Therapeutic Effects of Ischemic-Preconditioned Exosomes in Cardiovascular Diseases

  • Shengguang Ding
  • Zhiqing Fan
  • Che Lin
  • Qiying Dai
  • Jinzhe Zhou
  • Haitao Huang
  • Yiming Xu
  • Chongjun ZhongEmail author
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 998)


Despite years of researches, cardiovascular disease (CVD) remains the most common cause of death around the world. Lots of studies showed that by pretreating with short nonfatal ischemia in in situ organ or distant organ, one could develop tolerance to the following fatal ischemia. The process is called ischemic preconditioning (IPC). IPC prepare the heart for damage by producing inflammatory signals, miRNA, neuro system stimulation and exosomes. Among them, exosomes have been gaining increasing interest since it is characterized by its capability to carry information and its specific ligand-receptor system. Here we will discuss IPC induced exosomes and its protective effects during ischemic heart disease.


Exosomes Ischemic preconditioning Cardiovascular diseases 



This work was supported by the grants from National Natural Science Foundation of China (81472158), and Natural Science Foundation of Shanghai (14ZR1438300).

Competing Financial Interests The authors declare no competing financial interests.


  1. 1.
    Writing Group M, Mozaffarian D, Benjamin EJ, Go AS, Arnett DK, Blaha MJ, Cushman M, Das SR, de Ferranti S, Despres JP, Fullerton HJ, Howard VJ, Huffman MD, Isasi CR, Jimenez MC, Judd SE, Kissela BM, Lichtman JH, Lisabeth LD, Liu S, Mackey RH, Magid DJ, DK MG, Mohler ER 3rd, Moy CS, Muntner P, Mussolino ME, Nasir K, Neumar RW, Nichol G, Palaniappan L, Pandey DK, Reeves MJ, Rodriguez CJ, Rosamond W, Sorlie PD, Stein J, Towfighi A, Turan TN, Virani SS, Woo D, Yeh RW, Turner MB, American Heart Association Statistics C, Stroke Statistics S (2016) Heart disease and stroke statistics-2016 update: a report from the American Heart Association. Circulation 133(4):e38–360CrossRefGoogle Scholar
  2. 2.
    Hausenloy DJ, Yellon DM (2013) Myocardial ischemia-reperfusion injury: a neglected therapeutic target. J Clin Invest 123(1):92–100CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Przyklenk K, Whittaker P (2011) Remote ischemic preconditioning: current knowledge, unresolved questions, and future priorities. J Cardiovasc Pharmacol Ther 16(3–4):255–259CrossRefPubMedGoogle Scholar
  4. 4.
    Przyklenk K (2013) Reduction of myocardial infarct size with ischemic “conditioning”: physiologic and technical considerations. Anesth Analg 117(4):891–901CrossRefPubMedGoogle Scholar
  5. 5.
    Przyklenk K, Whittaker P (2013) Genesis of remote conditioning: action at a distance—‘hypotheses non fingo’? J Cardiovasc Med 14(3):180–186CrossRefGoogle Scholar
  6. 6.
    Feng Y, Huang W, Wani M, Yu X, Ashraf M (2014) Ischemic preconditioning potentiates the protective effect of stem cells through secretion of exosomes by targeting Mecp2 via miR-22. PLoS One 9(2):e88685CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Murry CE, Jennings RB, Reimer KA (1986) Preconditioning with ischemia: a delay of lethal cell injury in ischemic myocardium. Circulation 74(5):1124–1136CrossRefPubMedGoogle Scholar
  8. 8.
    Przyklenk K, Bauer B, Ovize M, Kloner RA, Whittaker P (1993) Regional ischemic ‘preconditioning’ protects remote virgin myocardium from subsequent sustained coronary occlusion. Circulation 87(3):893–899CrossRefPubMedGoogle Scholar
  9. 9.
    Shimizu M, Tropak M, Diaz RJ, Suto F, Surendra H, Kuzmin E, Li J, Gross G, Wilson GJ, Callahan J, Redington AN (2009) Transient limb ischaemia remotely preconditions through a humoral mechanism acting directly on the myocardium: evidence suggesting cross-species protection. Clin Sci (Lond) 117(5):191–200CrossRefGoogle Scholar
  10. 10.
