Advertisement

Exosomes Derived from Embryonic Stem Cells as Potential Treatment for Cardiovascular Diseases

  • Yao-Hua Song
  • Lianbo Shao
  • Yu Zhang
  • Jin Zhou
  • Bin Liu
  • Xiangbin Pan
  • Yong-jian Geng
  • Xi-yong Yu
  • Yangxin LiEmail author
Chapter
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 998)

Abstract

Cardiovascular diseases resulting from ischemic heart diseases remain to be the main causes of heart failure and death despite significant advances in medical treatment. The development of new therapies for heart failure is thus required to improve the outcome in these patients, and this has led to the development of cell-based therapies. Animal studies showed interesting results using various cell types. Some stem cell based therapies have been tested in clinical trials. Although the results were encouraging, challenges remain. Tumorigenic potential, immune rejection, and low engraftment and survival rate of transplant cells have hindered the widespread application of stem cells in the clinic. Fortunately, exosome based therapy could avoid these problems associated with cell therapy. Future research should focus on how various molecules are sorted into exosomes and this information will help to design better exosomes for treatment of cardiovascular diseases. Recent studies suggest that exosome content can vary depending on how cells are challenged. It would be important to find out exactly what types of cellular stress is needed for producing most useful exosomes. Alternatively, specific molecules can be introduced into exosomes by genetic engineering in order to treat specific conditions and to improve efficacy.

Keywords

Heart failure Stem cell Exosome 

References

  1. 1.
    Williams AR, Hatzistergos KE, Addicott B, McCall F, Carvalho D, Suncion V, Morales AR, Da Silva J, Sussman MA, Heldman AW, Hare JM (2013) Enhanced effect of combining human cardiac stem cells and bone marrow mesenchymal stem cells to reduce infarct size and to restore cardiac function after myocardial infarction. Circulation 127(2):213–223PubMedCrossRefGoogle Scholar
  2. 2.
    Bolli R, Tang XL, Sanganalmath SK, Rimoldi O, Mosna F, Abdel-Latif A, Jneid H, Rota M, Leri A, Kajstura J (2013) Intracoronary delivery of autologous cardiac stem cells improves cardiac function in a porcine model of chronic ischemic cardiomyopathy. Circulation 128(2):122–131PubMedCrossRefGoogle Scholar
  3. 3.
    Makkar RR, Smith RR, Cheng K, Malliaras K, Thomson LE, Berman D, Czer LS, Marban L, Mendizabal A, Johnston PV, Russell SD, Schuleri KH, Lardo AC, Gerstenblith G, Marban E (2012) Intracoronary cardiosphere-derived cells for heart regeneration after myocardial infarction (CADUCEUS): a prospective, randomised phase 1 trial. Lancet 379(9819):895–904PubMedPubMedCentralCrossRefGoogle Scholar
  4. 4.
    Moon SH, Kang SW, Park SJ, Bae D, Kim SJ, Lee HA, Kim KS, Hong KS, Kim JS, Do JT, Byun KH, Chung HM (2013) The use of aggregates of purified cardiomyocytes derived from human ESCs for functional engraftment after myocardial infarction. Biomaterials 34(16):4013–4026PubMedCrossRefGoogle Scholar
  5. 5.
    Chong JJ, Yang X, Don CW, Minami E, Liu YW, Weyers JJ, Mahoney WM, Van Biber B, Cook SM, Palpant NJ, Gantz JA, Fugate JA, Muskheli V, Gough GM, Vogel KW, Astley CA, Hotchkiss CE, Baldessari A, Pabon L, Reinecke H, Gill EA, Nelson V, Kiem HP, Laflamme MA, Murry CE (2014) Human embryonic-stem-cell-derived cardiomyocytes regenerate non-human primate hearts. Nature 510(7504):273–277PubMedPubMedCentralCrossRefGoogle Scholar
  6. 6.
    Zhang L, Guo J, Zhang P, Xiong Q, SC W, Xia L, Roy SS, Tolar J, O'Connell TD, Kyba M, Liao K, Zhang J (2015) Derivation and high engraftment of patient-specific cardiomyocyte sheet using induced pluripotent stem cells generated from adult cardiac fibroblast. Circ Heart Fail 8(1):156–166PubMedCrossRefGoogle Scholar
  7. 7.
    Sanganalmath SK, Bolli R (2013) Cell therapy for heart failure: a comprehensive overview of experimental and clinical studies, current challenges, and future directions. Circ Res 113(6):810–834PubMedPubMedCentralCrossRefGoogle Scholar
  8. 8.
    Prowse AB, Timmins NE, Yau TM, Li RK, Weisel RD, Keller G, Zandstra PW (2014) Transforming the promise of pluripotent stem cell-derived cardiomyocytes to a therapy: challenges and solutions for clinical trials. Can J Cardiol 30(11):1335–1349PubMedCrossRefGoogle Scholar
  9. 9.
