Cardiac Telocyte-Derived Exosomes and Their Possible Implications in Cardiovascular Pathophysiology

  • Mirca Marini
  • Lidia Ibba-Manneschi
  • Mirko ManettiEmail author
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 998)


Among cardiac interstitial cells, the recently described telocytes (TCs) display the unique ability to build a supportive three-dimensional network formed by their very long and thin prolongations named telopodes. Cardiac TCs are increasingly regarded as pivotal regulators in intercellular signaling with multiple cell types, such as cardiomyocytes, stem/progenitor cells, microvessels, nerve endings, fibroblasts and immune cells, thus converting the cardiac stromal compartment into an integrated system that may drive either heart development or maintenance of cardiac homeostasis in post-natal life. Besides direct intercellular communications between TCs and neighboring cells, different types of TC-released extracellular vesicles (EVs), namely exosomes, ectosomes and multivesicular cargos, may act as shuttles for paracrine molecular signal exchange between cardiac TCs and cardiomyocytes or putative cardiomyocyte progenitors. In this review, we summarize the recent research findings on cardiac TCs and their EVs. We first provide an overview of the general features of TCs, including their peculiar morphological traits and immunophenotypes, intercellular signaling mechanisms and possible functional roles. Thereafter, we describe the distribution of TCs in normal and diseased hearts, as well as their role as intercellular communicators via the release of exosomes and other types of EVs. Finally, the involvement of cardiac TCs in cardiovascular diseases and the potential utility of TC transplantation and TC-derived exosomes in cardiac regeneration and repair are discussed.


Cardiac stromal cells Cardiovascular diseases Exosomes Extracellular vesicles Telocytes 


  1. 1.
    Vader P, Breakefield XO, Wood MJ (2014) Extracellular vesicles: emerging targets for cancer therapy. Trends Mol Med 20(7):385–393CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Cretoiu D, Xu J, Xiao J, Cretoiu SM (2016) Telocytes and their extracellular vesicles—evidence and hypotheses. Int J Mol Sci 17(8):1322CrossRefPubMedCentralGoogle Scholar
  3. 3.
    Corrado C, Raimondo S, Chiesi A, Ciccia F, De Leo G, Alessandro R (2013) Exosomes as intercellular signaling organelles involved in health and disease: basic science and clinical applications. Int J Mol Sci 14(3):5338–5366CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Ratajczak J, Wysoczynski M, Hayek F, Janowska-Wieczorek A, Ratajczak MZ (2006) Membrane-derived microvesicles: important and underappreciated mediators of cell-to-cell communication. Leukemia 20(9):1487–1495CrossRefPubMedGoogle Scholar
  5. 5.
    Camussi G, Deregibus MC, Bruno S, Cantaluppi V, Biancone L (2010) Exosomes/microvesicles as a mechanism of cell-to-cell communication. Kidney Int 78(9):838–848CrossRefPubMedGoogle Scholar
  6. 6.
    Emanueli C, Shearn AI, Angelini GD, Sahoo S (2015) Exosomes and exosomal miRNAs in cardiovascular protection and repair. Vasc Pharmacol 71:24–30CrossRefGoogle Scholar
  7. 7.
    EL Andaloussi S, Mäger I, Breakefield XO, Wood MJ (2013) Extracellular vesicles: biology and emerging therapeutic opportunities. Nat Rev Drug Discov 12(5):347–357CrossRefPubMedGoogle Scholar
  8. 8.
    Zhang B, Yeo RW, Tan KH, Lim SK (2016) Focus on extracellular vesicles: therapeutic potential of stem cell-derived extracellular vesicles. Int J Mol Sci 17(2):174CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Batrakova EV, Kim MS (2015) Using exosomes, naturally-equipped nanocarriers, for drug delivery. J Control Release 219:396–405CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Ren J, He W, Zheng L, Duan H (2016) From structures to functions: insights into exosomes as promising drug delivery vehicles. Biomater Sci 4(6):910–921CrossRefPubMedGoogle Scholar
  11. 11.