    Kharbanda RK, Mortensen UM, White PA, Kristiansen SB, Schmidt MR, Hoschtitzky JA, Vogel M, Sorensen K, Redington AN, MacAllister R (2002) Transient limb ischemia induces remote ischemic preconditioning in vivo. Circulation 106(23):2881–2883CrossRefPubMedGoogle Scholar
  11. 11.
    Gho BC, Schoemaker RG, van den Doel MA, Duncker DJ, Verdouw PD (1996) Myocardial protection by brief ischemia in noncardiac tissue. Circulation 94(9):2193–2200CrossRefPubMedGoogle Scholar
  12. 12.
    Pell TJ, Baxter GF, Yellon DM, Drew GM (1998) Renal ischemia preconditions myocardium: role of adenosine receptors and ATP-sensitive potassium channels. Am J Phys 275(5 Pt 2):H1542–H1547Google Scholar
  13. 13.
    Birnbaum Y, Hale SL, Kloner RA (1997) Ischemic preconditioning at a distance: reduction of myocardial infarct size by partial reduction of blood supply combined with rapid stimulation of the gastrocnemius muscle in the rabbit. Circulation 96(5):1641–1646CrossRefPubMedGoogle Scholar
  14. 14.
    Shimizu M, Konstantinov IE, Kharbanda RK, Cheung MH, Redington AN (2007) Effects of intermittent lower limb ischaemia on coronary blood flow and coronary resistance in pigs. Acta Physiol 190(2):103–109CrossRefGoogle Scholar
  15. 15.
    Zhou K, Yang B, Zhou XM, Tan CM, Zhao Y, Huang C, Liao XB, Xiao HB (2007) Effects of remote ischemic preconditioning on the flow pattern of the left anterior descending coronary artery in normal subjects. Int J Cardiol 122(3):250–251CrossRefPubMedGoogle Scholar
  16. 16.
    Dickson EW, Blehar DJ, Carraway RE, Heard SO, Steinberg G, Przyklenk K (2001) Naloxone blocks transferred preconditioning in isolated rabbit hearts. J Mol Cell Cardiol 33(9):1751–1756CrossRefPubMedGoogle Scholar
  17. 17.
    Mastitskaya S, Marina N, Gourine A, Gilbey MP, Spyer KM, Teschemacher AG, Kasparov S, Trapp S, Ackland GL, Gourine AV (2012) Cardioprotection evoked by remote ischaemic preconditioning is critically dependent on the activity of vagal pre-ganglionic neurones. Cardiovasc Res 95(4):487–494CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Tapuria N, Kumar Y, Habib MM, Abu Amara M, Seifalian AM, Davidson BR (2008) Remote ischemic preconditioning: a novel protective method from ischemia reperfusion injury—a review. J Surg Res 150(2):304–330CrossRefPubMedGoogle Scholar
  19. 19.
    Hansen PR, Thibault H, Abdulla J (2010) Postconditioning during primary percutaneous coronary intervention: a review and meta-analysis. Int J Cardiol 144(1):22–25CrossRefPubMedGoogle Scholar
  20. 20.
    Brevoord D, Kranke P, Kuijpers M, Weber N, Hollmann M, Preckel B (2012) Remote ischemic conditioning to protect against ischemia-reperfusion injury: a systematic review and meta-analysis. PLoS One 7(7):e42179CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Kolar F, Ostadal B (2004) Molecular mechanisms of cardiac protection by adaptation to chronic hypoxia. Physiol Res 53(Suppl 1):S3–13PubMedGoogle Scholar
  22. 22.
    Kristiansen SB, Henning O, Kharbanda RK, Nielsen-Kudsk JE, Schmidt MR, Redington AN, Nielsen TT, Botker HE (2005) Remote preconditioning reduces ischemic injury in the explanted heart by a KATP channel-dependent mechanism. Am J Phys Heart Circ Phys 288(3):H1252–H1256Google Scholar
  23. 23.
    Broadhead MW, Kharbanda RK, Peters MJ, MacAllister RJ (2004) KATP channel activation induces ischemic preconditioning of the endothelium in humans in vivo. Circulation 110(15):2077–2082CrossRefPubMedGoogle Scholar
  24. 24.