    Tseliou E, Fouad J, Reich H, Slipczuk L, de Couto G, Aminzadeh M, Middleton R, Valle J, Weixin L, Marban E (2015) Fibroblasts rendered Antifibrotic, Antiapoptotic, and Angiogenic by priming with cardiosphere-derived extracellular membrane vesicles. J Am Coll Cardiol 66(6):599–611PubMedPubMedCentralCrossRefGoogle Scholar
  10. 10.
    Vandergriff AC, de Andrade JB, Tang J, Hensley MT, Piedrahita JA, Caranasos TG, Cheng K (2015) Intravenous cardiac stem cell-derived exosomes ameliorate cardiac dysfunction in doxorubicin induced dilated cardiomyopathy. Stem Cells Int 2015:960926PubMedPubMedCentralCrossRefGoogle Scholar
  11. 11.
    Li Y, Shen Z, XY Y (2015) Transport of microRNAs via exosomes. Nat Rev Cardiol 12(4):198PubMedCrossRefGoogle Scholar
  12. 12.
    Garcia NA, Moncayo-Arlandi J, Sepulveda P, Diez-Juan A (2016) Cardiomyocyte exosomes regulate glycolytic flux in endothelium by direct transfer of GLUT transporters and glycolytic enzymes. Cardiovasc Res 109(3):397–408PubMedCrossRefGoogle Scholar
  13. 13.
    Thery C, Zitvogel L, Amigorena S (2002) Exosomes: composition, biogenesis and function. Nat Rev Immunol 2(8):569–579PubMedGoogle Scholar
  14. 14.
    Ibrahim AG, Cheng K, Marban E (2014) Exosomes as critical agents of cardiac regeneration triggered by cell therapy. Stem Cell Reports 2(5):606–619PubMedPubMedCentralCrossRefGoogle Scholar
  15. 15.
    Bian S, Zhang L, Duan L, Wang X, Min Y, Yu H (2014) Extracellular vesicles derived from human bone marrow mesenchymal stem cells promote angiogenesis in a rat myocardial infarction model. J Mol Med (Berlin, Germany) 92(4):387–397CrossRefGoogle Scholar
  16. 16.
    Arslan F, Lai RC, Smeets MB, Akeroyd L, Choo A, Aguor EN, Timmers L, van Rijen HV, Doevendans PA, Pasterkamp G, Lim SK, de Kleijn DP (2013) Mesenchymal stem cell-derived exosomes increase ATP levels, decrease oxidative stress and activate PI3K/Akt pathway to enhance myocardial viability and prevent adverse remodeling after myocardial ischemia/reperfusion injury. Stem Cell Res 10(3):301–312PubMedCrossRefGoogle Scholar
  17. 17.
    Barile L, Lionetti V, Cervio E, Matteucci M, Gherghiceanu M, Popescu LM, Torre T, Siclari F, Moccetti T, Vassalli G (2014) Extracellular vesicles from human cardiac progenitor cells inhibit cardiomyocyte apoptosis and improve cardiac function after myocardial infarction. Cardiovasc Res 103(4):530–541PubMedCrossRefGoogle Scholar
  18. 18.
    Li T, Yan Y, Wang B, Qian H, Zhang X, Shen L, Wang M, Zhou Y, Zhu W, Li W, Xu W (2013) Exosomes derived from human umbilical cord mesenchymal stem cells alleviate liver fibrosis. Stem Cells Dev 22(6):845–854PubMedCrossRefGoogle Scholar
  19. 19.
    Khan M, Nickoloff E, Abramova T, Johnson J, Verma SK, Krishnamurthy P, Mackie AR, Vaughan E, Garikipati VN, Benedict C, Ramirez V, Lambers E, Ito A, Gao E, Misener S, Luongo T, Elrod J, Qin G, Houser SR, Koch WJ, Kishore R (2015) Embryonic stem cell-derived exosomes promote endogenous repair mechanisms and enhance cardiac function following myocardial infarction. Circ Res 117(1):52–64PubMedPubMedCentralCrossRefGoogle Scholar
  20. 20.
    Chen L, Wang Y, Pan Y, Zhang L, Shen C, Qin G, Ashraf M, Weintraub N, Ma G, Tang Y (2013) Cardiac progenitor-derived exosomes protect ischemic myocardium from acute ischemia/reperfusion injury. Biochem Biophys Res Commun 431(3):566–571PubMedPubMedCentralCrossRefGoogle Scholar
  21. 21.
    Lai RC, Tan SS, Teh BJ, Sze SK, Arslan F, de Kleijn DP, Choo A, Lim SK (2012) Proteolytic potential of the MSC exosome proteome: implications for an exosome-mediated delivery of therapeutic proteasome. Int J Proteomics 2012:971907PubMedPubMedCentralCrossRefGoogle Scholar
  22. 22.
    Yan B, Singla RD, Abdelli LS, Singal PK, Singla DK (2013) Regulation of PTEN/Akt pathway enhances cardiomyogenesis and attenuates adverse left ventricular remodeling following thymosin beta4 overexpressing embryonic stem cell transplantation in the infarcted heart. PLoS One 8(9):e75580PubMedPubMedCentralCrossRefGoogle Scholar
  23. 23.
