Advertisement

Exosomes: Outlook for Future Cell-Free Cardiovascular Disease Therapy

  • Bahar Barani
  • Sheeja Rajasingh
  • Johnson RajasinghEmail author
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 998)

Abstract

Cardiovascular diseases are the number one cause of death globally with an estimated 7.4 million people dying from coronary heart disease. Studies have been conducted to identify the therapeutic utility of exosomes in many diseases, including cardiovascular diseases. It has been demonstrated that exosomes are immune modulators, can be used to treat cardiac ischemic injury, pulmonary hypertension and many other diseases, including cancers. Exosomes can be used as a biomarker for disease and cell-free drug delivery system for targeting the cells. Many studies suggest that exosomes can be used as a cell-free vaccine for many diseases. In this chapter, we explore the possibility of future therapeutic potential of exosomes in various cardiovascular diseases.

Keywords

Exosomes Cardiovascular diseases Myocardial infarction Biomarker Drug delivery Nanovesicles 

Abbreviations

AAA

Abdominal aortic aneurysm

AdMSCs

Adipose-derived MSCs

ASCs

Adipose stem cells

BMMSCs

Bone marrow-derived MSCs

CVDs

Cardiovascular diseases

EnMSCs

Endometrium-derived MSCs

ESCs

Embryonic stem cells

EVs

Extracellular vesicles

FIZZ1

Found in inflammatory zone 1

HIMF

Hypoxia-induced mitogenic factor

HSP

Heat shock protein

IL

Interleukin

iPSCs

Induced pluripotent stem cells

MCP1

Monocyte chemotactic protein 1

MI

Myocardial infarction

miRNA

Micro RNA

mRNA

Messenger RNA

MSC-CM

MSC-derived condition medium

MSCs

Mesenchymal stem cells

MVB

Microvesicular body

nCPC

Neonatal cardiac progenitor cell

nTCM

Neonatal total condition medium

siRNAs

Small interfering RNAs

VEGF

Vascular endothelial growth factor

Notes

Acknowledgements

This work was supported, in part, by American Heart Association Grant-in-Aid 16GRNT30950010 and National Institutes of Health COBRE grant P20GM104936 (to JR).

