Advertisement

Cardiac Progenitor-Cell Derived Exosomes as Cell-Free Therapeutic for Cardiac Repair

  • E. A. Mol
  • M. J. Goumans
  • J. P. G. SluijterEmail author
Chapter
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 998)

Abstract

Cardiac progenitor cells (CPCs) have emerged as potential therapy to improve cardiac repair and prevent damage in cardiac diseases. CPCs are a promising cell source for cardiac therapy as they can generate all cardiovascular lineages in vitro and in vivo. Originating from the heart itself, CPCs may be destined to activate endogenous repair mechanisms. These CPCs release paracrine molecules that are able to stimulate cardiac repair mechanisms, including stimulation of vessel formation and inhibition of cardiomyocyte apoptosis. In addition to proteins and growth factors, CPCs release extracellular membrane vesicles, such as exosomes, which have gained increasing interest in recent years. Exosomal-derived miRNAs have been indicated to play an important role in these processes. Hereby, CPC exosomes can be considered as potential off-the-shelf therapeutics, as they are able to stimulate the regenerative capacity of the heart by increasing vessel density and lowering apoptosis of cardiomyocytes.

Keywords

CPC Extracellular vesicles Exosomes Cardiac repair 

Notes

Acknowledgements

EAM is funded by the Project SMARTCARE-II of the BioMedical Materials institute, co-funded by the ZonMw-TAS program (#116002016), the Netherlands Organization for Health Research and Development, the Dutch Ministry of Economic Affairs, Agriculture and Innovation and the Netherlands Cardio Vascular Research Initiative (CVON): the Dutch Heart Foundation, Royal Netherlands Academy of Sciences, and the Dutch Federations of University Medical Centers.JS received a Horizon 2020 ERC-2016-COG grant, called EVICARE (725229).