    Zhang Y, Hu YW, Zheng L, Wang Q (2017) Characteristics and roles of exosomes in cardiovascular disease. DNA Cell Biol 36(3):202–211CrossRefPubMedGoogle Scholar
  12. 12.
    Ratajczak MZ, Ratajczak D, Pedziwiatr D (2016) Extracellular microvesicles (ExMVs) in cell to cell communication: a role of telocytes. Adv Exp Med Biol 913:41–49CrossRefPubMedGoogle Scholar
  13. 13.
    Popescu LM, Faussone-Pellegrini MS (2010) Telocytes—a case of serendipity: the winding way from interstitial cells of Cajal (ICC), via interstitial Cajal-like cells (ICLC) to telocytes. J Cell Mol Med 14(4):729–740CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Cretoiu SM, Popescu LM (2014) Telocytes revisited. Biomol Concepts 5(5):353–369CrossRefPubMedGoogle Scholar
  15. 15.
    Faussone-Pellegrini MS, Gherghiceanu M (2016) Telocyte’s contacts. Semin Cell Dev Biol 55:3–8CrossRefPubMedGoogle Scholar
  16. 16.
    Bani D (2016) Telocytes in cardiac tissue architecture and development. Adv Exp Med Biol 913:127–137CrossRefPubMedGoogle Scholar
  17. 17.
    Popescu LM, Manole CG, Gherghiceanu M, Ardelean A, Nicolescu MI, Hinescu ME, Kostin S (2010) Telocytes in human epicardium. J Cell Mol Med 14(8):2085–2093CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Gherghiceanu M, Manole CG, Popescu LM (2010) Telocytes in endocardium: electron microscope evidence. J Cell Mol Med 14(9):2330–2334CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Kostin S, Popescu LM (2009) A distinct type of cell in myocardium: interstitial Cajal-like cells (ICLCs). J Cell Mol Med 13(2):295–308CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Kostin S (2010) Myocardial telocytes: a specific new cellular entity. J Cell Mol Med 14(7):1917–1921CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Bani D, Formigli L, Gherghiceanu M, Faussone-Pellegrini MS (2010) Telocytes as supporting cells for myocardial tissue organization in developing and adult heart. J Cell Mol Med 14(10):2531–2538CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Yang Y, Sun W, Wu SM, Xiao J, Kong X (2014) Telocytes in human heart valves. J Cell Mol Med 18(5):759–765CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Gherghiceanu M, Popescu LM (2012) Cardiac telocytes—their junctions and functional implications. Cell Tissue Res 348(2):265–279CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Rusu MC, Pop F, Hostiuc S, Curca GC, Jianu AM, Paduraru D (2012) Telocytes form networks in normal cardiac tissues. Histol Histopathol 27(6):807–816PubMedGoogle Scholar
  25. 25.
    Fertig ET, Gherghiceanu M, Popescu LM (2015) Extracellular vesicles release by cardiac telocytes: electron microscopy and electron tomography. J Cell Mol Med 18(10):1938–1943CrossRefGoogle Scholar
  26. 26.
    Bei Y, Zhou Q, Sun Q, Xiao J (2016) Telocytes in cardiac regeneration and repair. Semin Cell Dev Biol 55:14–21CrossRefPubMedGoogle Scholar
  27. 27.
    Gherghiceanu M, Popescu LM (2010) Cardiomyocyte precursors and telocytes in epicardial stem cell niche: electron microscope images. J Cell Mol Med 14(4):871–877CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Popescu LM, Gherghiceanu M, Manole CG, Faussone-Pellegrini MS (2009) Cardiac renewing: interstitial Cajal-like cells nurse cardiomyocyte progenitors in epicardial stem cell niches. J Cell Mol Med 13(5):866–886CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Ibba-Manneschi L, Rosa I, Manetti M (2016) Telocyte implications in human pathology: an overview. Semin Cell Dev Biol 55:62–69CrossRefPubMedGoogle Scholar
  30. 30.