References

  1. 1.
    Heidenreich PA, Trogdon JG, Khavjou OA, Butler J, Dracup K, Ezekowitz MD, Finkelstein EA, Hong Y, Johnston SC, Khera A, Lloyd-Jones DM, Nelson SA, Nichol G, Orenstein D, Wilson PW, Woo YJ (2011) Forecasting the future of cardiovascular disease in the United States: a policy statement from the American Heart Association. Circulation 123(8):933–944PubMedCrossRefGoogle Scholar
  2. 2.
    Lee N, Thorne T, Losordo DW, Yoon YS (2005) Repair of ischemic heart disease with novel bone marrow-derived multipotent stem cells. Cell Cycle 4(7):861–864PubMedCrossRefGoogle Scholar
  3. 3.
    Losordo DW, Henry TD, Davidson C, Sup Lee J, Costa MA, Bass T, Mendelsohn F, Fortuin FD, Pepine CJ, Traverse JH, Amrani D, Ewenstein BM, Riedel N, Story K, Barker K, Povsic TJ, Harrington RA, Schatz RA (2011) Intramyocardial, autologous CD34+ cell therapy for refractory angina. Circ Res 109(4):428–436PubMedPubMedCentralCrossRefGoogle Scholar
  4. 4.
    Williams AR, Trachtenberg B, Velazquez DL, McNiece I, Altman P, Rouy D, Mendizabal AM, Pattany PM, Lopera GA, Fishman J, Zambrano JP, Heldman AW, Hare JM (2011) Intramyocardial stem cell injection in patients with ischemic cardiomyopathy: functional recovery and reverse remodeling. Circ Res 108(7):792–796PubMedPubMedCentralCrossRefGoogle Scholar
  5. 5.
    Bolli R, Chugh AR, D'Amario D, Loughran JH, Stoddard MF, Ikram S, Beache GM, Wagner SG, Leri A, Hosoda T, Sanada F, Elmore JB, Goichberg P, Cappetta D, Solankhi NK, Fahsah I, Rokosh DG, Slaughter MS, Kajstura J, Anversa P (2011) Cardiac stem cells in patients with ischaemic cardiomyopathy (SCIPIO): initial results of a randomised phase 1 trial. Lancet 378(9806):1847–1857PubMedPubMedCentralCrossRefGoogle Scholar
  6. 6.
    Uemura R, Xu M, Ahmad N, Ashraf M (2006) Bone marrow stem cells prevent left ventricular remodeling of ischemic heart through paracrine signaling. Circ Res 98(11):1414–1421PubMedCrossRefGoogle Scholar
  7. 7.
    Angoulvant D, Ivanes F, Ferrera R, Matthews PG, Nataf S, Ovize M (2011) Mesenchymal stem cell conditioned media attenuates in vitro and ex vivo myocardial reperfusion injury. J Heart Lung Transplant 30(1):95–102PubMedCrossRefGoogle Scholar
  8. 8.
    Sahoo S, Klychko E, Thorne T, Misener S, Schultz KM, Millay M, Ito A, Liu T, Kamide C, Agrawal H, Perlman H, Qin G, Kishore R, Losordo DW (2011) Exosomes from human CD34(+) stem cells mediate their proangiogenic paracrine activity. Circ Res 109(7):724–728PubMedPubMedCentralCrossRefGoogle Scholar
  9. 9.
    Arslan F, Lai RC, Smeets MB, Akeroyd L, Choo A, Aguor EN, Timmers L, van Rijen HV, Doevendans PA, Pasterkamp G, Lim SK, de Kleijn DP (2013) Mesenchymal stem cell-derived exosomes increase ATP levels, decrease oxidative stress and activate PI3K/Akt pathway to enhance myocardial viability and prevent adverse remodeling after myocardial ischemia/reperfusion injury. Stem Cell Res 10(3):301–312PubMedCrossRefGoogle Scholar
  10. 10.
    Braccioli L, van Velthoven C, Heijnen CJ (2014) Exosomes: a new weapon to treat the central nervous system. Mol Neurobiol 49(1):113–119PubMedCrossRefGoogle Scholar
  11. 11.
    Dorronsoro A, Robbins PD (2013) Regenerating the injured kidney with human umbilical cord mesenchymal stem cell-derived exosomes. Stem Cell Res Ther 4(2):39PubMedPubMedCentralCrossRefGoogle Scholar
  12. 12.
    Kalani A, Tyagi N (2015) Exosomes in neurological disease, neuroprotection, repair and therapeutics: problems and perspectives. Neural Regen Res 10(10):1565–1567PubMedPubMedCentralCrossRefGoogle Scholar
  13. 13.
    Valadi H, Ekstrom K, Bossios A, Sjostrand M, Lee JJ, Lotvall JO (2007) Exosome-mediated transfer of mRNAs and microRNAs is a novel mechanism of genetic exchange between cells. Nat Cell Biol 9(6):654–659PubMedCrossRefGoogle Scholar
  14. 14.
    Marote A, Teixeira FG, Mendes-Pinheiro B, Salgado AJ (2016) MSCs-derived exosomes: cell-secreted nanovesicles with regenerative potential. Front Pharmacol 7:231PubMedPubMedCentralCrossRefGoogle Scholar
  15. 15.
    Balasubramanian S, Rajasingh S, Thangavel J, Dawn B, Rajasingh J (2015) Chapter 3—Exosome function in miRNA-mediated paracrine effects. In: Mesenchymal stem cell derived exosomes. Academic, Boston, pp 37–62CrossRefGoogle Scholar
  16. 16.
    Yellon DM, Davidson SM (2014) Exosomes: nanoparticles involved in cardioprotection? Circ Res 114(2):325–332PubMedCrossRefGoogle Scholar
  17. 17.
    Thery C, Duban L, Segura E, Veron P, Lantz O, Amigorena S (2002) Indirect activation of naive CD4+ T cells by dendritic cell-derived exosomes. Nat Immunol 3(12):1156–1162PubMedCrossRefGoogle Scholar
  18. 18.
    Konstantinell A, Bruun JA, Olsen R, Aspar A, Skalko-Basnet N, Sveinbjornsson B, Moens U (2016) Secretomic analysis of extracellular vesicles originating from polyomavirus-negative and polyomavirus-positive Merkel cell carcinoma cell lines. Proteomics 16(19):2587–2591PubMedCrossRefGoogle Scholar
  19. 19.
    Glembotski CC (2017) Expanding the paracrine hypothesis of stem cell-mediated repair in the heart: when the unconventional becomes conventional. Circ Res 120(5):772–774PubMedCrossRefGoogle Scholar
  20. 20.
