Advertisement

Therapeutic Effects of Mesenchymal Stem Cell-Derived Exosomes in Cardiovascular Disease

  • Etsu SuzukiEmail author
  • Daishi Fujita
  • Masao Takahashi
  • Shigeyoshi Oba
  • Hiroaki Nishimatsu
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 998)

Abstract

Mesenchymal stem cells (MSCs) are multipotent stem cells that reside in various organs. They have the capacity to differentiate into various cell types, including cardiomyocytes, vascular endothelial cells, and vascular smooth muscle cells. Among the various MSCs, bone marrow-derived MSCs (BMMSCs) have been widely used for treating acute myocardial infarction (AMI) and ischemic heart failure (IHF) in preclinical and clinical studies. Although the beneficial effects of BMMSCs in treating AMI and IHF were originally attributed to their capacity to differentiate into cardiac cell types, recent evidence suggests that the differentiation capacity of BMMSCs appears to be minimal and that BMMSCs exert cardioprotective effects by secreting paracrine factors. In this context, MSC-derived exosomes have recently gained much attention. In this chapter, we introduce preclinical studies in which MSC-derived exosomes are used for treating cardiovascular diseases (CVDs) such as AMI, stroke, pulmonary hypertension, and septic cardiomyopathy. Future clinical studies are required to confirm the efficacy of exosome administration in treating CVDs.

Keywords

Mesenchymal stem cells Exosomes Cardiovascular disease Acute myocardial infarction Stroke MicroRNA 

