marzoli F, Fais S, Pieroni L, Marzano V, Germani A, Capogrossi MC, Russo MA, Limana F (2015) Exosomal clusterin, identified in the pericardial fluid, improves myocardial performance following MI through epicardial activation, enhanced arteriogenesis and reduced apoptosis. Int J Cardiol 197:333–347

    Article  PubMed  Google Scholar 

  116. Malik ZA, Liu TT, Knowlton AA (2016) Cardiac myocyte exosome isolation. Methods Mol Biol 1448:237–248

    Article  CAS  PubMed  Google Scholar 

  117. Monguio-Tortajada M, Roura S, Galvez-Monton C, Pujal JM, Aran G, Sanjurjo L, Franquesa M, Sarrias MR, Bayes-Genis A, Borras FE (2017) Nanosized UCMSC-derived extracellular vesicles but not conditioned medium exclusively inhibit the inflammatory response of stimulated T cells: implications for nanomedicine. Theranostics 7(2):270–284

    Article  PubMed  PubMed Central  Google Scholar 

  118. Sharma S, Mishra R, Bigham GE, Wehman B, Khan MM, Xu H, Saha P, Goo YA, Datla SR, Chen L, Tulapurkar ME, Taylor BS, Yang P, Karathanasis S, Goodlett DR, Kaushal S (2017) A deep proteome analysis identifies the complete secretome as the functional unit of human cardiac progenitor cells. Circ Res 120(5):816–834

    Article  CAS  PubMed  Google Scholar 

  119. Grigor’eva AE, Dyrkheeva NS, Bryzgunova OE, Tamkovich SN, Chelobanov BP, Ryabchikova EI (2017) [Contamination of exosome preparations, isolated from biological fluids]. Biomed Khim 63(1):91–96

    Google Scholar 

  120. Thomou T, Mori MA, Dreyfuss JM, Konishi M, Sakaguchi M, Wolfrum C, Rao TN, Winnay JN, Garcia-Martin R, Grinspoon SK, Gorden P, Kahn CR (2017) Adipose-derived circulating miRNAs regulate gene expression in other tissues. Nature 542(7642):450–455

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Niu C, Wang X, Zhao M, Cai T, Liu P, Li J, Willard B, Zu L, Zhou E, Li Y, Pan B, Yang F, Zheng L (2016) Macrophage foam cell-derived extracellular vesicles promote vascular smooth muscle cell migration and adhesion. J Am Heart Assoc 5(10)

    Google Scholar 

  122. Daaboul GG, Gagni P, Benussi L, Bettotti P, Ciani M, Cretich M, Freedman DS, Ghidoni R, Ozkumur AY, Piotto C, Prosperi D, Santini B, Unlu MS, Chiari M (2016) Digital detection of exosomes by interferometric imaging. Sci Rep 6:37246

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Panich T, Chancharoenthana W, Somparn P, Issara-Amphorn J, Hirankarn N, Leelahavanichkul A (2017) Urinary exosomal activating transcriptional factor 3 as the early diagnostic biomarker for sepsis-induced acute kidney injury. BMC Nephrol 18(1):10

    Article  PubMed  PubMed Central  Google Scholar 

  124. Hung MJ, Kao YC, Chen WS, Mao CT, Chen TH, Yang NI, Ko T, Liang CY (2016) Layer-specific quantification of myocardial deformation in sepsis-induced Takotsubo cardiomyopathy: three case reports of a serial 2-dimensional speckle-tracking echocardiographic study. Medicine (Baltimore) 95(44):e5250

    Article  PubMed Central  Google Scholar 

  125. Manier S, Liu CJ, Avet-Loiseau H, Park J, Shi J, Campigotto F, Salem KZ, Huynh D, Glavey SV, Rivotto B, Sacco A, Roccaro AM, Bouyssou J, Minvielle S, Moreau P, Facon T, Leleu X, Weller E, Trippa L, Ghobrial IM (2017) Prognostic role of circulating exosomal miRNAs in multiple myeloma. Blood. doi:10.1182/blood-2016-09-742296

  126. Xiong Y, Mahmood A, Chopp M (2017) Emerging potential of exosomes for treatment of traumatic brain injury. Neural Regen Res 12(1):19–22

    Article  PubMed  PubMed Central  Google Scholar 

  127. Lim JH, Song MK, Cho Y, Kim W, Han SO, Ryu JC (2017) Comparative analysis of microRNA and mRNA expression profiles in cells and exosomes under toluene exposure. Toxicology in Vitro 41:92–101

    Article  CAS  PubMed  Google Scholar 

  128. Lv LL, Cao YH, Ni HF, Xu M, Liu D, Liu H, Chen PS, Liu BC (2013) MicroRNA-29c in urinary exosome/microvesicle as a biomarker of renal fibrosis. Am J Physiol Renal Physiol 305(8):F1220–F1227

    Article  CAS  PubMed  Google Scholar 

  129. Kosaka N, Iguchi H, Ochiya T (2010) Circulating microRNA in body fluid: a new potential biomarker for cancer diagnosis and prognosis. Cancer Sci 101(10):2087–2092

    Article  CAS  PubMed  Google Scholar 

  130. Yang C, Chalasani G, Ng YH, Robbins PD (2012) Exosomes released from mycoplasma infected tumor cells activate inhibitory B cells. PLoS One 7(4):e36138

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Taylor DD, Gercel-Taylor C (2008) MicroRNA signatures of tumor-derived exosomes as diagnostic biomarkers of ovarian cancer. Gynecol Oncol 110(1):13–21

    Article  CAS  PubMed  Google Scholar 

  132. Elfeky O, Longo S, Lai A, Rice GE, Salomon C (2017) Influence of maternal BMI on the exosomal profile during gestation and their role on maternal systemic inflammation. Placenta 50:60–69

    Article  PubMed  Google Scholar 

  133. Powe CE (2017) Early pregnancy biochemical predictors of gestational diabetes mellitus. Curr Diab Rep 17(2):12

    Article  PubMed  CAS  Google Scholar 

  134. Fehlert E, Willmann K, Fritsche L, Linder K, Mat-Husin H, Schleger F, Weiss M, Kiefer-Schmidt I, Brucker S, Haring HU, Preissl H, Fritsche A (2016) Gestational diabetes alters the fetal heart rate variability during an oral glucose tolerance test: a fetal magnetocardiography study. BJOG Int J Obstet Gynaecol. doi:10.1111/1471-0528.14474

Download references

Acknowledgements

This work was supported, in part, by American Heart Association Grant-in-Aid 16GRNT30950010 and National Institutes of Health COBRE grant P20GM104936 (to JR).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Johnson Rajasingh Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Nature Singapore Pte Ltd.

About this chapter

Cite this chapter

Barani, B., Rajasingh, S., Rajasingh, J. (2017). Exosomes: Outlook for Future Cell-Free Cardiovascular Disease Therapy. In: Xiao, J., Cretoiu, S. (eds) Exosomes in Cardiovascular Diseases. Advances in Experimental Medicine and Biology, vol 998. Springer, Singapore. https://doi.org/10.1007/978-981-10-4397-0_19

Download citation

Publish with us

Policies and ethics