    Zhang M, Schekman R (2013) Cell biology. Unconventional secretion, unconventional solutions. Science 340(6132):559–561PubMedCrossRefGoogle Scholar
  21. 21.
    DeClercq V, d'Eon B, McLeod RS (2015) Fatty acids increase adiponectin secretion through both classical and exosome pathways. Biochim Biophys Acta 1851(9):1123–1133PubMedCrossRefGoogle Scholar
  22. 22.
    Thery C, Zitvogel L, Amigorena S (2002) Exosomes: composition, biogenesis and function. Nat Rev Immunol 2(8):569–579PubMedGoogle Scholar
  23. 23.
    Bang C, Thum T (2012) Exosomes: new players in cell-cell communication. Int J Biochem Cell Biol 44(11):2060–2064PubMedCrossRefGoogle Scholar
  24. 24.
    Hu G, Drescher KM, Chen XM (2012) Exosomal miRNAs: biological properties and therapeutic potential. Front Genet 3:56PubMedPubMedCentralGoogle Scholar
  25. 25.
    Lee C, Mitsialis SA, Aslam M, Vitali SH, Vergadi E, Konstantinou G, Sdrimas K, Fernandez-Gonzalez A, Kourembanas S (2012) Exosomes mediate the cytoprotective action of mesenchymal stromal cells on hypoxia-induced pulmonary hypertension. Circulation 126(22):2601–2611PubMedPubMedCentralCrossRefGoogle Scholar
  26. 26.
    Rashed MH, Bayraktar E, Helal GK, Abd-Ellah MF, Amero P, Chavez-Reyes A, Rodriguez-Aguayo C (2017) Exosomes: from garbage bins to promising therapeutic targets. Int J Mol Sci 18(3)Google Scholar
  27. 27.
    Samanta S, Balasubramanian S, Rajasingh S, Patel U, Dhanasekaran A, Dawn B, Rajasingh J (2016) MicroRNA: a new therapeutic strategy for cardiovascular diseases. Trends Cardiovasc Med 26(5):407–419PubMedPubMedCentralCrossRefGoogle Scholar
  28. 28.
    Min PK, Chan SY (2015) The biology of circulating microRNAs in cardiovascular disease. Eur J Clin Investig 45(8):860–874CrossRefGoogle Scholar
  29. 29.
    Kumar S, Vijayan M, Bhatti JS, Reddy PH (2017) MicroRNAs as peripheral biomarkers in aging and age-related diseases. Prog Mol Biol Transl Sci 146:47–94PubMedCrossRefGoogle Scholar
  30. 30.
    Soria FN, Pampliega O, Bourdenx M, Meissner WG, Bezard E, Dehay B (2017) Exosomes, an unmasked culprit in neurodegenerative diseases. Front Neurosci 11:26PubMedPubMedCentralCrossRefGoogle Scholar
  31. 31.
    Camussi G, Deregibus MC, Bruno S, Grange C, Fonsato V, Tetta C (2011) Exosome/microvesicle-mediated epigenetic reprogramming of cells. Am J Cancer Res 1(1):98–110PubMedGoogle Scholar
  32. 32.
    Yang M, Chen J, Su F, Yu B, Su F, Lin L, Liu Y, Huang JD, Song E (2011) Microvesicles secreted by macrophages shuttle invasion-potentiating microRNAs into breast cancer cells. Mol Cancer 10:117PubMedPubMedCentralCrossRefGoogle Scholar
  33. 33.
    van Rooij E, Purcell AL, Levin AA (2012) Developing microRNA therapeutics. Circ Res 110(3):496–507PubMedCrossRefGoogle Scholar
  34. 34.
    Charoenviriyakul C, Takahashi Y, Morishita M, Matsumoto A, Nishikawa M, Takakura Y (2017) Cell type-specific and common characteristics of exosomes derived from mouse cell lines: yield, physicochemical properties, and pharmacokinetics. Eur J Pharm Sci 96:316–322PubMedCrossRefGoogle Scholar
  35. 35.
    Gnecchi M, Zhang Z, Ni A, Dzau VJ (2008) Paracrine mechanisms in adult stem cell signaling and therapy. Circ Res 103(11):1204–1219PubMedPubMedCentralCrossRefGoogle Scholar
  36. 36.
    Duran JM, Makarewich CA, Sharp TE, Starosta T, Zhu F, Hoffman NE, Chiba Y, Madesh M, Berretta RM, Kubo H, Houser SR (2013) Bone-derived stem cells repair the heart after myocardial infarction through transdifferentiation and paracrine signaling mechanisms. Circ Res 113(5):539–552PubMedCrossRefGoogle Scholar
  37. 37.
    Khan M, Nickoloff E, Abramova T, Johnson J, Verma SK, Krishnamurthy P, Mackie AR, Vaughan E, Garikipati VN, Benedict C, Ramirez V, Lambers E, Ito A, Gao E, Misener S, Luongo T, Elrod J, Qin G, Houser SR, Koch WJ, Kishore R (2015) Embryonic stem cell-derived exosomes promote endogenous repair mechanisms and enhance cardiac function following myocardial infarction. Circ Res 117(1):52–64PubMedPubMedCentralCrossRefGoogle Scholar
  38. 38.
    Gazdhar A, Grad I, Tamo L, Gugger M, Feki A, Geiser T (2014) The secretome of induced pluripotent stem cells reduces lung fibrosis in part by hepatocyte growth factor. Stem Cell Res Ther 5(6):123PubMedPubMedCentralCrossRefGoogle Scholar
  39. 39.
    Wang Y, Zhang L, Li Y, Chen L, Wang X, Guo W, Zhang X, Qin G, He SH, Zimmerman A, Liu Y, Kim IM, Weintraub NL, Tang Y (2015) Exosomes/microvesicles from induced pluripotent stem cells deliver cardioprotective miRNAs and prevent cardiomyocyte apoptosis in the ischemic myocardium. Int J Cardiol 192:61–69PubMedPubMedCentralCrossRefGoogle Scholar
  40. 40.
    Hu GW, Li Q, Niu X, Hu B, Liu J, Zhou SM, Guo SC, Lang HL, Zhang CQ, Wang Y, Deng ZF (2015) Exosomes secreted by human-induced pluripotent stem cell-derived mesenchymal stem cells attenuate limb ischemia by promoting angiogenesis in mice. Stem Cell Res Ther 6:10PubMedPubMedCentralCrossRefGoogle Scholar
  41. 41.
    Bobis-Wozowicz S, Kmiotek K, Sekula M, Kedracka-Krok S, Kamycka E, Adamiak M, Jankowska U, Madetko-Talowska A, Sarna M, Bik-Multanowski M, Kolcz J, Boruczkowski D, Madeja Z, Dawn B, Zuba-Surma EK (2015) Human induced pluripotent stem cell-derived microvesicles transmit RNAs and proteins to recipient mature heart cells modulating cell fate and behavior. Stem Cells 33(9):2748–2761PubMedCrossRefGoogle Scholar