    Knoepfler PS (2009) Deconstructing stem cell tumorigenicity: a roadmap to safe regenerative medicine. Stem Cells 27(5):1050–1056PubMedPubMedCentralCrossRefGoogle Scholar
  24. 24.
    Hamidi S, Letourneur D, Aid-Launais R, Di Stefano A, Vainchenker W, Norol F, Le Visage C (2014) Fucoidan promotes early step of cardiac differentiation from human embryonic stem cells and long-term maintenance of beating areas. Tissue Eng Part A 20(7–8):1285–1294PubMedPubMedCentralCrossRefGoogle Scholar
  25. 25.
    Don CW, Murry CE (2013) Improving survival and efficacy of pluripotent stem cell-derived cardiac grafts. J Cell Mol Med 17(11):1355–1362PubMedPubMedCentralCrossRefGoogle Scholar
  26. 26.
    Lalit PA, Hei DJ, Raval AN, Kamp TJ (2014) Induced pluripotent stem cells for post-myocardial infarction repair: remarkable opportunities and challenges. Circ Res 114(8):1328–1345PubMedPubMedCentralCrossRefGoogle Scholar
  27. 27.
    Takahashi K, Yamanaka S (2006) Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell 126(4):663–676PubMedCrossRefGoogle Scholar
  28. 28.
    Takahashi K, Tanabe K, Ohnuki M, Narita M, Ichisaka T, Tomoda K, Yamanaka S (2007) Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell 131(5):861–872PubMedCrossRefGoogle Scholar
  29. 29.
    Singla DK, Long X, Glass C, Singla RD, Yan B (2011) Induced pluripotent stem (iPS) cells repair and regenerate infarcted myocardium. Mol Pharm 8(5):1573–1581PubMedCrossRefGoogle Scholar
  30. 30.
    Xu JY, Lee YK, Ran X, Liao SY, Yang J, KW A, Lai WH, Esteban MA, Tse HF (2016) Generation of induced cardiospheres via reprogramming of skin fibroblasts for myocardial regeneration. Stem Cells. doi: 10.1002/stem.2438
  31. 31.
    Garbern JC, Lee RT (2013) Cardiac stem cell therapy and the promise of heart regeneration. Cell Stem Cell 12(6):689–698PubMedPubMedCentralCrossRefGoogle Scholar
  32. 32.
    Gnecchi M, Zhang Z, Ni A, Dzau VJ (2008) Paracrine mechanisms in adult stem cell signaling and therapy. Circ Res 103(11):1204–1219PubMedPubMedCentralCrossRefGoogle Scholar
  33. 33.
    Villarroya-Beltri C, Gutierrez-Vazquez C, Sanchez-Cabo F, Perez-Hernandez D, Vazquez J, Martin-Cofreces N, Martinez-Herrera DJ, Pascual-Montano A, Mittelbrunn M, Sanchez-Madrid F (2013) Sumoylated hnRNPA2B1 controls the sorting of miRNAs into exosomes through binding to specific motifs. Nat Commun 4:2980PubMedPubMedCentralCrossRefGoogle Scholar
  34. 34.
    Khalkhali-Ellis Z, Galat V, Galat Y, Gilgur A, Seftor EA, Hendrix MJ (2016) Lefty glycoproteins in human embryonic stem cells: extracellular delivery route and posttranslational modification in differentiation. Stem Cells Dev. doi: 10.1089/scd.2016.0081
  35. 35.
    Ratajczak J, Miekus K, Kucia M, Zhang J, Reca R, Dvorak P, Ratajczak MZ (2006) Embryonic stem cell-derived microvesicles reprogram hematopoietic progenitors: evidence for horizontal transfer of mRNA and protein delivery. Leukemia 20(5):847–856PubMedCrossRefGoogle Scholar
  36. 36.
    Bobis-Wozowicz S, Kmiotek K, Sekula M, Kedracka-Krok S, Kamycka E, Adamiak M, Jankowska U, Madetko-Talowska A, Sarna M, Bik-Multanowski M, Kolcz J, Boruczkowski D, Madeja Z, Dawn B, Zuba-Surma EK (2015) Human induced pluripotent stem cell-derived microvesicles transmit RNAs and proteins to recipient mature heart cells modulating cell fate and behavior. Stem Cells 33(9):2748–2761PubMedCrossRefGoogle Scholar
  37. 37.
    Wang Y, Zhang L, Li Y, Chen L, Wang X, Guo W, Zhang X, Qin G, He SH, Zimmerman A, Liu Y, Kim IM, Weintraub NL, Tang Y (2015) Exosomes/microvesicles from induced pluripotent stem cells deliver cardioprotective miRNAs and prevent cardiomyocyte apoptosis in the ischemic myocardium. Int J Cardiol 192:61–69PubMedPubMedCentralCrossRefGoogle Scholar
  38. 38.