    Zhao B, Chen S, Liu J, Yuan Z, Qi X, Qin J, Zheng X, Shen X, Yu Y, Qnin TJ, Chan JY, Cai D (2013) Cardiac telocytes were decreased during myocardial infarction and their therapeutic effects for ischaemic heart in rat. J Cell Mol Med 17(1):123–133CrossRefPubMedGoogle Scholar
  31. 31.
    Xiao J, Bei Y (2016) Decoding telocytes. Adv Exp Med Biol 913:23–39CrossRefPubMedGoogle Scholar
  32. 32.
    Faussone-Pellegrini MS, Popescu LM (2011) Telocytes. Biomol Concepts 2(6):481–489PubMedGoogle Scholar
  33. 33.
    Cismaşiu VB, Popescu LM (2015) Telocytes transfer extracellular vesicles loaded with microRNAs to stem cells. J Cell Mol Med 19(2):351–358CrossRefPubMedPubMedCentralGoogle Scholar
  34. 34.
    Vannucchi MG, Traini C, Manetti M, Ibba-Manneschi L, Faussone-Pellegrini MS (2013) Telocytes express PDGFRα in the human gastrointestinal tract. J Cell Mol Med 17(9):1099–1108CrossRefPubMedPubMedCentralGoogle Scholar
  35. 35.
    Zhou Q, Wei L, Zhong C, Fu S, Bei Y, Huică RI, Wang F, Xiao J (2015) Cardiac telocytes are double positive for CD34/PDGFR-α. J Cell Mol Med 19(8):2036–2042CrossRefPubMedPubMedCentralGoogle Scholar
  36. 36.
    Vannucchi MG, Faussone-Pellegrini MS (2016) The telocyte subtypes. Adv Exp Med Biol 913:115–126CrossRefPubMedGoogle Scholar
  37. 37.
    Cretoiu D, Radu BM, Banciu A, Banciu DD, Cretoiu SM (2016) Telocytes heterogeneity: from cellular morphology to functional evidence. Semin Cell Dev Biol 64:26–39CrossRefPubMedGoogle Scholar
  38. 38.
    Chang Y, Li C, Lu Z, Li H, Guo Z (2015) Multiple immunophenotypes of cardiac telocytes. Exp Cell Res 338(2):239–244CrossRefPubMedGoogle Scholar
  39. 39.
    Sun X, Zheng M, Zhang M, Qian M, Zheng Y, Li M, Cretoiu D, Chen C, Chen L, Popescu LM, Wang X (2014) Differences in the expression of chromosome 1 genes between lung telocytes and other cells: mesenchymal stem cells, fibroblasts, alveolar type II cells, airway epithelial cells and lymphocytes. J Cell Mol Med 18(5):801–810CrossRefPubMedPubMedCentralGoogle Scholar
  40. 40.
    Zheng Y, Cretoiu D, Yan G, Cretoiu SM, Popescu LM, Wang X (2014) Comparative proteomic analysis of human lung telocytes with fibroblasts. J Cell Mol Med 18(4):568–589CrossRefPubMedPubMedCentralGoogle Scholar
  41. 41.
    Albulescu R, Tanase C, Codrici E, Popescu DI, Cretoiu SM, Popescu LM (2015) The secretome of myocardial telocytes modulates the activity of cardiac stem cells. J Cell Mol Med 19(8):1783–1794CrossRefPubMedPubMedCentralGoogle Scholar
  42. 42.
    Cismaşiu VB, Radu E, Popescu LM (2011) miR-193 expression differentiates telocytes from other stromal cells. J Cell Mol Med 15(5):1071–1074CrossRefPubMedPubMedCentralGoogle Scholar
  43. 43.
    Zheng Y, Zhang M, Qian M, Wang L, Cismasiu VB, Bai C, Popescu LM, Wang X (2013) Genetic comparison of mouse lung telocytes with mesenchymal stem cells and fibroblasts. J Cell Mol Med 17(4):567–577CrossRefPubMedPubMedCentralGoogle Scholar
  44. 44.