References

  1. 1.
    Thom T, Haase N, Rosamond W, Howard VJ, Rumsfeld J, Manolio T, Zheng ZJ, Flegal K, O'Donnell C, Kittner S, Lloyd-Jones D, Goff DC Jr, Hong Y, Adams R, Friday G, Furie K, Gorelick P, Kissela B, Marler J, Meigs J, Roger V, Sidney S, Sorlie P, Steinberger J, Wasserthiel-Smoller S, Wilson M, Wolf P, American Heart Association Statistics C, Stroke Statistics S (2006) Heart disease and stroke statistics—2006 update: a report from the American Heart Association Statistics Committee and Stroke Statistics Subcommittee. Circulation 113(6):e85–151CrossRefPubMedGoogle Scholar
  2. 2.
    Frangogiannis NG (2012) Regulation of the inflammatory response in cardiac repair. Circ Res 110(1):159–173CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Kain V, Prabhu SD, Halade GV (2014) Inflammation revisited: inflammation versus resolution of inflammation following myocardial infarction. Basic Res Cardiol 109(6):444CrossRefPubMedGoogle Scholar
  4. 4.
    van Nieuwenhoven FA, Turner NA (2013) The role of cardiac fibroblasts in the transition from inflammation to fibrosis following myocardial infarction. Vasc Pharmacol 58(3):182–188CrossRefGoogle Scholar
  5. 5.
    Tonnesen MG, Feng X, Clark RA (2000) Angiogenesis in wound healing. J Investig Dermatol Symp Proc 5(1):40–46CrossRefPubMedGoogle Scholar
  6. 6.
    van der Laan AM, Piek JJ, van Royen N (2009) Targeting angiogenesis to restore the microcirculation after reperfused MI. Nat Rev Cardiol 6(8):515–523CrossRefPubMedGoogle Scholar
  7. 7.
    Velagaleti RS, Pencina MJ, Murabito JM, Wang TJ, Parikh NI, D'Agostino RB, Levy D, Kannel WB, Vasan RS (2008) Long-term trends in the incidence of heart failure after myocardial infarction. Circulation 118(20):2057–2062CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Birks EJ (2010) Left ventricular assist devices. Heart 96(1):63–71CrossRefPubMedGoogle Scholar
  9. 9.
    Oberpriller JO, Oberpriller JC, Mauro A (1991) Cell division in adult newt cardiac myocytes. In: The development and regenerative potential of cardiac muscle. Harwood Academic Press, New York, London, Paris, pp 293–312Google Scholar
  10. 10.
    Poss KD, Wilson LG, Keating MT (2002) Heart regeneration in zebrafish. Science 298(5601):2188–2190CrossRefPubMedGoogle Scholar
  11. 11.
    Lepilina A, Coon AN, Kikuchi K, Holdway JE, Roberts RW, Burns CG, Poss KD (2006) A dynamic epicardial injury response supports progenitor cell activity during zebrafish heart regeneration. Cell 127(3):607–619CrossRefPubMedGoogle Scholar
  12. 12.
    Beltrami AP, Urbanek K, Kajstura J, Yan SM, Finato N, Bussani R, Nadal-Ginard B, Silvestri F, Leri A, Beltrami CA, Anversa P (2001) Evidence that human cardiac myocytes divide after myocardial infarction. N Engl J Med 344(23):1750–1757CrossRefPubMedGoogle Scholar
  13. 13.
    Bergmann O, Bhardwaj RD, Bernard S, Zdunek S, Barnabe-Heider F, Walsh S, Zupicich J, Alkass K, Buchholz BA, Druid H, Jovinge S, Frisen J (2009) Evidence for cardiomyocyte renewal in humans. Science 324(5923):98–102CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Bergmann O, Zdunek S, Alkass K, Druid H, Bernard S, Frisen J (2011) Identification of cardiomyocyte nuclei and assessment of ploidy for the analysis of cell turnover. Exp Cell Res 317(2):188–194CrossRefPubMedGoogle Scholar
  15. 15.
    Bergmann O, Zdunek S, Felker A, Salehpour M, Alkass K, Bernard S, Sjostrom SL, Szewczykowska M, Jackowska T, Dos Remedios C, Malm T, Andra M, Jashari R, Nyengaard JR, Possnert G, Jovinge S, Druid H, Frisen J (2015) Dynamics of cell generation and turnover in the human heart. Cell 161(7):1566–1575CrossRefPubMedGoogle Scholar
  16. 16.
    Haubner BJ, Schneider J, Schweigmann U, Schuetz T, Dichtl W, Velik-Salchner C, Stein JI, Penninger JM (2016) Functional recovery of a human neonatal heart after severe myocardial infarction. Circ Res 118(2):216–221CrossRefPubMedGoogle Scholar