    Lai RC, Arslan F, Tan SS, Tan B, Choo A, Lee MM, Chen TS, Teh BJ, Eng JK, Sidik H, Tanavde V, Hwang WS, Lee CN, El Oakley RM, Pasterkamp G, de Kleijn DP, Tan KH, Lim SK (2010) Derivation and characterization of human fetal MSCs: an alternative cell source for large-scale production of cardioprotective microparticles. J Mol Cell Cardiol 48(6):1215–1224PubMedCrossRefGoogle Scholar
  39. 39.
    Timmers L, Lim SK, Arslan F, Armstrong JS, Hoefer IE, Doevendans PA, Piek JJ, El Oakley RM, Choo A, Lee CN, Pasterkamp G, de Kleijn DP (2007) Reduction of myocardial infarct size by human mesenchymal stem cell conditioned medium. Stem Cell Res 1(2):129–137PubMedCrossRefGoogle Scholar
  40. 40.
    Chen TS, Lai RC, Lee MM, Choo AB, Lee CN, Lim SK (2010) Mesenchymal stem cell secretes microparticles enriched in pre-microRNAs. Nucleic Acids Res 38(1):215–224PubMedCrossRefGoogle Scholar
  41. 41.
    Calabrese JM, Seila AC, Yeo GW, Sharp PA (2007) RNA sequence analysis defines Dicer’s role in mouse embryonic stem cells. Proc Natl Acad Sci U S A 104(46):18097–18102PubMedPubMedCentralCrossRefGoogle Scholar
  42. 42.
    Lichner Z, Pall E, Kerekes A, Pallinger E, Maraghechi P, Bosze Z, Gocza E (2011) The miR-290-295 cluster promotes pluripotency maintenance by regulating cell cycle phase distribution in mouse embryonic stem cells. Differentiation 81(1):11–24PubMedCrossRefGoogle Scholar
  43. 43.
    Wang Y, Baskerville S, Shenoy A, Babiarz JE, Baehner L, Blelloch R (2008) Embryonic stem cell-specific microRNAs regulate the G1-S transition and promote rapid proliferation. Nat Genet 40(12):1478–1483PubMedPubMedCentralCrossRefGoogle Scholar
  44. 44.
    Zovoilis A, Smorag L, Pantazi A, Engel W (2009) Members of the miR-290 cluster modulate in vitro differentiation of mouse embryonic stem cells. Differentiation 78(2–3):69–78PubMedCrossRefGoogle Scholar
  45. 45.
    Zheng GX, Ravi A, Calabrese JM, Medeiros LA, Kirak O, Dennis LM, Jaenisch R, Burge CB, Sharp PA (2011) A latent pro-survival function for the mir-290-295 cluster in mouse embryonic stem cells. PLoS Genet 7(5):e1002054PubMedPubMedCentralCrossRefGoogle Scholar
  46. 46.
    Judson RL, Babiarz JE, Venere M, Blelloch R (2009) Embryonic stem cell-specific microRNAs promote induced pluripotency. Nat Biotechnol 27(5):459–461PubMedPubMedCentralCrossRefGoogle Scholar
  47. 47.
    Gou D, Ramchandran R, Peng X, Yao L, Kang K, Sarkar J, Wang Z, Zhou G, Raj JU (2012) miR-210 has an antiapoptotic effect in pulmonary artery smooth muscle cells during hypoxia. Am J Physiol Lung Cell Mol Physiol 303(8):L682–L691PubMedPubMedCentralCrossRefGoogle Scholar
  48. 48.
    Xiao J, Pan Y, Li XH, Yang XY, Feng YL, Tan HH, Jiang L, Feng J, XY Y (2016) Cardiac progenitor cell-derived exosomes prevent cardiomyocytes apoptosis through exosomal miR-21 by targeting PDCD4. Cell Death Dis 7(6):e2277PubMedPubMedCentralCrossRefGoogle Scholar
  49. 49.
    Talaei-Khozani T, Kharazinejad E, Rohani L, Vojdani Z, Mostafavi Pour Z, Tabei SZ (2012) Expression of pluripotency markers in human granulosa cells after embryonic stem cell extract exposure and epigenetic modification. Iran J Reprod Med 10(3):193–200PubMedPubMedCentralGoogle Scholar
  50. 50.
    Katsman D, Stackpole EJ, Domin DR, Farber DB (2012) Embryonic stem cell-derived microvesicles induce gene expression changes in Muller cells of the retina. PLoS One 7(11):e50417PubMedPubMedCentralCrossRefGoogle Scholar
  51. 51.
    Kervadec A, Bellamy V, El Harane N, Arakelian L, Vanneaux V, Cacciapuoti I, Nemetalla H, Perier MC, Toeg HD, Richart A, Lemitre M, Yin M, Loyer X, Larghero J, Hagege A, Ruel M, Boulanger CM, Silvestre JS, Menasche P, Renault NK (2016) Cardiovascular progenitor-derived extracellular vesicles recapitulate the beneficial effects of their parent cells in the treatment of chronic heart failure. J Heart Lung Transplant 35(6):795–807PubMedCrossRefGoogle Scholar
  52. 52.