  42. 42.
    Zhou J, Ghoroghi S, Benito-Martin A, Wu H, Unachukwu UJ, Einbond LS, Guariglia S, Peinado H, Redenti S (2016) Characterization of induced pluripotent stem cell microvesicle genesis, morphology and pluripotent content. Sci Rep 6:19743PubMedPubMedCentralCrossRefGoogle Scholar
  43. 43.
    Rajasingh J, Lambers E, Hamada H, Bord E, Thorne T, Goukassian I, Krishnamurthy P, Rosen KM, Ahluwalia D, Zhu Y, Qin G, Losordo DW, Kishore R (2008) Cell-free embryonic stem cell extract-mediated derivation of multipotent stem cells from NIH3T3 fibroblasts for functional and anatomical ischemic tissue repair. Circ Res 102(11):e107–e117PubMedPubMedCentralCrossRefGoogle Scholar
  44. 44.
    Chong JJ, Yang X, Don CW, Minami E, Liu YW, Weyers JJ, Mahoney WM, Van Biber B, Cook SM, Palpant NJ, Gantz JA, Fugate JA, Muskheli V, Gough GM, Vogel KW, Astley CA, Hotchkiss CE, Baldessari A, Pabon L, Reinecke H, Gill EA, Nelson V, Kiem HP, Laflamme MA, Murry CE (2014) Human embryonic-stem-cell-derived cardiomyocytes regenerate non-human primate hearts. Nature 510(7504):273–277PubMedPubMedCentralCrossRefGoogle Scholar
  45. 45.
    Caspi O, Huber I, Kehat I, Habib M, Arbel G, Gepstein A, Yankelson L, Aronson D, Beyar R, Gepstein L (2007) Transplantation of human embryonic stem cell-derived cardiomyocytes improves myocardial performance in infarcted rat hearts. J Am Coll Cardiol 50(19):1884–1893PubMedCrossRefGoogle Scholar
  46. 46.
    Rajasingh J, Bord E, Hamada H, Lambers E, Qin G, Losordo DW, Kishore R (2007) STAT3-dependent mouse embryonic stem cell differentiation into cardiomyocytes: analysis of molecular signaling and therapeutic efficacy of cardiomyocyte precommitted mES transplantation in a mouse model of myocardial infarction. Circ Res 101(9):910–918PubMedCrossRefGoogle Scholar
  47. 47.
    Rajasingh J, Thangavel J, Siddiqui MR, Gomes I, Gao XP, Kishore R, Malik AB (2011) Improvement of cardiac function in mouse myocardial infarction after transplantation of epigenetically-modified bone marrow progenitor cells. PLoS One 6(7):e22550PubMedPubMedCentralCrossRefGoogle Scholar
  48. 48.
    Bobis-Wozowicz S, Kmiotek K, Kania K, Karnas E, Labedz-Maslowska A, Sekula M, Kedracka-Krok S, Kolcz J, Boruczkowski D, Madeja Z, Zuba-Surma EK (2017) Diverse impact of xeno-free conditions on biological and regenerative properties of hUC-MSCs and their extracellular vesicles. J Mol Med (Berlin, Germany) 95(2):205–220CrossRefGoogle Scholar
  49. 49.
    Ge X, Wang IN, Toma I, Sebastiano V, Liu J, Butte MJ, Reijo Pera RA, Yang PC (2012) Human amniotic mesenchymal stem cell-derived induced pluripotent stem cells may generate a universal source of cardiac cells. Stem Cells Dev 21(15):2798–2808PubMedPubMedCentralCrossRefGoogle Scholar
  50. 50.
    Kim PJ, Mahmoudi M, Ge X, Matsuura Y, Toma I, Metzler S, Kooreman NG, Ramunas J, Holbrook C, McConnell MV, Blau H, Harnish P, Rulifson E, Yang PC (2015) Direct evaluation of myocardial viability and stem cell engraftment demonstrates salvage of the injured myocardium. Circ Res 116(7):e40–e50PubMedPubMedCentralCrossRefGoogle Scholar
  51. 51.
    Jiang X, Sucharov J, Stauffer BL, Miyamoto SD, Sucharov CC (2017) Exosomes from pediatric dilated cardiomyopathy patients modulate a pathological response in cardiomyocytes. Am J Phys Heart Circ Phys 312(4):H818–H826. doi: 10.1152/ajpheart.00673.2016 Google Scholar
  52. 52.
    Garcia NA, Moncayo-Arlandi J, Sepulveda P, Diez-Juan A (2016) Cardiomyocyte exosomes regulate glycolytic flux in endothelium by direct transfer of GLUT transporters and glycolytic enzymes. Cardiovasc Res 109(3):397–408PubMedCrossRefGoogle Scholar
  53. 53.
    Chimenti I, Gaetani R, Barile L, Forte E, Ionta V, Angelini F, Frati G, Messina E, Giacomello A (2012) Isolation and expansion of adult cardiac stem/progenitor cells in the form of cardiospheres from human cardiac biopsies and murine hearts. Methods Mol Biol 879:327–338PubMedCrossRefGoogle Scholar
  54. 54.
    Cambier L, de Couto G, Ibrahim A, Echavez AK, Valle J, Liu W, Kreke M, Smith RR, Marban L, Marban E (2017) Y RNA fragment in extracellular vesicles confers cardioprotection via modulation of IL-10 expression and secretion. EMBO Mol Med 9(3):337–352PubMedPubMedCentralCrossRefGoogle Scholar
  55. 55.
    Shi R, Zhao L, Cai W, Wei M, Zhou X, Yang G, Yuan L (2017) Maternal exosomes in diabetes contribute to the cardiac development deficiency. Biochem Biophys Res Commun 483(1):602–608PubMedCrossRefGoogle Scholar
  56. 56.
    Gallo A, Tandon M, Alevizos I, Illei GG (2012) The majority of microRNAs detectable in serum and saliva is concentrated in exosomes. PLoS One 7(3):e30679PubMedPubMedCentralCrossRefGoogle Scholar
  57. 57.
    Kim YS, Kim JY, Cho R, Shin DM, Lee SW, Oh YM (2017) Adipose stem cell-derived nanovesicles inhibit emphysema primarily via an FGF2-dependent pathway. Exp Mol Med 49(1):e284PubMedPubMedCentralCrossRefGoogle Scholar
  58. 58.