  17. 17.
    Tomita S, Li RK, Weisel RD, Mickle DA, Kim EJ, Sakai T, Jia ZQ (1999) Autologous transplantation of bone marrow cells improves damaged heart function. Circulation 100(19 Suppl):II247–II256PubMedGoogle Scholar
  18. 18.
    Orlic D, Kajstura J, Chimenti S, Jakoniuk I, Anderson SM, Li B, Pickel J, McKay R, Nadal-Ginard B, Bodine DM, Leri A, Anversa P (2001) Bone marrow cells regenerate infarcted myocardium. Nature 410(6829):701–705CrossRefPubMedGoogle Scholar
  19. 19.
    Strauer BE, Brehm M, Zeus T, Kostering M, Hernandez A, Sorg RV, Kogler G, Wernet P (2002) Repair of infarcted myocardium by autologous intracoronary mononuclear bone marrow cell transplantation in humans. Circulation 106(15):1913–1918CrossRefPubMedGoogle Scholar
  20. 20.
    Friedenstein AJ, Chailakhyan RK, Gerasimov UV (1987) Bone marrow osteogenic stem cells: in vitro cultivation and transplantation in diffusion chambers. Cell Tissue Kinet 20(3):263–272PubMedGoogle Scholar
  21. 21.
    Pittenger MF, Mackay AM, Beck SC, Jaiswal RK, Douglas R, Mosca JD, Moorman MA, Simonetti DW, Craig S, Marshak DR (1999) Multilineage potential of adult human mesenchymal stem cells. Science 284(5411):143–147CrossRefPubMedGoogle Scholar
  22. 22.
    Sensebe L, Bourin P, Tarte K (2011) Good manufacturing practices production of mesenchymal stem/stromal cells. Hum Gene Ther 22(1):19–26CrossRefPubMedGoogle Scholar
  23. 23.
    van der Spoel TI, Jansen of Lorkeers SJ, Agostoni P, van Belle E, Gyöngyösi M, Sluijter JP, Cramer MJ, Doevendans PA, Chamuleau SA (2011) Human relevance of pre-clinical studies in stem cell therapy: systematic review and meta-analysis of large animal models of ischaemic heart disease. Cardiovasc Res 91(4):649–658CrossRefPubMedGoogle Scholar
  24. 24.
    de Jong R, Houtgraaf JH, Samiei S, Boersma E, Duckers HJ (2014) Intracoronary stem cell infusion after acute myocardial infarction: a meta-analysis and update on clinical trials. Circ Cardiovasc Interv 7(2):156–167CrossRefPubMedGoogle Scholar
  25. 25.
    Noort WA, Feye DDAF, Stecher D, Chamuleau SA, Sluijter JP, Doevendans PA (2010) Mesenchymal stromal cells to treat cardiovascular disease: strategies to improve survival and therapeutic results. Panminerva Med 52(1):27–40PubMedGoogle Scholar
  26. 26.
    Oh H, Bradfute SB, Gallardo TD, Nakamura T, Gaussin V, Mishina Y, Pocius J, Michael LH, Behringer RR, Garry DJ, Entman ML, Schneider MD (2003) Cardiac progenitor cells from adult myocardium: homing, differentiation, and fusion after infarction. Proc Natl Acad Sci U S A 100(21):12313–12318CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Goumans MJ, de Boer TP, Smits AM, van Laake LW, Van VP, Metz CH, Korfage TH, Kats KP, Hochstenbach R, Pasterkamp G (2008) TGF-beta1 induces efficient differentiation of human cardiomyocyte progenitor cells into functional cardiomyocytes in vitro. Stem Cell Res 1(2):138–149CrossRefGoogle Scholar
  28. 28.
    Smith RR, Barile L, Cho HC, Leppo MK, Hare JM, Messina E, Giacomello A, Abraham MR, Marbán E (2007) Regenerative potential of cardiosphere-derived cells expanded from percutaneous endomyocardial biopsy specimens. Circulation 115(7):896–908CrossRefPubMedGoogle Scholar
  29. 29.
    Messina E, De Angelis L, Frati G, Morrone S, Chimenti S, Fiordaliso F, Salio M, Battaglia M, Latronico MV, Coletta M (2004) Isolation and expansion of adult cardiac stem cells from human and murine heart. Circ Res 95:911–921CrossRefPubMedGoogle Scholar
  30. 30.
    Zwi L, Caspi O, Arbel G, Huber I, Gepstein A, Park IH, Gepstein L (2009) Cardiomyocyte differentiation of human induced pluripotent stem cells. Circulation 120(15):1513–1523CrossRefPubMedGoogle Scholar
  31. 31.
    Singla DK, Long X, Glass C, Singla RD, Yan B (2011) Induced pluripotent stem (iPS) cells repair and regenerate infarcted myocardium. Mol Pharm 8(5):1573–1581CrossRefPubMedGoogle Scholar