References

  1. 1.
    Hipp J, Atala A (2008) Sources of stem cells for regenerative medicine. Stem Cell Rev 4(1):3–11CrossRefPubMedGoogle Scholar
  2. 2.
    Jiang Y, Vaessen B, Lenvik T, Blackstad M, Reyes M, Verfaillie CM (2002) Multipotent progenitor cells can be isolated from postnatal murine bone marrow, muscle, and brain. Exp Hematol 30(8):896–904CrossRefPubMedGoogle Scholar
  3. 3.
    Presnell SC, Petersen B, Heidaran M (2002) Stem cells in adult tissues. Semin Cell Dev Biol 13(5):369–376CrossRefPubMedGoogle Scholar
  4. 4.
    Schaffler A, Buchler C (2007) Concise review: adipose tissue-derived stromal cells—basic and clinical implications for novel cell-based therapies. Stem Cells 25(4):818–827CrossRefPubMedGoogle Scholar
  5. 5.
    Herzog EL, Chai L, Krause DS (2003) Plasticity of marrow-derived stem cells. Blood 102(10):3483–3493CrossRefPubMedGoogle Scholar
  6. 6.
    Grove JE, Bruscia E, Krause DS (2004) Plasticity of bone marrow-derived stem cells. Stem Cells 22(4):487–500CrossRefPubMedGoogle Scholar
  7. 7.
    Shake JG, Gruber PJ, Baumgartner WA, Senechal G, Meyers J, Redmond JM, Pittenger MF, Martin BJ (2002) Mesenchymal stem cell implantation in a swine myocardial infarct model: engraftment and functional effects. Ann Thorac Surg 73(6):1919–1925CrossRefPubMedGoogle Scholar
  8. 8.
    Toma C, Pittenger MF, Cahill KS, Byrne BJ, Kessler PD (2002) Human mesenchymal stem cells differentiate to a cardiomyocyte phenotype in the adult murine heart. Circulation 105(1):93–98CrossRefPubMedGoogle Scholar
  9. 9.
    Amado LC, Saliaris AP, Schuleri KH, St John M, Xie JS, Cattaneo S, Durand DJ, Fitton T, Kuang JQ, Stewart G, Lehrke S, Baumgartner WW, Martin BJ, Heldman AW, Hare JM (2005) Cardiac repair with intramyocardial injection of allogeneic mesenchymal stem cells after myocardial infarction. Proc Natl Acad Sci U S A 102(32):11474–11479CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Schuleri KH, Feigenbaum GS, Centola M, Weiss ES, Zimmet JM, Turney J, Kellner J, Zviman MM, Hatzistergos KE, Detrick B, Conte JV, McNiece I, Steenbergen C, Lardo AC, Hare JM (2009) Autologous mesenchymal stem cells produce reverse remodelling in chronic ischaemic cardiomyopathy. Eur Heart J 30(22):2722–2732CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Chen SL, Fang WW, Ye F, Liu YH, Qian J, Shan SJ, Zhang JJ, Chunhua RZ, Liao LM, Lin S, Sun JP (2004) Effect on left ventricular function of intracoronary transplantation of autologous bone marrow mesenchymal stem cell in patients with acute myocardial infarction. Am J Cardiol 94(1):92–95CrossRefPubMedGoogle Scholar
  12. 12.
    Hare JM, Traverse JH, Henry TD, Dib N, Strumpf RK, Schulman SP, Gerstenblith G, DeMaria AN, Denktas AE, Gammon RS, Hermiller JB Jr, Reisman MA, Schaer GL, Sherman W (2009) A randomized, double-blind, placebo-controlled, dose-escalation study of intravenous adult human mesenchymal stem cells (prochymal) after acute myocardial infarction. J Am Coll Cardiol 54(24):2277–2286CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Perin EC, Silva GV, Henry TD, Cabreira-Hansen MG, Moore WH, Coulter SA, Herlihy JP, Fernandes MR, Cheong BY, Flamm SD, Traverse JH, Zheng Y, Smith D, Shaw S, Westbrook L, Olson R, Patel D, Gahremanpour A, Canales J, Vaughn WK, Willerson JT (2011) A randomized study of transendocardial injection of autologous bone marrow mononuclear cells and cell function analysis in ischemic heart failure (FOCUS-HF). Am Heart J 161(6):1078–1087CrossRefPubMedGoogle Scholar
  14. 14.
    Hare JM, Fishman JE, Gerstenblith G, DiFede Velazquez DL, Zambrano JP, Suncion VY, Tracy M, Ghersin E, Johnston PV, Brinker JA, Breton E, Davis-Sproul J, Schulman IH, Byrnes J, Mendizabal AM, Lowery MH, Rouy D, Altman P, Wong Po Foo C, Ruiz P, Amador A, Da Silva J, McNiece IK, Heldman AW, George R, Lardo A (2012) Comparison of allogeneic vs autologous bone marrow-derived mesenchymal stem cells delivered by transendocardial injection in patients with ischemic cardiomyopathy: the POSEIDON randomized trial. JAMA 308(22):2369–2379CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Bartunek J, Behfar A, Dolatabadi D, Vanderheyden M, Ostojic M, Dens J, El Nakadi B, Banovic M, Beleslin B, Vrolix M, Legrand V, Vrints C, Vanoverschelde JL, Crespo-Diaz R, Homsy C, Tendera M, Waldman S, Wijns W, Terzic A (2013) Cardiopoietic stem cell therapy in heart failure: the C-CURE (Cardiopoietic stem Cell therapy in heart failURE) multicenter randomized trial with lineage-specified biologics. J Am Coll Cardiol 61(23):2329–2338CrossRefPubMedGoogle Scholar
  16. 16.
    Lee JW, Lee SH, Youn YJ, Ahn MS, Kim JY, Yoo BS, Yoon J, Kwon W, Hong IS, Lee K, Kwan J, Park KS, Choi D, Jang YS, Hong MK (2014) A randomized, open-label, multicenter trial for the safety and efficacy of adult mesenchymal stem cells after acute myocardial infarction. J Korean Med Sci 29(1):23–31CrossRefPubMedGoogle Scholar
  17. 17.