    Konstantinov IE, Arab S, Kharbanda RK, Li J, Cheung MM, Cherepanov V, Downey GP, Liu PP, Cukerman E, Coles JG, Redington AN (2004) The remote ischemic preconditioning stimulus modifies inflammatory gene expression in humans. Physiol Genomics 19(1):143–150CrossRefPubMedGoogle Scholar
  25. 25.
    Albrecht M, Zitta K, Bein B, Wennemuth G, Broch O, Renner J, Schuett T, Lauer F, Maahs D, Hummitzsch L, Cremer J, Zacharowski K, Meybohm P (2013) Remote ischemic preconditioning regulates HIF-1alpha levels, apoptosis and inflammation in heart tissue of cardiosurgical patients: a pilot experimental study. Basic Res Cardiol 108(1):314CrossRefPubMedGoogle Scholar
  26. 26.
    Baines CP, Goto M, Downey JM (1997) Oxygen radicals released during ischemic preconditioning contribute to cardioprotection in the rabbit myocardium. J Mol Cell Cardiol 29(1):207–216CrossRefPubMedGoogle Scholar
  27. 27.
    Lim SY, Yellon DM, Hausenloy DJ (2010) The neural and humoral pathways in remote limb ischemic preconditioning. Basic Res Cardiol 105(5):651–655CrossRefPubMedGoogle Scholar
  28. 28.
    Oxman T, Arad M, Klein R, Avazov N, Rabinowitz B (1997) Limb ischemia preconditions the heart against reperfusion tachyarrhythmia. Am J Phys 273(4):H1707–H1712Google Scholar
  29. 29.
    Ding YF, Zhang MM, He RR (2001) Role of renal nerve in cardioprotection provided by renal ischemic preconditioning in anesthetized rabbits. Sheng Li Xue Bao 53(1):7–12PubMedGoogle Scholar
  30. 30.
    Hajrasouliha AR, Tavakoli S, Ghasemi M, Jabehdar-Maralani P, Sadeghipour H, Ebrahimi F, Dehpour AR (2008) Endogenous cannabinoids contribute to remote ischemic preconditioning via cannabinoid CB2 receptors in the rat heart. Eur J Pharmacol 579(1):246–252CrossRefPubMedGoogle Scholar
  31. 31.
    Li G, Labruto F, Sirsjo A, Chen F, Vaage J, Valen G (2004) Myocardial protection by remote preconditioning: the role of nuclear factor kappa-B p105 and inducible nitric oxide synthase. Eur J Cardiothorac Surg 26(5):968–973CrossRefPubMedGoogle Scholar
  32. 32.
    Brandenburger T, Huhn R, Galas A, Pannen BH, Keitel V, Barthel F, Bauer I, Heinen A (2014) Remote ischemic preconditioning preserves Connexin 43 phosphorylation in the rat heart in vivo. J Transl Med 12(1):228CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    Heidbreder M, Naumann A, Tempel K, Dominiak P, Dendorfer A (2008) Remote vs. ischaemic preconditioning: the differential role of mitogen-activated protein kinase pathways. Cardiovasc Res 78(1):108–115CrossRefPubMedGoogle Scholar
  34. 34.
    Li J, Rohailla S, Gelber N, Rutka J, Sabah N, Gladstone RA, Wei C, Hu P, Kharbanda RK, Redington AN (2014) MicroRNA-144 is a circulating effector of remote ischemic preconditioning. Basic Res Cardiol 109(5):423CrossRefPubMedGoogle Scholar
  35. 35.
    Tong H, Chen W, Steenbergen C, Murphy E (2000) Ischemic preconditioning activates phosphatidylinositol-3-kinase upstream of protein kinase C. Circ Res 87(4):309–315CrossRefPubMedGoogle Scholar
  36. 36.
    Keller S, Sanderson MP, Stoeck A, Altevogt P (2006) Exosomes: from biogenesis and secretion to biological function. Immunol Lett 107(2):102–108CrossRefPubMedGoogle Scholar
  37. 37.