    Carmeliet P (2005) Angiogenesis in life, disease and medicine. Nature 438(7070):932–936PubMedCrossRefGoogle Scholar
  53. 53.
    Qi X, Zhang J, Yuan H, Xu Z, Li Q, Niu X, Hu B, Wang Y, Li X (2016) Exosomes secreted by human-induced pluripotent stem cell-derived Mesenchymal stem cells repair critical-sized bone defects through enhanced angiogenesis and Osteogenesis in osteoporotic rats. Int J Biol Sci 12(7):836–849PubMedPubMedCentralCrossRefGoogle Scholar
  54. 54.
    Hu GW, Li Q, Niu X, Hu B, Liu J, Zhou SM, Guo SC, Lang HL, Zhang CQ, Wang Y, Deng ZF (2015) Exosomes secreted by human-induced pluripotent stem cell-derived mesenchymal stem cells attenuate limb ischemia by promoting angiogenesis in mice. Stem Cell Res Ther 6:10PubMedPubMedCentralCrossRefGoogle Scholar
  55. 55.
    Liu LZ, Li C, Chen Q, Jing Y, Carpenter R, Jiang Y, Kung HF, Lai L, Jiang BH (2011) MiR-21 induced angiogenesis through AKT and ERK activation and HIF-1alpha expression. PLoS One 6(4):e19139PubMedPubMedCentralCrossRefGoogle Scholar
  56. 56.
    Sabatel C, Malvaux L, Bovy N, Deroanne C, Lambert V, Gonzalez ML, Colige A, Rakic JM, Noel A, Martial JA, Struman I (2011) MicroRNA-21 exhibits antiangiogenic function by targeting RhoB expression in endothelial cells. PLoS One 6(2):e16979PubMedPubMedCentralCrossRefGoogle Scholar
  57. 57.
    Hu S, Huang M, Li Z, Jia F, Ghosh Z, Lijkwan MA, Fasanaro P, Sun N, Wang X, Martelli F, Robbins RC, JC W (2010) MicroRNA-210 as a novel therapy for treatment of ischemic heart disease. Circulation 122(11 Suppl):S124–S131PubMedPubMedCentralCrossRefGoogle Scholar
  58. 58.
    Johnson C, Sung HJ, Lessner SM, Fini ME, Galis ZS (2004) Matrix metalloproteinase-9 is required for adequate angiogenic revascularization of ischemic tissues: potential role in capillary branching. Circ Res 94(2):262–268PubMedCrossRefGoogle Scholar
  59. 59.
    Vrijsen KR, Maring JA, Chamuleau SA, Verhage V, Mol EA, Deddens JC, Metz CH, Lodder K, van Eeuwijk EC, van Dommelen SM, Doevendans PA, Smits AM, Goumans MJ, Sluijter JP (2016) Exosomes from Cardiomyocyte progenitor cells and Mesenchymal stem cells stimulate angiogenesis via EMMPRIN. Adv Healthc Mater 5(19):2555–2565PubMedCrossRefGoogle Scholar
  60. 60.
    Khayati F, Perez-Cano L, Maouche K, Sadoux A, Boutalbi Z, Podgorniak MP, Maskos U, Setterblad N, Janin A, Calvo F, Lebbe C, Menashi S, Fernandez-Recio J, Mourah S (2015) EMMPRIN/CD147 is a novel coreceptor of VEGFR-2 mediating its activation by VEGF. Oncotarget 6(12):9766–9780PubMedPubMedCentralCrossRefGoogle Scholar
  61. 61.
    Hatanaka M, Higashi Y, Fukushige T, Baba N, Kawai K, Hashiguchi T, Su J, Zeng W, Chen X, Kanekura T (2014) Cleaved CD147 shed from the surface of malignant melanoma cells activates MMP2 produced by fibroblasts. Anticancer Res 34(12):7091–7096PubMedGoogle Scholar
  62. 62.
    Ma J, Zhao Y, Sun L, Sun X, Zhao X, Qian H, Xu W, Zhu W (2017) Exosomes derived from Akt-modified human umbilical cord Mesenchymal stem cells improve cardiac regeneration and promote angiogenesis via activating platelet-derived growth factor D. Stem Cells Transl Med 6(1):51–59PubMedCrossRefGoogle Scholar
  63. 63.
    Priori SG (2001) Evidence that human cardiac myocytes divide after myocardial infarct. Ital Heart J Suppl 2(11):1248–1249PubMedGoogle Scholar
  64. 64.
    Bergmann O, Bhardwaj RD, Bernard S, Zdunek S, Barnabe-Heider F, Walsh S, Zupicich J, Alkass K, Buchholz BA, Druid H, Jovinge S, Frisen J (2009) Evidence for cardiomyocyte renewal in humans. Science 324(5923):98–102PubMedPubMedCentralCrossRefGoogle Scholar
  65. 65.
    Teng X, Chen L, Chen W, Yang J, Yang Z, Shen Z (2015) Mesenchymal stem cell-derived exosomes improve the microenvironment of infarcted myocardium contributing to angiogenesis and anti-inflammation. Cell Physiol Biochem 37(6):2415–2424PubMedCrossRefGoogle Scholar
  66. 66.