    Yoon YJ, Kim OY, Gho YS (2014) Extracellular vesicles as emerging intercellular communicasomes. BMB Rep 47(10):531–539CrossRefPubMedPubMedCentralGoogle Scholar
  45. 45.
    Diaz-Flores L, Gutierrez R, Garcia MP, Sáez FJ, Díaz-Flores L Jr, Valladares F, Madrid JF (2014) CD34+ stromal cells/fibroblasts/fibrocytes/telocytes as a tissue reserve and a principal source of mesenchymal cells. Location, morphology, function and role in pathology. Histol Histopathol 29(7):831–870PubMedGoogle Scholar
  46. 46.
    Ibba-Manneschi L, Rosa I, Manetti M (2016) Telocytes in chronic inflammatory and fibrotic diseases. Adv Exp Med Biol 913:51–76CrossRefPubMedGoogle Scholar
  47. 47.
    Kostin S (2016) Cardiac telocytes in normal and diseased hearts. Semin Cell Dev Biol 55:22–30CrossRefPubMedGoogle Scholar
  48. 48.
    Zheng Y, Bai C, Wang X (2012) Telocyte morphologies and potential roles in diseases. J Cell Physiol 227(6):2311–2317CrossRefPubMedGoogle Scholar
  49. 49.
    Manetti M, Rosa I, Messerini L, Ibba-Manneschi L (2015) Telocytes are reduced during fibrotic remodelling of the colonic wall in ulcerative colitis. J Cell Mol Med 19(1):62–73CrossRefPubMedGoogle Scholar
  50. 50.
    Milia AF, Ruffo M, Manetti M, Rosa I, Conte D, Fazi M, Messerini L, Ibba-Manneschi L (2013) Telocytes in Crohn’s disease. J Cell Mol Med 17(12):1525–1536CrossRefPubMedPubMedCentralGoogle Scholar
  51. 51.
    Manetti M, Guiducci S, Ruffo M, Rosa I, Faussone-Pellegrini MS, Matucci-Cerinic M, Ibba-Manneschi L (2013) Evidence for progressive reduction and loss of telocytes in the dermal cellular network of systemic sclerosis. J Cell Mol Med 17(4):482–496CrossRefPubMedPubMedCentralGoogle Scholar
  52. 52.
    Fu S, Wang F, Cao Y, Huang Q, Xiao J, Yang C, Popescu LM (2015) Telocytes in human liver fibrosis. J Cell Mol Med 19(3):676–683CrossRefPubMedPubMedCentralGoogle Scholar
  53. 53.
    Bei Y, Wang F, Yang C, Xiao J (2015) Telocytes in regenerative medicine. J Cell Mol Med 19(7):1441–1454CrossRefPubMedPubMedCentralGoogle Scholar
  54. 54.
    Faussone-Pellegrini MS, Bani D (2010) Relationships between telocytes and cardiomyocytes during pre- and post-natal life. J Cell Mol Med 14(5):1061–1063PubMedPubMedCentralGoogle Scholar
  55. 55.
    Popescu LM, Curici A, Wang E, Zhang H, Hu S, Gherghiceanu M (2015) Telocytes and putative stem cells in ageing human heart. J Cell Mol Med 19(1):31–45CrossRefPubMedGoogle Scholar
  56. 56.
    Xiao J, Chen P, Qu Y, Yu P, Yao J, Wang H, Fu S, Bei Y, Chen Y, Che L, Xu J (2016) Telocytes in exercise-induced cardiac growth. J Cell Mol Med 20(5):973–979CrossRefPubMedPubMedCentralGoogle Scholar
  57. 57.
    Niculite CM, Regalia TM, Gherghiceanu M, Huica R, Surcel M, Ursaciuc C, Leabu M, Popescu LM (2015) Dynamics of telopodes (telocyte prolongations) in cell culture depends on extracellular matrix protein. Mol Cell Biochem 398(1–2):157–164CrossRefPubMedGoogle Scholar
  58. 58.