    Pu CM, Liu CW, Liang CJ, Yen YH, Chen SH, Jiang-Shieh YF, Chien CL, Chen YC, Chen YL (2017) Adipose-derived stem cells protect skin flaps against ischemia/reperfusion injury via interleukin-6 expression. J Investig Dermatol. doi: 10.1016/j.jid.2016.12.030
  59. 59.
    Wang K, Jiang Z, Webster KA, Chen J, Hu H, Zhou Y, Zhao J, Wang L, Wang Y, Zhong Z, Ni C, Li Q, Xiang C, Zhang L, Wu R, Zhu W, Yu H, Hu X, Wang J (2016) Enhanced Cardioprotection by human endometrium mesenchymal stem cells driven by exosomal microRNA-21. Stem Cells Transl Med. doi: 10.5966/sctm.2015-0386
  60. 60.
    Timmers L, Lim SK, Arslan F, Armstrong JS, Hoefer IE, Doevendans PA, Piek JJ, El Oakley RM, Choo A, Lee CN, Pasterkamp G, de Kleijn DP (2007) Reduction of myocardial infarct size by human mesenchymal stem cell conditioned medium. Stem Cell Res 1(2):129–137PubMedCrossRefGoogle Scholar
  61. 61.
    Lai RC, Arslan F, Lee MM, Sze NS, Choo A, Chen TS, Salto-Tellez M, Timmers L, Lee CN, El Oakley RM, Pasterkamp G, de Kleijn DP, Lim SK (2010) Exosome secreted by MSC reduces myocardial ischemia/reperfusion injury. Stem Cell Res 4(3):214–222PubMedCrossRefGoogle Scholar
  62. 62.
    Sharma RR, Pollock K, Hubel A, McKenna D (2014) Mesenchymal stem or stromal cells: a review of clinical applications and manufacturing practices. Transfusion 54(5):1418–1437PubMedCrossRefGoogle Scholar
  63. 63.
    Trounson A, McDonald C (2015) Stem cell therapies in clinical trials: progress and challenges. Cell Stem Cell 17(1):11–22PubMedCrossRefGoogle Scholar
  64. 64.
    Hass R, Kasper C, Bohm S, Jacobs R (2011) Different populations and sources of human mesenchymal stem cells (MSC): a comparison of adult and neonatal tissue-derived MSC. Cell Commun Signal 9:12PubMedPubMedCentralCrossRefGoogle Scholar
  65. 65.
    Shao L, Zhang Y, Lan B, Wang J, Zhang Z, Zhang L, Xiao P, Meng Q, Geng YJ, Yu XY, Li Y (2017) MiRNA-sequence indicates that mesenchymal stem cells and exosomes have similar mechanism to enhance cardiac repair. Biomed Res Int 2017:4150705PubMedPubMedCentralGoogle Scholar
  66. 66.
    Vrijsen KR, Maring JA, Chamuleau SA, Verhage V, Mol EA, Deddens JC, Metz CH, Lodder K, van Eeuwijk EC, van Dommelen SM, Doevendans PA, Smits AM, Goumans MJ, Sluijter JP (2016) Exosomes from cardiomyocyte progenitor cells and mesenchymal stem cells stimulate angiogenesis via EMMPRIN. Adv Healthc Mater 5(19):2555–2565PubMedCrossRefGoogle Scholar
  67. 67.
    Ha D, Yang N, Nadithe V (2016) Exosomes as therapeutic drug carriers and delivery vehicles across biological membranes: current perspectives and future challenges. Acta Pharm Sin B 6(4):287–296PubMedPubMedCentralCrossRefGoogle Scholar
  68. 68.
    Raemdonck K, Braeckmans K, Demeester J, De Smedt SC (2014) Merging the best of both worlds: hybrid lipid-enveloped matrix nanocomposites in drug delivery. Chem Soc Rev 43(1):444–472PubMedCrossRefGoogle Scholar
  69. 69.
    Li C, Zhang J, Zu YJ, Nie SF, Cao J, Wang Q, Nie SP, Deng ZY, Xie MY, Wang S (2015) Biocompatible and biodegradable nanoparticles for enhancement of anti-cancer activities of phytochemicals. Chin J Nat Med 13(9):641–652PubMedGoogle Scholar
  70. 70.
    Sun D, Zhuang X, Xiang X, Liu Y, Zhang S, Liu C, Barnes S, Grizzle W, Miller D, Zhang HG (2010) A novel nanoparticle drug delivery system: the anti-inflammatory activity of curcumin is enhanced when encapsulated in exosomes. Mol Ther 18(9):1606–1614PubMedPubMedCentralCrossRefGoogle Scholar
  71. 71.
    Tian Y, Li S, Song J, Ji T, Zhu M, Anderson GJ, Wei J, Nie G (2014) A doxorubicin delivery platform using engineered natural membrane vesicle exosomes for targeted tumor therapy. Biomaterials 35(7):2383–2390PubMedCrossRefGoogle Scholar
  72. 72.
    Banizs AB, Huang T, Dryden K, Berr SS, Stone JR, Nakamoto RK, Shi W, He J (2014) In vitro evaluation of endothelial exosomes as carriers for small interfering ribonucleic acid delivery. Int J Nanomedicine 9:4223–4230PubMedPubMedCentralGoogle Scholar
  73. 73.
    Ohno SI, Takanashi M, Sudo K, Ueda S, Ishikawa A, Matsuyama N, Fujita K, Mizutani T, Ohgi T, Ochiya T, Gotoh N, Kuroda M (2013) Systemically injected exosomes targeted to EGFR deliver antitumor microRNA to breast cancer cells. Mol Ther 21(1):185–191PubMedCrossRefGoogle Scholar
  74. 74.
    Arnold AE, Czupiel P, Shoichet M (2017) Engineered polymeric nanoparticles to guide the cellular internalization and trafficking of small interfering ribonucleic acids. J Control Release. doi: 10.1016/j.jconrel.2017.02.019
  75. 75.
    Hadla M, Palazzolo S, Corona G, Caligiuri I, Canzonieri V, Toffoli G, Rizzolio F (2016) Exosomes increase the therapeutic index of doxorubicin in breast and ovarian cancer mouse models. Nanomedicine (Lond) 11(18):2431–2441CrossRefGoogle Scholar
  76. 76.
    Lekshmi KM, Che HL, Cho CS, Park IK (2017) Drug- and gene-eluting stents for preventing coronary restenosis. Chonnam Med J 53(1):14–27PubMedPubMedCentralCrossRefGoogle Scholar
  77. 77.
    Zhang Y, Li L, Yu J, Zhu D, Zhang Y, Li X, Gu H, Zhang CY, Zen K (2014) Microvesicle-mediated delivery of transforming growth factor beta1 siRNA for the suppression of tumor growth in mice. Biomaterials 35(14):4390–4400PubMedCrossRefGoogle Scholar