    Ti D, Hao H, Fu X, Han W (2016) Mesenchymal stem cells-derived exosomal microRNAs contribute to wound inflammation. Sci China Life Sci 59(12):1305–1312PubMedCrossRefGoogle Scholar
  67. 67.
    Yang Y, Cheng HW, Qiu Y, Dupee D, Noonan M, Lin YD, Fisch S, Unno K, Sereti KI, Liao R (2015) MicroRNA-34a plays a key role in cardiac repair and regeneration following myocardial infarction. Circ Res 117(5):450–459PubMedPubMedCentralCrossRefGoogle Scholar
  68. 68.
    Wahlgren J, Statello L, Skogberg G, Telemo E, Valadi H (2016) Delivery of small interfering RNAs to cells via exosomes. Methods Mol Biol 1364:105–125PubMedCrossRefGoogle Scholar
  69. 69.
    Barnett RE, Conklin DJ, Ryan L, Keskey RC, Ramjee V, Sepulveda EA, Srivastava S, Bhatnagar A, Cheadle WG (2016) Anti-inflammatory effects of miR-21 in the macrophage response to peritonitis. J Leukoc Biol 99(2):361–371PubMedCrossRefGoogle Scholar
  70. 70.
    Peacock O, Lee AC, Cameron F, Tarbox R, Vafadar-Isfahani N, Tufarelli C, Lund JN (2014) Inflammation and MiR-21 pathways functionally interact to downregulate PDCD4 in colorectal cancer. PLoS One 9(10):e110267PubMedPubMedCentralCrossRefGoogle Scholar
  71. 71.
    Zhou R, Hu G, Gong AY, Chen XM (2010) Binding of NF-kappaB p65 subunit to the promoter elements is involved in LPS-induced transactivation of miRNA genes in human biliary epithelial cells. Nucleic Acids Res 38(10):3222–3232PubMedPubMedCentralCrossRefGoogle Scholar
  72. 72.
    Qi J, Qiao Y, Wang P, Li S, Zhao W, Gao C (2012) microRNA-210 negatively regulates LPS-induced production of proinflammatory cytokines by targeting NF-kappaB1 in murine macrophages. FEBS Lett 586(8):1201–1207PubMedCrossRefGoogle Scholar
  73. 73.
    Sahoo S, Losordo DW (2014) Exosomes and cardiac repair after myocardial infarction. Circ Res 114(2):333–344PubMedCrossRefGoogle Scholar
  74. 74.
    Lee C, Mitsialis SA, Aslam M, Vitali SH, Vergadi E, Konstantinou G, Sdrimas K, Fernandez-Gonzalez A, Kourembanas S (2012) Exosomes mediate the cytoprotective action of mesenchymal stromal cells on hypoxia-induced pulmonary hypertension. Circulation 126(22):2601–2611PubMedPubMedCentralCrossRefGoogle Scholar
  75. 75.
    Kalani A, Chaturvedi P, Kamat PK, Maldonado C, Bauer P, Joshua IG, Tyagi SC, Tyagi N (2016) Curcumin-loaded embryonic stem cell exosomes restored neurovascular unit following ischemia-reperfusion injury. Int J Biochem Cell Biol 79:360–369PubMedCrossRefGoogle Scholar
  76. 76.
    Ghayad SE, Rammal G, Ghamloush F, Basma H, Nasr R, Diab-Assaf M, Chelala C, Saab R (2016) Exosomes derived from embryonal and alveolar rhabdomyosarcoma carry differential miRNA cargo and promote invasion of recipient fibroblasts. Sci Rep 6:37088PubMedPubMedCentralCrossRefGoogle Scholar
  77. 77.
    Yu X, Deng L, Wang D, Li N, Chen X, Cheng X, Yuan J, Gao X, Liao M, Wang M, Liao Y (2012) Mechanism of TNF-alpha autocrine effects in hypoxic cardiomyocytes: initiated by hypoxia inducible factor 1alpha, presented by exosomes. J Mol Cell Cardiol 53(6):848–857PubMedCrossRefGoogle Scholar
  78. 78.
    Zhou Y, Zhou G, Tian C, Jiang W, Jin L, Zhang C, Chen X (2016) Exosome-mediated small RNA delivery for gene therapy. Wiley Interdiscip Rev RNA 7(6):758–771PubMedCrossRefGoogle Scholar
  79. 79.
    Sioud M (2015) RNA interference: mechanisms, technical challenges, and therapeutic opportunities. Methods Mol Biol 1218:1–15PubMedCrossRefGoogle Scholar
  80. 80.
    Didiot MC, Hall LM, Coles AH, Haraszti RA, Godinho BM, Chase K, Sapp E, Ly S, Alterman JF, Hassler MR, Echeverria D, Raj L, Morrissey DV, DiFiglia M, Aronin N, Khvorova A (2016) Exosome-mediated delivery of hydrophobically modified siRNA for huntingtin mRNA silencing. Mol Ther 24(10):1836–1847PubMedCrossRefGoogle Scholar
  81. 81.