    Giricz Z, Varga ZV, Baranyai T, Sipos P, Paloczi K, Kittel A, Buzas EI, Ferdinandy P (2014) Cardioprotection by remote ischemic preconditioning of the rat heart is mediated by extracellular vesicles. J Mol Cell Cardiol 68:75–78CrossRefPubMedGoogle Scholar
  38. 38.
    Gyorgy B, Szabo TG, Pasztoi M, Pal Z, Misjak P, Aradi B, Laszlo V, Pallinger E, Pap E, Kittel A, Nagy G, Falus A, Buzas EI (2011) Membrane vesicles, current state-of-the-art: emerging role of extracellular vesicles. Cell Mol Life Sci 68(16):2667–2688CrossRefPubMedPubMedCentralGoogle Scholar
  39. 39.
    Waldenstrom A, Genneback N, Hellman U, Ronquist G (2012) Cardiomyocyte microvesicles contain DNA/RNA and convey biological messages to target cells. PLoS One 7(4):e34653CrossRefPubMedPubMedCentralGoogle Scholar
  40. 40.
    Tseliou E, Weixin L, Valle J, Sun B, Mirotsou M, Marbán E (2015) Abstract 15925: newt exosomes are bioactive on mammalian heart, enhancing proliferation of rat cardiomyocytes and improving recovery after myocardial infarction. Circulation 132(Suppl 3):A15925–A15925Google Scholar
  41. 41.
    Ailawadi S, Wang X, Gu H, Fan GC (2015) Pathologic function and therapeutic potential of exosomes in cardiovascular disease. Biochim Biophys Acta (BBA) Mol Basis Dis 1852(1):1–11CrossRefGoogle Scholar
  42. 42.
    Vicencio J, Boi-Doku C, Das D, Sivaraman V, Kearney J, Hall A, Arjun S, Zheng Y, Yellon D, Davidson S (2014) 24 protecting the heart at a distance: exosomes for nano-sized cardioprotection. Heart 100(Suppl 1):A9–A9CrossRefGoogle Scholar
  43. 43.
    Sahoo S, Losordo DW (2014) Exosomes and cardiac repair after myocardial infarction. Circ Res 114(2):333–344CrossRefPubMedGoogle Scholar
  44. 44.
    Chen L, Wang Y, Pan Y, Zhang L, Shen C, Qin G, Ashraf M, Weintraub N, Ma G, Tang Y (2013) Cardiac progenitor-derived exosomes protect ischemic myocardium from acute ischemia/reperfusion injury. Biochem Biophys Res Commun 431(3):566–571CrossRefPubMedPubMedCentralGoogle Scholar
  45. 45.
    Beyer Nardi N, da Silva ML (2006) Mesenchymal stem cells: isolation, in vitro expansion and characterization. Handb Exp Pharmacol 174:249–282CrossRefGoogle Scholar
  46. 46.
    Leroux L, Descamps B, Tojais NF, Seguy B, Oses P, Moreau C, Daret D, Ivanovic Z, Boiron JM, Lamaziere JD, Dufourcq P, Couffinhal T, Duplaa C (2010) Hypoxia preconditioned mesenchymal stem cells improve vascular and skeletal muscle fiber regeneration after ischemia through a Wnt4-dependent pathway. Mol Ther 18(8):1545–1552CrossRefPubMedPubMedCentralGoogle Scholar
  47. 47.
    Minguell JJ, Erices A (2006) Mesenchymal stem cells and the treatment of cardiac disease. Exp Biol Med 231(1):39–49CrossRefGoogle Scholar
  48. 48.
    Gnecchi M, Danieli P, Cervio E (2012) Mesenchymal stem cell therapy for heart disease. Vasc Pharmacol 57(1):48–55CrossRefGoogle Scholar
  49. 49.
    Chen TS, Lai RC, Lee MM, Choo AB, Lee CN, Lim SK (2010) Mesenchymal stem cell secretes microparticles enriched in pre-microRNAs. Nucleic Acids Res 38(1):215–224CrossRefPubMedGoogle Scholar
  50. 50.
    Huang ZP, Chen J, Seok HY, Zhang Z, Kataoka M, Hu X, Wang DZ (2013) MicroRNA-22 regulates cardiac hypertrophy and remodeling in response to stress. Circ Res 112(9):1234–1243CrossRefPubMedPubMedCentralGoogle Scholar
  51. 51.