  78. 78.
    Kumar L, Verma S, Vaidya B, Gupta V (2015) Exosomes: natural carriers for siRNA delivery. Curr Pharm Des 21(31):4556–4565PubMedCrossRefGoogle Scholar
  79. 79.
    Lasser C (2015) Exosomes in diagnostic and therapeutic applications: biomarker, vaccine and RNA interference delivery vehicle. Expert Opin Biol Ther 15(1):103–117PubMedCrossRefGoogle Scholar
  80. 80.
    Alvarez-Erviti L, Seow Y, Yin H, Betts C, Lakhal S, Wood MJ (2011) Delivery of siRNA to the mouse brain by systemic injection of targeted exosomes. Nat Biotechnol 29(4):341–345PubMedCrossRefGoogle Scholar
  81. 81.
    Gyorgy B, Sage C, Indzhykulian AA, Scheffer DI, Brisson AR, Tan S, Wu X, Volak A, Mu D, Tamvakologos PI, Li Y, Fitzpatrick Z, Ericsson M, Breakefield XO, Corey DP, Maguire CA (2017) Rescue of hearing by gene delivery to inner-ear hair cells using exosome-associated AAV. Mol Ther 25(2):379–391PubMedCrossRefGoogle Scholar
  82. 82.
    Barile L, Vassalli G (2017) Exosomes: therapy delivery tools and biomarkers of diseases. Pharmacol Ther. doi: 10.1016/j.pharmthera.2017.02.020
  83. 83.
    Kooijmans SA, Vader P, van Dommelen SM, van Solinge WW, Schiffelers RM (2012) Exosome mimetics: a novel class of drug delivery systems. Int J Nanomedicine 7:1525–1541PubMedPubMedCentralGoogle Scholar
  84. 84.
    Edgar JR, Manna PT, Nishimura S, Banting G, Robinson MS (2016) Tetherin is an exosomal tether. elife 22:5Google Scholar
  85. 85.
    Sperry BW, Tang WH (2017) Amyloid heart disease: genetics translated into disease-modifying therapy. Heart. doi: 10.1136/heartjnl-2016-309914
  86. 86.
    Lee MJ, Park DH, Kang JH (2016) Exosomes as the source of biomarkers of metabolic diseases. Ann Pediatr Endocrinol Metab 21(3):119–125PubMedPubMedCentralCrossRefGoogle Scholar
  87. 87.
    Hoefer IE, Steffens S, Ala-Korpela M, Back M, Badimon L, Bochaton-Piallat ML, Boulanger CM, Caligiuri G, Dimmeler S, Egido J, Evans PC, Guzik T, Kwak BR, Landmesser U, Mayr M, Monaco C, Pasterkamp G, Tunon J, Weber C (2015) Novel methodologies for biomarker discovery in atherosclerosis. Eur Heart J 36(39):2635–2642PubMedCrossRefGoogle Scholar
  88. 88.
    Yuan MJ, Maghsoudi T, Wang T (2016) Exosomes mediate the intercellular communication after myocardial infarction. Int J Med Sci 13(2):113–116PubMedPubMedCentralCrossRefGoogle Scholar
  89. 89.
    Fernandez-Garcia CE, Burillo E, Lindholt JS, Martinez-Lopez D, Pilely K, Mazzeo C, Michel JB, Egido J, Garred P, Blanco-Colio LM, Martin-Ventura JL (2017) Association of ficolin-3 with abdominal aortic aneurysm presence and progression. J Thromb Haemost 15(3):575–585PubMedCrossRefGoogle Scholar
  90. 90.
    Kuwabara Y, Ono K, Horie T, Nishi H, Nagao K, Kinoshita M, Watanabe S, Baba O, Kojima Y, Shizuta S, Imai M, Tamura T, Kita T, Kimura T (2011) Increased microRNA-1 and microRNA-133a levels in serum of patients with cardiovascular disease indicate myocardial damage. Circ Cardiovasc Genet 4(4):446–454PubMedCrossRefGoogle Scholar
  91. 91.
    Liu J, Sun H, Wang X, Yu Q, Li S, Yu X, Gong W (2014) Increased exosomal microRNA-21 and microRNA-146a levels in the cervicovaginal lavage specimens of patients with cervical cancer. Int J Mol Sci 15(1):758–773PubMedPubMedCentralCrossRefGoogle Scholar
  92. 92.
    Horstman LL, Jy W, Jimenez JJ, Ahn YS (2004) Endothelial microparticles as markers of endothelial dysfunction. Front Biosci 9:1118–1135PubMedCrossRefGoogle Scholar
  93. 93.
    Garrido V, Mendoza-Torres E, Riquelme JA, Diaz A, Pizarro M, Bustamante M, Chavez MN, Ocaranza MP, Mellado R, Corbalan R, Allende ML, Lavandero S (2017) Novel therapies targeting cardioprotection and regeneration. Curr Pharm DesGoogle Scholar
  94. 94.
    Utsugi-Kobukai S, Fujimaki H, Hotta C, Nakazawa M, Minami M (2003) MHC class I-mediated exogenous antigen presentation by exosomes secreted from immature and mature bone marrow derived dendritic cells. Immunol Lett 89(2–3):125–131PubMedCrossRefGoogle Scholar
  95. 95.
    Banchereau J, Steinman RM (1998) Dendritic cells and the control of immunity. Nature 392(6673):245–252PubMedCrossRefGoogle Scholar
  96. 96.
    Kollgaard T, Enevold C, Bendtzen K, Hansen PR, Givskov M, Holmstrup P, Nielsen CH (2017) Cholesterol crystals enhance TLR2- and TLR4-mediated pro-inflammatory cytokine responses of monocytes to the proatherogenic oral bacterium Porphyromonas gingivalis. PLoS One 12(2):e0172773PubMedPubMedCentralCrossRefGoogle Scholar
  97. 97.
    Wang C, Zhang C, Liu L, A X, Chen B, Li Y, Du J (2017) Macrophage-derived mir-155-containing exosomes suppress fibroblast proliferation and promote fibroblast inflammation during cardiac injury. Mol Ther 25(1):192–204PubMedCrossRefGoogle Scholar
  98. 98.
    Sadallah S, Eken C, Schifferli JA (2011) Ectosomes as modulators of inflammation and immunity. Clin Exp Immunol 163(1):26–32PubMedPubMedCentralCrossRefGoogle Scholar
  99. 99.
    Zhao B, Zhang Y, Han S, Zhang W, Zhou Q, Guan H, Liu J, Shi J, Su L, Hu D (2017) Exosomes derived from human amniotic epithelial cells accelerate wound healing and inhibit scar formation. J Mol Histol 48(2):121–132PubMedCrossRefGoogle Scholar