  32. 32.
    Madonna R, Van Laake LW, Davidson SM, Engel FB, Hausenloy DJ, Lecour S, Leor J, Perrino C, Schulz R, Ytrehus K, Landmesser U, Mummery CL, Janssens S, Willerson J, Eschenhagen T, Ferdinandy P, Sluijter JP (2016) Position paper of the European Society of Cardiology Working Group Cellular Biology of the Heart: cell-based therapies for myocardial repair and regeneration in ischemic heart disease and heart failure. Eur Heart J 37(23):1789–1798CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    Feyen DA, Gaetani R, Deddens J, Van Keulen D, Van Opbergen C, Poldervaart M, Alblas J, Chamuleau S, van Laake LW, Doevendans PA (2016) Gelatin microspheres as vehicle for cardiac progenitor cells delivery to the myocardium. Adv Healthc Mater 5(9):1071–1079CrossRefPubMedGoogle Scholar
  34. 34.
    Beltrami AP, Barlucchi L, Torella D, Baker M, Limana F, Chimenti S, Kasahara H, Rota M, Musso E, Urbanek K (2003) Adult cardiac stem cells are multipotent and support myocardial regeneration. Cell 114(6):763–776CrossRefPubMedGoogle Scholar
  35. 35.
    van Vliet P, Roccio M, Smits AM, van Oorschot AA, Metz CH, van Veen TA, Sluijter JP, Doevendans PA, Goumans MJ (2008) Progenitor cells isolated from the human heart: a potential cell source for regenerative therapy. Neth Hear J 16(5):163–169CrossRefGoogle Scholar
  36. 36.
    Smits AM, van Laake LW, den Ouden K, Schreurs C, Szuhai K, van Echteld CJ, Mummery CL, Doevendans PA, Goumans MJ (2009) Human cardiomyocyte progenitor cell transplantation preserves long-term function of the infarcted mouse myocardium. Cardiovasc Res 83(3):527–535CrossRefPubMedGoogle Scholar
  37. 37.
    Tang XL, Rokosh G, Sanganalmath SK, Yuan F, Sato H, Mu J, Dai S, Li C, Chen N, Peng Y, Dawn B, Hunt G, Leri A, Kajstura J, Tiwari S, Shirk G, Anversa P, Bolli R (2010) Intracoronary administration of cardiac progenitor cells alleviates left ventricular dysfunction in rats with a 30-day-old infarction. Circulation 121(2):293–305CrossRefPubMedPubMedCentralGoogle Scholar
  38. 38.
    Chen L, Wang Y, Pan Y, Zhang L, Shen C, Qin G, Ashraf M, Weintraub N, Ma G, Tang Y (2013) Cardiac progenitor-derived exosomes protect ischemic myocardium from acute ischemia/reperfusion injury. Biochem Biophys Res Commun 431(3):566–571CrossRefPubMedPubMedCentralGoogle Scholar
  39. 39.
    Barile L, Lionetti V, Cervio E, Matteucci M, Gherghiceanu M, Popescu LM, Torre T, Siclari F, Moccetti T, Vassalli G (2014) Extracellular vesicles from human cardiac progenitor cells inhibit cardiomyocyte apoptosis and improve cardiac function after myocardial infarction. Cardiovasc Res 103(4):530–541CrossRefPubMedGoogle Scholar
  40. 40.
    Fischer KM, Cottage CT, Wu W, Din S, Gude NA, Avitable D, Quijada P, Collins BL, Fransioli J, Sussman MA (2011) Enhancement of myocardial regeneration through genetic engineering of cardiac progenitor cells expressing Pim-1 kinase. Circulation 120(120):2077–2087Google Scholar
  41. 41.
    Feyen D, Gaetani R, Liu J, Noort W, Martens A, Den OK, Doevendans PA, Sluijter JP (2013) Increasing short-term cardiomyocyte progenitor cell (CMPC) survival by necrostatin-1 did not further preserve cardiac function. Cardiovasc Res 99(1):83–91CrossRefPubMedGoogle Scholar
  42. 42.
    van den Akker F, Feyen DA, van den Hoogen P, van Laake LW, van Eeuwijk EC, Hoefer I, Pasterkamp G, Chamuleau SA, Grundeman PF, Doevendans PA, Sluijter JP (2017) Intramyocardial stem cell injection: go(ne) with the flow. Eur Heart J 38(3):184–186PubMedGoogle Scholar
  43. 43.
    Chimenti I, Smith RR, Li TS, Gerstenblith G, Messina E, Giacomello A, Marban E (2010) Relative roles of direct regeneration versus paracrine effects of human cardiosphere-derived cells transplanted into infarcted mice. Circ Res 106(5):971–U304CrossRefPubMedPubMedCentralGoogle Scholar
  44. 44.