    Mutharasan RK, Nagpal V, Ichikawa Y, Ardehali H (2011) microRNA-210 is upregulated in hypoxic cardiomyocytes through Akt- and p53-dependent pathways and exerts cytoprotective effects. Am J Phys Heart Circ Phys 301(4):H1519–H1530Google Scholar
  52. 52.
    Kim HW, Haider HK, Jiang S, Ashraf M (2009) Ischemic preconditioning augments survival of stem cells via miR-210 expression by targeting caspase-8-associated protein 2. J Biol Chem 284(48):33161–33168CrossRefPubMedGoogle Scholar
  53. 53.
    Xiong Q, Ye L, Zhang P, Lepley M, Swingen C, Zhang L, Kaufman DS, Zhang J (2012) Bioenergetic and functional consequences of cellular therapy: activation of endogenous cardiovascular progenitor cells. Circ Res 111(4):455–468CrossRefPubMedPubMedCentralGoogle Scholar
  54. 54.
    Li Y, L-b S, Zhang Y, Z-w Z, Wang J-j, B-b L, L-l Z, Zhu B, C-s H, Liang C, Pan X, Y-j G, Shen Z, Yu X-y (2016) Abstract 17615: MSC exosome mediated myocardial repair is inhibited by knockdown of Igf-1 signaling pathway through CRISPR/Cas9 genome editing. Circulation 134(Suppl 1):A17615–A17615Google Scholar
  55. 55.
    Zheng Y, Vicencio JM, Yellon DM, Davidson SM (2014) 27 exosomes released from endothelial cells are cardioprotective. Heart 100(Suppl 1):A10–A10CrossRefGoogle Scholar
  56. 56.
    Ong SG, Lee WH, Huang M, Dey D, Kodo K, Sanchez-Freire V, Gold JD, Wu JC (2014) Cross talk of combined gene and cell therapy in ischemic heart disease: role of exosomal microRNA transfer. Circulation 130(11 Suppl 1):S60–S69CrossRefPubMedPubMedCentralGoogle Scholar
  57. 57.
    Bulteau AL, Lundberg KC, Humphries KM, Sadek HA, Szweda PA, Friguet B, Szweda LI (2001) Oxidative modification and inactivation of the proteasome during coronary occlusion/reperfusion. J Biol Chem 276(32):30057–30063CrossRefPubMedGoogle Scholar
  58. 58.
    Lai RC, Yeo RW, Tan KH, Lim SK (2013) Mesenchymal stem cell exosome ameliorates reperfusion injury through proteomic complementation. Regen Med 8(2):197–209CrossRefPubMedGoogle Scholar
  59. 59.
    Powell SR, Divald A (2010) The ubiquitin-proteasome system in myocardial ischaemia and preconditioning. Cardiovasc Res 85(2):303–311CrossRefPubMedGoogle Scholar
  60. 60.
    Divald A, Kivity S, Wang P, Hochhauser E, Roberts B, Teichberg S, Gomes AV, Powell SR (2010) Myocardial ischemic preconditioning preserves postischemic function of the 26S proteasome through diminished oxidative damage to 19S regulatory particle subunits. Circ Res 106(12):1829–1838CrossRefPubMedGoogle Scholar
  61. 61.
    Churchill EN, Ferreira JC, Brum PC, Szweda LI, Mochly-Rosen D (2010) Ischaemic preconditioning improves proteasomal activity and increases the degradation of deltaPKC during reperfusion. Cardiovasc Res 85(2):385–394CrossRefPubMedGoogle Scholar
  62. 62.
    Powell SR, Wang P, Katzeff H, Shringarpure R, Teoh C, Khaliulin I, Das DK, Davies KJ, Schwalb H (2005) Oxidized and ubiquitinated proteins may predict recovery of postischemic cardiac function: essential role of the proteasome. Antioxid Redox Signal 7(5–6):538–546CrossRefPubMedGoogle Scholar
  63. 63.
    Sixt SU, Dahlmann B (2008) Extracellular, circulating proteasomes and ubiquitin—incidence and relevance. Biochim Biophys Acta (BBA) Mol Basis Dis 1782(12):817–823CrossRefGoogle Scholar
  64. 64.