    Bei Y, Zhou Q, Fu S, Lv D, Chen P, Chen Y, Wang F, Xiao J (2015) Cardiac telocytes and fibroblasts in primary culture: different morphologies and immunophenotypes. PLoS One 10(2):e0115991CrossRefPubMedPubMedCentralGoogle Scholar
  59. 59.
    Cretoiu D, Hummel E, Zimmermann H, Gherghiceanu M, Popescu LM (2014) Human cardiac telocytes: 3D imaging by FIB-SEM tomography. J Cell Mol Med 18(11):2157–2164CrossRefPubMedPubMedCentralGoogle Scholar
  60. 60.
    Gherghiceanu M, Popescu LM (2011) Heterocellular communication in the heart: electron tomography of telocyte-myocyte junctions. J Cell Mol Med 15(4):1005–1011CrossRefPubMedPubMedCentralGoogle Scholar
  61. 61.
    Shim W (2016) Myocardial telocytes: a new player in electric circuitry of the heart. Adv Exp Med Biol 913:241–251CrossRefPubMedGoogle Scholar
  62. 62.
    Zhou J, Zhang Y, Wen X, Cao J, Li D, Lin Q, Wang H, Liu Z, Duan C, Wu K, Wang C (2010) Telocytes accompanying cardiomyocyte in primary culture: two- and three-dimensional culture environment. J Cell Mol Med 14(11):2641–2645CrossRefPubMedPubMedCentralGoogle Scholar
  63. 63.
    Popescu LM, Fertig ET, Gherghiceanu M (2016) Reaching out: junctions between cardiac telocytes and cardiac stem cells in culture. J Cell Mol Med 20(2):370–380CrossRefPubMedGoogle Scholar
  64. 64.
    Hosoda T, Zheng H, Cabral-da-Silva M, Sanada F, Ide-Iwata N, Ogórek B, Ferreira-Martins J, Arranto C, D’Amario D, del Monte F, Urbanek K, D'Alessandro DA, Michler RE, Anversa P, Rota M, Kajstura J, Leri A (2011) Human cardiac stem cell differentiation is regulated by a mircrine mechanism. Circulation 123(12):1287–1296CrossRefPubMedPubMedCentralGoogle Scholar
  65. 65.
    Lai RC, Arslan F, Lee MM, Sze NS, Choo A, Chen TS, Salto-Tellez M, Timmers L, Lee CN, El Oakley RM, Pasterkamp G, de Kleijn DP, Lim SK (2010) Exosome secreted by MSC reduces myocardial ischemia/reperfusion injury. Stem Cell Res 4(3):214–222CrossRefPubMedGoogle Scholar
  66. 66.
    Richter M, Kostin S (2015) The failing human heart is characterized by decreased numbers of telocytes as result of apoptosis and altered extracellular matrix composition. J Cell Mol Med 19(11):2597–2606CrossRefPubMedPubMedCentralGoogle Scholar
  67. 67.
    Mandache E, Gherghiceanu M, Macarie C, Kostin S, Popescu LM (2010) Telocytes in human isolated atrial amyloidosis: ultrastructural remodelling. J Cell Mol Med 14(12):2739–2747CrossRefPubMedPubMedCentralGoogle Scholar
  68. 68.
    Zhao B, Liao Z, Chen S, Yuan Z, Yilin C, Lee KK, Qi X, Shen X, Zheng X, Quinn T, Cai D (2014) Intramyocardial transplantation of cardiac telocytes decreases myocardial infarction and improves post-infarcted cardiac function in rats. J Cell Mol Med 18(5):780–789CrossRefPubMedPubMedCentralGoogle Scholar
  69. 69.
    Miao Q, Shim W, Tee N, Lim SY, Chung YY, Ja KP, Ooi TH, Tan G, Kong G, Wei H, Lim CH, Sin YK, Wong P (2014) iPSC-derived human mesenchymal stem cells improve myocardial strain of infarcted myocardium. J Cell Mol Med 18(8):1644–1654CrossRefPubMedPubMedCentralGoogle Scholar
  70. 70.