    Gaetani R, Feyen DAM, Doevendans PA, Gremmels H, Forte E, Fledderus JO, Ramjankhan FZ, Messina E, Sussman MA, Giacomello A, Sluijter JPG (2014) Different types of cultured human adult cardiac progenitor cells have a high degree of transcriptome similarity. J Cell Mol Med 18(11):2147–2151CrossRefPubMedPubMedCentralGoogle Scholar
  45. 45.
    Dey D, Han L, Bauer M, Sanada F, Oikonomopoulos A, Hosoda T, Unno K, Almeida PD, Leri A, Wu JC (2013) Dissecting the molecular relationship among various cardiogenic progenitor cells novelty and significance. Circ Res 112(9):1253CrossRefPubMedPubMedCentralGoogle Scholar
  46. 46.
    Zwetsloot PP, Vegh AM, Jansen of Lorkeers SJ, van Hout GP, Currie GL, Sena ES, Gremmels H, Buikema JW, Goumans MJ, Macleod MR, Doevendans PA, Chamuleau SA, Sluijter JP (2016) Cardiac stem cell treatment in myocardial infarction: a systematic review and meta-analysis of preclinical studies. Circ Res 118(8):1223–1232CrossRefPubMedGoogle Scholar
  47. 47.
    Bolli R, Chugh AR, D’Amario D, Loughran JH, Stoddard MF, Ikram S, Beache GM, Wagner SG, Leri A, Hosoda T, Sanada F, Elmore JB, Goichberg P, Cappetta D, Solankhi NK, Fahsah I, Rokosh DG, Slaughter MS, Kajstura J, Anversa P (2011) Cardiac stem cells in patients with ischaemic cardiomyopathy (SCIPIO): initial results of a randomised phase 1 trial. Lancet 378(9806):1847–1857CrossRefPubMedPubMedCentralGoogle Scholar
  48. 48.
    Malliaras K, Makkar RR, Smith RR, Cheng K, Wu E, Bonow RO, Marban L, Mendizabal A, Cingolani E, Johnston PV, Gerstenblith G, Schuleri KH, Lardo AC, Marban E (2014) Intracoronary cardiosphere-derived cells after myocardial infarction: evidence of therapeutic regeneration in the final 1-year results of the CADUCEUS trial (CArdiosphere-Derived aUtologous stem CElls to reverse ventricUlar dySfunction). J Am Coll Cardiol 63(2):110–122CrossRefPubMedGoogle Scholar
  49. 49.
    den Haan MC, Grauss RW, Smits AM, Winter EM, van Tuyn J, Pijnappels DA, Steendijk P, Gittenberger-De Groot AC, van der Laarse A, Fibbe WE, de Vries AA, Schalij MJ, Doevendans PA, Goumans MJ, Atsma DE (2012) Cardiomyogenic differentiation-independent improvement of cardiac function by human cardiomyocyte progenitor cell injection in ischaemic mouse hearts. J Cell Mol Med 16(7):1508–1521CrossRefGoogle Scholar
  50. 50.
    Timmers L, Lim SK, Hoefer IE, Arslan F, Lai RC, van Oorschot AA, Goumans MJ, Strijder C, Sze SK, Choo A, Piek JJ, Doevendans PA, Pasterkamp G, de Kleijn DP (2011) Human mesenchymal stem cell-conditioned medium improves cardiac function following myocardial infarction. Stem Cell Res 6(3):206–214CrossRefPubMedGoogle Scholar
  51. 51.
    Vrijsen KR, Sluijter JP, Schuchardt MW, van Balkom BW, Noort WA, Chamuleau SA, Doevendans PA (2010) Cardiomyocyte progenitor cell-derived exosomes stimulate migration of endothelial cells. J Cell Mol Med 14(5):1064–1070PubMedPubMedCentralGoogle Scholar
  52. 52.
    Ibrahim AGE, Cheng K, Marban E (2014) Exosomes as critical agents of cardiac regeneration triggered by cell therapy. Stem Cell Reports 2(5):606–619CrossRefPubMedPubMedCentralGoogle Scholar
  53. 53.
    Deddens JC, Colijn JM, Oerlemans MIFJ, Pasterkamp G, Chamuleau SA, Doevendans PA, Sluijter JPG (2013) Circulating microRNAs as novel biomarkers for the early diagnosis of acute coronary syndrome. J Cardiovasc Transl Res 6(6):884–898CrossRefPubMedGoogle Scholar
  54. 54.
    Lai RC, Arslan F, Lee MM, Sze NS, Choo A, Chen TS, Salto-Tellez M, Timmers L, Lee CN, El Oakley RM, Pasterkamp G, de Kleijn DP, Lim SK (2010) Exosome secreted by MSC reduces myocardial ischemia/reperfusion injury. Stem Cell Res 4(3):214–222CrossRefPubMedGoogle Scholar
  55. 55.
    Sahoo S, Klychko E, Thorne T, Misener S, Schultz KM, Millay M, Ito A, Liu T, Kamide C, Agrawal H, Perlman H, Qin GJ, Kishore R, Losordo DW (2011) Exosomes from human CD34(+) stem cells mediate their proangiogenic paracrine activity. Circ Res 109(7):724–U735CrossRefPubMedPubMedCentralGoogle Scholar