  100. 100.
    Osada-Oka M, Shiota M, Izumi Y, Nishiyama M, Tanaka M, Yamaguchi T, Sakurai E, Miura K, Iwao H (2016) Macrophage-derived exosomes induce inflammatory factors in endothelial cells under hypertensive conditions. Hypertens Res 40:353–360PubMedCrossRefGoogle Scholar
  101. 101.
    Zhu YG, Hao Q, Monsel A, Feng XM, Lee JW (2013) Adult stem cells for acute lung injury: remaining questions and concerns. Respirology 18(5):744–756PubMedPubMedCentralCrossRefGoogle Scholar
  102. 102.
    Walther T, Tschope C, Sterner-Kock A, Westermann D, Heringer-Walther S, Riad A, Nikolic A, Wang Y, Ebermann L, Siems WE, Bader M, Shakibaei M, Schultheiss HP, Dorner A (2007) Accelerated mitochondrial adenosine diphosphate/adenosine triphosphate transport improves hypertension-induced heart disease. Circulation 115(3):333–344PubMedCrossRefGoogle Scholar
  103. 103.
    Roger VL, Go AS, Lloyd-Jones DM, Benjamin EJ, Berry JD, Borden WB, Bravata DM, Dai S, Ford ES, Fox CS, Fullerton HJ, Gillespie C, Hailpern SM, Heit JA, Howard VJ, Kissela BM, Kittner SJ, Lackland DT, Lichtman JH, Lisabeth LD, Makuc DM, Marcus GM, Marelli A, Matchar DB, Moy CS, Mozaffarian D, Mussolino ME, Nichol G, Paynter NP, Soliman EZ, Sorlie PD, Sotoodehnia N, Turan TN, Virani SS, Wong ND, Woo D, Turner MB (2012) Heart disease and stroke statistics—2012 update: a report from the American Heart Association. Circulation 125(1):e2–e220PubMedCrossRefGoogle Scholar
  104. 104.
    Blum B, Benvenisty N (2008) The tumorigenicity of human embryonic stem cells. Adv Cancer Res 100:133–158PubMedCrossRefGoogle Scholar
  105. 105.
    Ben-David U, Benvenisty N (2011) The tumorigenicity of human embryonic and induced pluripotent stem cells. Nat Rev Cancer 11(4):268–277PubMedCrossRefGoogle Scholar
  106. 106.
    Nussbaum J, Minami E, Laflamme MA, Virag JA, Ware CB, Masino A, Muskheli V, Pabon L, Reinecke H, Murry CE (2007) Transplantation of undifferentiated murine embryonic stem cells in the heart: teratoma formation and immune response. FASEB J 21(7):1345–1357PubMedCrossRefGoogle Scholar
  107. 107.
    Lee AS, Tang C, Cao F, Xie X, van der Bogt K, Hwang A, Connolly AJ, Robbins RC, Wu JC (2009) Effects of cell number on teratoma formation by human embryonic stem cells. Cell Cycle 8(16):2608–2612PubMedPubMedCentralCrossRefGoogle Scholar
  108. 108.
    Bian S, Zhang L, Duan L, Wang X, Min Y, Yu H (2013) Extracellular vesicles derived from human bone marrow mesenchymal stem cells promote angiogenesis in a rat myocardial infarction model. J Mol Med (Berlin, Germany). doi: 10.1007/s00109-013-1110-5
  109. 109.
    Burchfield JS, Dimmeler S (2008) Role of paracrine factors in stem and progenitor cell mediated cardiac repair and tissue fibrosis. Fibrogenesis Tissue Repair 1(1):4PubMedPubMedCentralCrossRefGoogle Scholar
  110. 110.
    Beltrami C, Besnier M, Shantikumar S, Shearn AI, Rajakaruna C, Laftah A, Sessa F, Spinetti G, Petretto E, Angelini GD, Emanueli C (2017) Human pericardial fluid contains exosomes enriched with cardiovascular-expressed microRNAs and promotes therapeutic angiogenesis. Mol Ther 25(3):679–693PubMedCrossRefGoogle Scholar
  111. 111.
    Cho HM, Kim PH, Chang HK, Shen YM, Bonsra K, Kang BJ, Yum SY, Kim JH, Lee SY, Choi MC, Kim HH, Jang G, Cho JY (2017) Targeted genome engineering to control VEGF expression in human umbilical cord blood-derived mesenchymal stem cells: potential implications for the treatment of myocardial infarction. Stem Cells Transl Med 6(3):1040–1051PubMedPubMedCentralCrossRefGoogle Scholar
  112. 112.
    Ma J, Zhao Y, Sun L, Sun X, Zhao X, Sun X, Qian H, Xu W, Zhu W (2017) Exosomes derived from Akt-modified human umbilical cord mesenchymal stem cells improve cardiac regeneration and promote angiogenesis via activating platelet-derived growth factor D. Stem Cells Transl Med 6(1):51–59PubMedCrossRefGoogle Scholar
  113. 113.
    Zhu LP, Zhou JP, Zhang JX, Wang JY, Wang ZY, Pan M, Li LF, Li CC, Wang KK, Bai YP, Zhang GG (2017) MiR-15b-5p regulates collateral artery formation by targeting AKT3 (protein kinase B-3). Arterioscler Thromb Vasc Biol 116:308905Google Scholar
  114. 114.
    Novak J, Bienertova-Vasku J, Kara T, Novak M (2014) MicroRNAs involved in the lipid metabolism and their possible implications for atherosclerosis development and treatment. Mediat Inflamm 2014:275867CrossRefGoogle Scholar
  115. 115.
    Foglio E, Puddighinu G, Fasanaro P, D'Arcangelo D, Perrone GA, Mocini D, Campanella C, Coppola L, Logozzi M, Azzarito T, Marzoli F, Fais S, Pieroni L, Marzano V, Germani A, Capogrossi MC, Russo MA, Limana F (2015) Exosomal clusterin, identified in the pericardial fluid, improves myocardial performance following MI through epicardial activation, enhanced arteriogenesis and reduced apoptosis. Int J Cardiol 197:333–347PubMedCrossRefGoogle Scholar
  116. 116.
    Malik ZA, Liu TT, Knowlton AA (2016) Cardiac myocyte exosome isolation. Methods Mol Biol 1448:237–248PubMedCrossRefGoogle Scholar
  117. 117.