    Manole CG, Cismaşiu V, Gherghiceanu M, Popescu LM (2011) Experimental acute myocardial infarction: telocytes involvement in neo-angiogenesis. J Cell Mol Med 15(11):2284–2296CrossRefPubMedPubMedCentralGoogle Scholar
  71. 71.
    Zhou J, Wang Y, Zhu P, Sun H, Mou Y, Duan C, Yao A, Lv S, Wang C (2014) Distribution and characteristics of telocytes as nurse cells in the architectural organization of engineered heart tissues. Sci China Life Sci 57(2):241–247CrossRefPubMedGoogle Scholar
  72. 72.
    Ong SG, Wu JC (2015) Exosomes as potential alternatives to stem cell therapy in mediating cardiac regeneration. Circ Res 117(1):7–9CrossRefPubMedPubMedCentralGoogle Scholar
  73. 73.
    Barile L, Lionetti V, Cervio E, Matteucci M, Gherghiceanu M, Popescu LM, Torre T, Siclari F, Moccetti T, Vassalli G (2014) Extracellular vesicles from human cardiac progenitor cells inhibit cardiomyocyte apoptosis and improve cardiac function after myocardial infarction. Cardiovasc Res 103(4):530–541CrossRefPubMedGoogle Scholar
  74. 74.
    Wang Y, Zhang L, Li Y, Chen L, Wang X, Guo W, Zhang X, Qin G, He SH, Zimmerman A, Liu Y, Kim IM, Weintraub NL, Tang Y (2015) Exosomes/microvesicles from induced pluripotent stem cells deliver cardioprotective miRNAs and prevent cardiomyocyte apoptosis in the ischemic myocardium. Int J Cardiol 192:61–69CrossRefPubMedPubMedCentralGoogle Scholar
  75. 75.
    Khan M, Nickoloff E, Abramova T, Johnson J, Verma SK, Krishnamurthy P, Mackie AR, Vaughan E, Garikipati VN, Benedict C, Ramirez V, Lambers E, Ito A, Gao E, Misener S, Luongo T, Elrod J, Qin G, Houser SR, Koch WJ, Kishore R (2015) Embryonic stem cell-derived exosomes promote endogenous repair mechanisms and enhance cardiac function following myocardial infarction. Circ Res 117(1):52–64CrossRefPubMedPubMedCentralGoogle Scholar
  76. 76.
    Teng X, Chen L, Chen W, Yang J, Yang Z, Shen Z (2015) Mesenchymal stem cell-derived exosomes improve the microenvironment of infarcted myocardium contributing to angiogenesis and anti-inflammation. Cell Physiol Biochem 37(6):2415–2424CrossRefPubMedGoogle Scholar
  77. 77.
    Chistiakov DA, Orekhov AN, Bobryshev YV (2016) Cardiac extracellular vesicles in normal and infarcted heart. Int J Mol Sci 17(1):63CrossRefPubMedCentralGoogle Scholar
  78. 78.
    Ibrahim AG, Cheng K, Marban E (2014) Exosomes as critical agents of cardiac regeneration triggered by cell therapy. Stem Cell Reports 2(5):606–619CrossRefPubMedPubMedCentralGoogle Scholar
  79. 79.
    Ong SG, Lee WH, Huang M, Dey D, Kodo K, Sanchez-Freire V, Gold JD, Wu JC (2014) Cross talk of combined gene and cell therapy in ischemic heart disease: role of exosomal microRNA transfer. Circulation 130(11 Suppl 1):S60–S69CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2017

Authors and Affiliations

  • Mirca Marini
    • 1
  • Lidia Ibba-Manneschi
    • 1
  • Mirko Manetti
    • 1
    Email author
  1. 1.Section of Anatomy and Histology, Department of Experimental and Clinical MedicineUniversity of FlorenceFlorenceItaly

Personalised recommendations