  56. 56.
    Mackie AR, Klyachko E, Thorne T, Schultz KM, Millay M, Ito A, Kamide CE, Liu T, Gupta R, Sahoo S (2012) Sonic hedgehog modified human CD34+ cells preserve cardiac function following acute myocardial infarction. Circ Res 111(3):312–321CrossRefPubMedPubMedCentralGoogle Scholar
  57. 57.
    Arslan F, Lai RC, Smeets MB, Akeroyd L, Choo A, Aguor EN, Timmers L, van Rijen HV, Doevendans PA, Pasterkamp G, Lim SK, de Kleijn DP (2013) Mesenchymal stem cell-derived exosomes increase ATP levels, decrease oxidative stress and activate PI3K/Akt pathway to enhance myocardial viability and prevent adverse remodeling after myocardial ischemia/reperfusion injury. Stem Cell Res 10(3):301–312CrossRefPubMedGoogle Scholar
  58. 58.
    Xiao J, Pan Y, Li XH, Yang XY, Feng YL, Tan HH, Jiang L, Feng J, Yu XY (2015) Cardiac progenitor cell-derived exosomes prevent cardiomyocytes apoptosis through exosomal miR-21 by targeting PDCD4. Cell Death Dis 7(6):e2277CrossRefGoogle Scholar
  59. 59.
    François M, Romieu-Mourez R, Li M, Galipeau J (2011) Human MSC suppression correlates with cytokine induction of indoleamine 2,3-dioxygenase and bystander M2 macrophage differentiation. Mol Ther 20(20):187–195PubMedGoogle Scholar
  60. 60.
    Gray WD, French KM, Ghosh-Choudhary S, Maxwell JT, Brown ME, Platt MO, Searles CD, Davis ME (2015) Identification of therapeutic covariant microRNA clusters in hypoxia-treated cardiac progenitor cell exosomes using systems biology. Circ Res 116(2):255–U119CrossRefPubMedGoogle Scholar
  61. 61.
    Sluijter JP, van Rooij E (2015) Exosomal microRNA clusters are important for the therapeutic effect of cardiac progenitor cells. Circ Res 116(2):219–221CrossRefPubMedGoogle Scholar
  62. 62.
    Vrijsen KR, Maring JA, Chamuleau SA, Verhage V, Mol EA, Deddens JC, Metz CH, Lodder K, van Eeuwijk EC, van Dommelen SM, Doevendans PA, Smits AM, Goumans MJ, Sluijter JP (2016) Exosomes from cardiomyocyte progenitor cells and mesenchymal stem cells stimulate angiogenesis via EMMPRIN. Adv Healthc Mater 5(19):2555–2565CrossRefPubMedGoogle Scholar
  63. 63.
    Lai CP, Mardini O, Ericsson M, Prabhakar S, Maguire CA, Chen JW, Tannous BA, Breakefield XO (2014) Dynamic biodistribution of extracellular vesicles in vivo using a multimodal imaging reporter. ACS Nano 8(1):483–494CrossRefPubMedPubMedCentralGoogle Scholar
  64. 64.
    Alvarez-Erviti L, Seow Y, Yin H, Betts C, Lakhal S, Wood MJ (2011) Delivery of siRNA to the mouse brain by systemic injection of targeted exosomes. Nat Biotechnol 29(4):341–345CrossRefPubMedGoogle Scholar
  65. 65.
    Zhuang X, Xiang X, Grizzle W, Sun D, Zhang S, Axtell RC, Ju S, Mu J, Zhang L, Steinman L, Miller D, Zhang HG (2011) Treatment of brain inflammatory diseases by delivering exosome encapsulated anti-inflammatory drugs from the nasal region to the brain. Mol Ther 19(10):1769–1779CrossRefPubMedPubMedCentralGoogle Scholar
  66. 66.
    Mol EA, Goumans MJ, Doevendans PA, Sluijter JPG, Vader P (2017) Higher functionality of extracellular vesicles isloated using size-exclusion chromatography compared to ultracetrifugation. Nanomedicine. doi: 10.1016/j.nano.2017.03.011

Copyright information

© Springer Nature Singapore Pte Ltd. 2017

Authors and Affiliations

  • E. A. Mol
    • 1
  • M. J. Goumans
    • 2
  • J. P. G. Sluijter
    • 1
    • 3
    • 4
    Email author
  1. 1.Department of Cardiology, Laboratory of Experimental CardiologyUniversity Medical Center UtrechtUtrechtThe Netherlands
  2. 2.Department of Molecular Cell BiologyLeiden University Medical CenterLeidenThe Netherlands
  3. 3.UMC Utrecht Regenerative Medicine CenterUniversity Medical CenterUtrechtThe Netherlands
  4. 4.Netherlands Heart InstituteUtrechtThe Netherlands

Personalised recommendations