    Alvarez-Erviti L, Seow Y, Yin H, Betts C, Lakhal S, Wood MJ (2011) Delivery of siRNA to the mouse brain by systemic injection of targeted exosomes. Nat Biotechnol 29(4):341–345PubMedCrossRefGoogle Scholar
  82. 82.
    Wahlgren J, De LKT, Brisslert M, Vaziri Sani F, Telemo E, Sunnerhagen P, Valadi H (2012) Plasma exosomes can deliver exogenous short interfering RNA to monocytes and lymphocytes. Nucleic Acids Res 40(17):e130PubMedPubMedCentralCrossRefGoogle Scholar
  83. 83.
    Greco KA, Franzen CA, Foreman KE, Flanigan RC, Kuo PC, Gupta GN (2016) PLK-1 silencing in bladder cancer by siRNA delivered with exosomes. Urology 91(241):e241–e247Google Scholar
  84. 84.
    Zhang Y, Li L, Yu J, Zhu D, Li X, Gu H, Zhang CY, Zen K (2014) Microvesicle-mediated delivery of transforming growth factor beta1 siRNA for the suppression of tumor growth in mice. Biomaterials 35(14):4390–4400PubMedCrossRefGoogle Scholar
  85. 85.
    Sun D, Zhuang X, Xiang X, Liu Y, Zhang S, Liu C, Barnes S, Grizzle W, Miller D, Zhang HG (2010) A novel nanoparticle drug delivery system: the anti-inflammatory activity of curcumin is enhanced when encapsulated in exosomes. Mol Ther 18(9):1606–1614PubMedPubMedCentralCrossRefGoogle Scholar
  86. 86.
    Pascucci L, Cocce V, Bonomi A, Ami D, Ceccarelli P, Ciusani E, Vigano L, Locatelli A, Sisto F, Doglia SM, Parati E, Bernardo ME, Muraca M, Alessandri G, Bondiolotti G, Pessina A (2014) Paclitaxel is incorporated by mesenchymal stromal cells and released in exosomes that inhibit in vitro tumor growth: a new approach for drug delivery. J Control Release 192:262–270PubMedCrossRefGoogle Scholar
  87. 87.
    Tian Y, Li S, Song J, Ji T, Zhu M, Anderson GJ, Wei J, Nie G (2014) A doxorubicin delivery platform using engineered natural membrane vesicle exosomes for targeted tumor therapy. Biomaterials 35(7):2383–2390PubMedCrossRefGoogle Scholar
  88. 88.
    Pironti G, Strachan RT, Abraham D, Mon-Wei Yu S, Chen M, Chen W, Hanada K, Mao L, Watson LJ, Rockman HA (2015) Circulating exosomes induced by cardiac pressure overload contain functional angiotensin II type 1 receptors. Circulation 131(24):2120–2130PubMedPubMedCentralCrossRefGoogle Scholar
  89. 89.
    Trivedi M, Talekar M, Shah P, Ouyang Q, Amiji M (2016) Modification of tumor cell exosome content by transfection with wt-p53 and microRNA-125b expressing plasmid DNA and its effect on macrophage polarization. Oncogene 5(8):e250CrossRefGoogle Scholar
  90. 90.
    Huang M, Chen Z, Hu S, Jia F, Li Z, Hoyt G, Robbins RC, Kay MA, JC W (2009) Novel minicircle vector for gene therapy in murine myocardial infarction. Circulation 120(11 Suppl):S230–S237PubMedPubMedCentralCrossRefGoogle Scholar
  91. 91.
    Huang M, Nguyen P, Jia F, Hu S, Gong Y, de Almeida PE, Wang L, Nag D, Kay MA, Giaccia AJ, Robbins RC, JC W (2011) Double knockdown of prolyl hydroxylase and factor-inhibiting hypoxia-inducible factor with nonviral minicircle gene therapy enhances stem cell mobilization and angiogenesis after myocardial infarction. Circulation 124(11 Suppl):S46–S54PubMedPubMedCentralCrossRefGoogle Scholar
  92. 92.
    Yu B, Kim HW, Gong M, Wang J, Millard RW, Wang Y, Ashraf M, Xu M (2015) Exosomes secreted from GATA-4 overexpressing mesenchymal stem cells serve as a reservoir of anti-apoptotic microRNAs for cardioprotection. Int J Cardiol 182:349–360PubMedCrossRefGoogle Scholar
  93. 93.
    Ong SG, Lee WH, Huang M, Dey D, Kodo K, Sanchez-Freire V, Gold JD, Wu JC (2014) Cross talk of combined gene and cell therapy in ischemic heart disease: role of exosomal microRNA transfer. Circulation 130(11 Suppl 1):S60–S69PubMedPubMedCentralCrossRefGoogle Scholar
  94. 94.