    Zoeger A, Blau M, Egerer K, Feist E, Dahlmann B (2006) Circulating proteasomes are functional and have a subtype pattern distinct from 20S proteasomes in major blood cells. Clin Chem 52(11):2079–2086CrossRefPubMedGoogle Scholar
  65. 65.
    Egerer K, Kuckelkorn U, Rudolph PE, Ruckert JC, Dorner T, Burmester GR, Kloetzel PM, Feist E (2002) Circulating proteasomes are markers of cell damage and immunologic activity in autoimmune diseases. J Rheumatol 29(10):2045–2052PubMedGoogle Scholar
  66. 66.
    Lai RC, Tan SS, Teh BJ, Sze SK, Arslan F, de Kleijn DP, Choo A, Lim SK (2012) Proteolytic potential of the MSC exosome proteome: implications for an exosome-mediated delivery of therapeutic proteasome. Int J Proteomics 2012:971907CrossRefPubMedPubMedCentralGoogle Scholar
  67. 67.
    Zhang J, Li S, Li L, Li M, Guo C, Yao J, Mi S (2015) Exosome and exosomal microRNA: trafficking, sorting, and function. Genomics Proteomics Bioinformatics 13(1):17–24CrossRefPubMedPubMedCentralGoogle Scholar
  68. 68.
    Ha D, Yang N, Nadithe V (2016) Exosomes as therapeutic drug carriers and delivery vehicles across biological membranes: current perspectives and future challenges. Acta Pharm Sin B 6(4):287–296CrossRefPubMedPubMedCentralGoogle Scholar
  69. 69.
    Munson P, Shukla A (2015) Exosomes: potential in cancer diagnosis and therapy. Medicine 2(4):310–327Google Scholar
  70. 70.
    Lee AS, Tang C, Rao MS, Weissman IL, Wu JC (2013) Tumorigenicity as a clinical hurdle for pluripotent stem cell therapies. Nat Med 19(8):998–1004CrossRefPubMedPubMedCentralGoogle Scholar
  71. 71.
    Boulanger CM, Loyer X, Rautou PE, Amabile N (2017) Extracellular vesicles in coronary artery disease. Nat Rev Cardiol. doi: 10.1038/nrcardio.2017.7
  72. 72.
    Bergmann O, Bhardwaj RD, Bernard S, Zdunek S, Barnabe-Heider F, Walsh S, Zupicich J, Alkass K, Buchholz BA, Druid H, Jovinge S, Frisen J (2009) Evidence for cardiomyocyte renewal in humans. Science 324(5923):98–102CrossRefPubMedPubMedCentralGoogle Scholar
  73. 73.
    Graham E, Bergmann O (2017) Dating the heart: exploring cardiomyocyte renewal in humans. Physiology 32(1):33–41CrossRefPubMedGoogle Scholar
  74. 74.
    Lai RC, Chen TS, Lim SK (2011) Mesenchymal stem cell exosome: a novel stem cell-based therapy for cardiovascular disease. Regen Med 6(4):481–492CrossRefPubMedGoogle Scholar
  75. 75.
    Sahoo S, Mathiyalagan P, Hajjar RJ (2017) Pericardial fluid exosomes: a new material to treat cardiovascular disease. Mol Ther 25(3):568–569CrossRefPubMedGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2017

Authors and Affiliations

  • Shengguang Ding
    • 1
  • Zhiqing Fan
    • 2
  • Che Lin
    • 3
  • Qiying Dai
    • 4
    • 5
  • Jinzhe Zhou
    • 3
  • Haitao Huang
    • 1
  • Yiming Xu
    • 1
  • Chongjun Zhong
    • 1
    Email author
  1. 1.Department of Thoracic and Cardiovascular SurgeryThe Second Affiliated Hospital of Nantong UniversityNantongChina
  2. 2.Department of CardiologyDaqing Qilfield General HospitalDaqingChina
  3. 3.Department of CardiologyTongji Hospital, Tongji University School of MedicineShanghaiChina
  4. 4.Metrowest Medical CenterFraminghamUSA
  5. 5.Department of CardiologyFirst Affiliated Hospital of Nanjing Medical UniversityNanjingChina

Personalised recommendations