    Monguio-Tortajada M, Roura S, Galvez-Monton C, Pujal JM, Aran G, Sanjurjo L, Franquesa M, Sarrias MR, Bayes-Genis A, Borras FE (2017) Nanosized UCMSC-derived extracellular vesicles but not conditioned medium exclusively inhibit the inflammatory response of stimulated T cells: implications for nanomedicine. Theranostics 7(2):270–284PubMedPubMedCentralCrossRefGoogle Scholar
  118. 118.
    Sharma S, Mishra R, Bigham GE, Wehman B, Khan MM, Xu H, Saha P, Goo YA, Datla SR, Chen L, Tulapurkar ME, Taylor BS, Yang P, Karathanasis S, Goodlett DR, Kaushal S (2017) A deep proteome analysis identifies the complete secretome as the functional unit of human cardiac progenitor cells. Circ Res 120(5):816–834PubMedCrossRefGoogle Scholar
  119. 119.
    Grigor’eva AE, Dyrkheeva NS, Bryzgunova OE, Tamkovich SN, Chelobanov BP, Ryabchikova EI (2017) [Contamination of exosome preparations, isolated from biological fluids]. Biomed Khim 63(1):91–96Google Scholar
  120. 120.
    Thomou T, Mori MA, Dreyfuss JM, Konishi M, Sakaguchi M, Wolfrum C, Rao TN, Winnay JN, Garcia-Martin R, Grinspoon SK, Gorden P, Kahn CR (2017) Adipose-derived circulating miRNAs regulate gene expression in other tissues. Nature 542(7642):450–455PubMedPubMedCentralCrossRefGoogle Scholar
  121. 121.
    Niu C, Wang X, Zhao M, Cai T, Liu P, Li J, Willard B, Zu L, Zhou E, Li Y, Pan B, Yang F, Zheng L (2016) Macrophage foam cell-derived extracellular vesicles promote vascular smooth muscle cell migration and adhesion. J Am Heart Assoc 5(10)Google Scholar
  122. 122.
    Daaboul GG, Gagni P, Benussi L, Bettotti P, Ciani M, Cretich M, Freedman DS, Ghidoni R, Ozkumur AY, Piotto C, Prosperi D, Santini B, Unlu MS, Chiari M (2016) Digital detection of exosomes by interferometric imaging. Sci Rep 6:37246PubMedPubMedCentralCrossRefGoogle Scholar
  123. 123.
    Panich T, Chancharoenthana W, Somparn P, Issara-Amphorn J, Hirankarn N, Leelahavanichkul A (2017) Urinary exosomal activating transcriptional factor 3 as the early diagnostic biomarker for sepsis-induced acute kidney injury. BMC Nephrol 18(1):10PubMedPubMedCentralCrossRefGoogle Scholar
  124. 124.
    Hung MJ, Kao YC, Chen WS, Mao CT, Chen TH, Yang NI, Ko T, Liang CY (2016) Layer-specific quantification of myocardial deformation in sepsis-induced Takotsubo cardiomyopathy: three case reports of a serial 2-dimensional speckle-tracking echocardiographic study. Medicine (Baltimore) 95(44):e5250PubMedCentralCrossRefGoogle Scholar
  125. 125.
    Manier S, Liu CJ, Avet-Loiseau H, Park J, Shi J, Campigotto F, Salem KZ, Huynh D, Glavey SV, Rivotto B, Sacco A, Roccaro AM, Bouyssou J, Minvielle S, Moreau P, Facon T, Leleu X, Weller E, Trippa L, Ghobrial IM (2017) Prognostic role of circulating exosomal miRNAs in multiple myeloma. Blood. doi: 10.1182/blood-2016-09-742296
  126. 126.
    Xiong Y, Mahmood A, Chopp M (2017) Emerging potential of exosomes for treatment of traumatic brain injury. Neural Regen Res 12(1):19–22PubMedPubMedCentralCrossRefGoogle Scholar
  127. 127.
    Lim JH, Song MK, Cho Y, Kim W, Han SO, Ryu JC (2017) Comparative analysis of microRNA and mRNA expression profiles in cells and exosomes under toluene exposure. Toxicology in Vitro 41:92–101PubMedCrossRefGoogle Scholar
  128. 128.
    Lv LL, Cao YH, Ni HF, Xu M, Liu D, Liu H, Chen PS, Liu BC (2013) MicroRNA-29c in urinary exosome/microvesicle as a biomarker of renal fibrosis. Am J Physiol Renal Physiol 305(8):F1220–F1227PubMedCrossRefGoogle Scholar
  129. 129.
    Kosaka N, Iguchi H, Ochiya T (2010) Circulating microRNA in body fluid: a new potential biomarker for cancer diagnosis and prognosis. Cancer Sci 101(10):2087–2092PubMedCrossRefGoogle Scholar
  130. 130.
    Yang C, Chalasani G, Ng YH, Robbins PD (2012) Exosomes released from mycoplasma infected tumor cells activate inhibitory B cells. PLoS One 7(4):e36138PubMedPubMedCentralCrossRefGoogle Scholar
  131. 131.
    Taylor DD, Gercel-Taylor C (2008) MicroRNA signatures of tumor-derived exosomes as diagnostic biomarkers of ovarian cancer. Gynecol Oncol 110(1):13–21PubMedCrossRefGoogle Scholar
  132. 132.
    Elfeky O, Longo S, Lai A, Rice GE, Salomon C (2017) Influence of maternal BMI on the exosomal profile during gestation and their role on maternal systemic inflammation. Placenta 50:60–69PubMedCrossRefGoogle Scholar
  133. 133.
    Powe CE (2017) Early pregnancy biochemical predictors of gestational diabetes mellitus. Curr Diab Rep 17(2):12PubMedCrossRefGoogle Scholar
  134. 134.
    Fehlert E, Willmann K, Fritsche L, Linder K, Mat-Husin H, Schleger F, Weiss M, Kiefer-Schmidt I, Brucker S, Haring HU, Preissl H, Fritsche A (2016) Gestational diabetes alters the fetal heart rate variability during an oral glucose tolerance test: a fetal magnetocardiography study. BJOG Int J Obstet Gynaecol. doi: 10.1111/1471-0528.14474

Copyright information

© Springer Nature Singapore Pte Ltd. 2017

Authors and Affiliations

  • Bahar Barani
    • 1
  • Sheeja Rajasingh
    • 1
  • Johnson Rajasingh
    • 1
    • 2
    Email author
  1. 1.Division of Cardiovascular Diseases, Department of Internal MedicineCardiovascular Research Institute, University of Kansas Medical CenterKansas CityUSA
  2. 2.Department of Biochemistry and Molecular BiologyUniversity of Kansas Medical CenterKansas CityUSA

Personalised recommendations