    Jeong D, Jo W, Yoon J, Kim J, Gianchandani S, Gho YS, Park J (2014) Nanovesicles engineered from ES cells for enhanced cell proliferation. Biomaterials 35(34):9302–9310PubMedCrossRefGoogle Scholar
  95. 95.
    Yoon J, Jo W, Jeong D, Kim J, Jeong H, Park J (2015) Generation of nanovesicles with sliced cellular membrane fragments for exogenous material delivery. Biomaterials 59:12–20PubMedCrossRefGoogle Scholar
  96. 96.
    Jo W, Kim J, Yoon J, Jeong D, Cho S, Jeong H, Yoon YJ, Kim SC, Gho YS, Park J (2014) Large-scale generation of cell-derived nanovesicles. Nanoscale 6(20):12056–12064PubMedCrossRefGoogle Scholar
  97. 97.
    Feng YL, Huang W, Wani M, XY Y, Ashraf M (2014) Ischemic preconditioning potentiates the protective effect of stem cells through secretion of exosomes by targeting Mecp2 via miR-22. PLoS One 9(2):e88685PubMedPubMedCentralCrossRefGoogle Scholar
  98. 98.
    Yamaguchi T, Izumi Y, Nakamura Y, Yamazaki T, Shiota M, Sano S, Tanaka M, Osada-Oka M, Shimada K, Miura K, Yoshiyama M, Iwao H (2015) Repeated remote ischemic conditioning attenuates left ventricular remodeling via exosome-mediated intercellular communication on chronic heart failure after myocardial infarction. Int J Cardiol 178:239–246PubMedCrossRefGoogle Scholar
  99. 99.
    Giricz Z, Varga ZV, Baranyai T, Sipos P, Paloczi K, Kittel A, Buzas EI, Ferdinandy P (2014) Cardioprotection by remote ischemic preconditioning of the rat heart is mediated by extracellular vesicles. J Mol Cell Cardiol 68:75–78PubMedCrossRefGoogle Scholar
  100. 100.
    Gray WD, French KM, Ghosh-Choudhary S, Maxwell JT, Brown ME, Platt MO, Searles CD, Davis ME (2015) Identification of therapeutic covariant microRNA clusters in hypoxia-treated cardiac progenitor cell exosomes using systems biology. Circ Res 116(2):255–263PubMedCrossRefGoogle Scholar
  101. 101.
    Kim SW, Kim HW, Huang W, Okada M, Welge JA, Wang Y, Ashraf M (2013) Cardiac stem cells with electrical stimulation improve ischaemic heart function through regulation of connective tissue growth factor and miR-378. Cardiovasc Res 100(2):241–251PubMedPubMedCentralCrossRefGoogle Scholar
  102. 102.
    Glebov K, Lochner M, Jabs R, Lau T, Merkel O, Schloss P, Steinhauser C, Walter J (2015) Serotonin stimulates secretion of exosomes from microglia cells. Glia 63(4):626–634PubMedCrossRefGoogle Scholar
  103. 103.
    Zhang S, Chu WC, Lai RC, Lim SK, Hui JH, Toh WS (2016) Exosomes derived from human embryonic mesenchymal stem cells promote osteochondral regeneration. Osteoarthr Cartil 24(12):2135–2140PubMedCrossRefGoogle Scholar
  104. 104.
    Zhu W, Huang L, Li Y, Zhang X, Gu J, Yan Y, Xu X, Wang M, Qian H, Xu W (2012) Exosomes derived from human bone marrow mesenchymal stem cells promote tumor growth in vivo. Cancer Lett 315(1):28–37PubMedCrossRefGoogle Scholar
  105. 105.
    Jiang X, Sucharov J, Stauffer BL, Miyamoto SD, Sucharov CC (2017) Exosomes from pediatric dilated cardiomyopathy patients modulate a pathological response in cardiomyocytes. Am J Physiol Heart Circ Physiol 312(4):H818–H826. doi: 10.1152/ajpheart.00673.2016 PubMedCrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2017

Authors and Affiliations

  • Yao-Hua Song
    • 1
  • Lianbo Shao
    • 2
  • Yu Zhang
    • 2
  • Jin Zhou
    • 3
  • Bin Liu
    • 4
  • Xiangbin Pan
    • 5
  • Yong-jian Geng
    • 6
  • Xi-yong Yu
    • 7
  • Yangxin Li
    • 2
    Email author
  1. 1.Cyrus Tang Hematology CenterCollaborative Innovation Center of Hematology, Soochow UniversitySuzhouPeople’s Republic of China
  2. 2.Department of Cardiovascular SurgeryInstitute for Cardiovascular Science, Soochow UniversitySuzhouChina
  3. 3.Department of General SurgeryFirst Affiliated Hospital of Soochow UniversitySuzhouChina
  4. 4.Second Affiliated Hospital of Ji Lin UniversityChangchunChina
  5. 5.Department of SurgeryFuwai HospitalBeijingChina
  6. 6.School of MedicineUniversity of TexasHoustonUSA
  7. 7.Guangdong Cardiovascular Institute, Guangzhou Medicine UniversityGuangzhouChina

Personalised recommendations