    Freyman T, Polin G, Osman H, Crary J, Lu M, Cheng L, Palasis M, Wilensky RL (2006) A quantitative, randomized study evaluating three methods of mesenchymal stem cell delivery following myocardial infarction. Eur Heart J 27(9):1114–1122CrossRefPubMedGoogle Scholar
  18. 18.
    Fischer UM, Harting MT, Jimenez F, Monzon-Posadas WO, Xue H, Savitz SI, Laine GA, Cox CS Jr (2009) Pulmonary passage is a major obstacle for intravenous stem cell delivery: the pulmonary first-pass effect. Stem Cells Dev 18(5):683–692CrossRefPubMedGoogle Scholar
  19. 19.
    Gnecchi M, He H, Liang OD, Melo LG, Morello F, Mu H, Noiseux N, Zhang L, Pratt RE, Ingwall JS, Dzau VJ (2005) Paracrine action accounts for marked protection of ischemic heart by Akt-modified mesenchymal stem cells. Nat Med 11(4):367–368CrossRefPubMedGoogle Scholar
  20. 20.
    Gnecchi M, He H, Noiseux N, Liang OD, Zhang L, Morello F, Mu H, Melo LG, Pratt RE, Ingwall JS, Dzau VJ (2006) Evidence supporting paracrine hypothesis for Akt-modified mesenchymal stem cell-mediated cardiac protection and functional improvement. FASEB J 20(6):661–669CrossRefPubMedGoogle Scholar
  21. 21.
    Mirotsou M, Zhang Z, Deb A, Zhang L, Gnecchi M, Noiseux N, Mu H, Pachori A, Dzau V (2007) Secreted frizzled related protein 2 (Sfrp2) is the key Akt-mesenchymal stem cell-released paracrine factor mediating myocardial survival and repair. Proc Natl Acad Sci U S A 104(5):1643–1648CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Lai RC, Arslan F, Lee MM, Sze NS, Choo A, Chen TS, Salto-Tellez M, Timmers L, Lee CN, El Oakley RM, Pasterkamp G, de Kleijn DP, Lim SK (2010) Exosome secreted by MSC reduces myocardial ischemia/reperfusion injury. Stem Cell Res 4(3):214–222CrossRefPubMedGoogle Scholar
  23. 23.
    Arslan F, Lai RC, Smeets MB, Akeroyd L, Choo A, Aguor EN, Timmers L, van Rijen HV, Doevendans PA, Pasterkamp G, Lim SK, de Kleijn DP (2013) Mesenchymal stem cell-derived exosomes increase ATP levels, decrease oxidative stress and activate PI3K/Akt pathway to enhance myocardial viability and prevent adverse remodeling after myocardial ischemia/reperfusion injury. Stem Cell Res 10(3):301–312CrossRefPubMedGoogle Scholar
  24. 24.
    Bian S, Zhang L, Duan L, Wang X, Min Y, Yu H (2014) Extracellular vesicles derived from human bone marrow mesenchymal stem cells promote angiogenesis in a rat myocardial infarction model. J Mol Med 92(4):387–397CrossRefPubMedGoogle Scholar
  25. 25.
    Feng Y, Huang W, Wani M, Yu X, Ashraf M (2014) Ischemic preconditioning potentiates the protective effect of stem cells through secretion of exosomes by targeting Mecp2 via miR-22. PLoS One 9(2):e88685CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Yu B, Kim HW, Gong M, Wang J, Millard RW, Wang Y, Ashraf M, Xu M (2015) Exosomes secreted from GATA-4 overexpressing mesenchymal stem cells serve as a reservoir of anti-apoptotic microRNAs for cardioprotection. Int J Cardiol 182:349–360CrossRefPubMedGoogle Scholar
  27. 27.
    Wang K, Jiang Z, Webster KA, Chen J, Hu H, Zhou Y, Zhao J, Wang L, Wang Y, Zhong Z, Ni C, Li Q, Xiang C, Zhang L, Wu R, Zhu W, Yu H, Hu X, Wang J (2016) Enhanced cardioprotection by human endometrium mesenchymal stem cells driven by exosomal microRNA-21. Stem Cells Transl Med 6(1):209–222CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Xin H, Li Y, Cui Y, Yang JJ, Zhang ZG, Chopp M (2013) Systemic administration of exosomes released from mesenchymal stromal cells promote functional recovery and neurovascular plasticity after stroke in rats. J Int Soc Cereb Blood Flow Metab 33(11):1711–1715CrossRefGoogle Scholar
  29. 29.
    Xin H, Li Y, Liu Z, Wang X, Shang X, Cui Y, Zhang ZG, Chopp M (2013) MiR-133b promotes neural plasticity and functional recovery after treatment of stroke with multipotent mesenchymal stromal cells in rats via transfer of exosome-enriched extracellular particles. Stem Cells 31(12):2737–2746CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Doeppner TR, Herz J, Gorgens A, Schlechter J, Ludwig AK, Radtke S, de Miroschedji K, Horn PA, Giebel B, Hermann DM (2015) Extracellular vesicles improve post-stroke neuroregeneration and prevent postischemic immunosuppression. Stem Cells Transl Med 4(10):1131–1143CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    Lee C, Mitsialis SA, Aslam M, Vitali SH, Vergadi E, Konstantinou G, Sdrimas K, Fernandez-Gonzalez A, Kourembanas S (2012) Exosomes mediate the cytoprotective action of mesenchymal stromal cells on hypoxia-induced pulmonary hypertension. Circulation 126(22):2601–2611CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    Wang X, Gu H, Qin D, Yang L, Huang W, Essandoh K, Wang Y, Caldwell CC, Peng T, Zingarelli B, Fan GC (2015) Exosomal miR-223 contributes to mesenchymal stem cell-elicited cardioprotection in polymicrobial sepsis. Sci Rep 5:13721CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2017

Authors and Affiliations

  • Etsu Suzuki
    • 1
    Email author
  • Daishi Fujita
    • 2
  • Masao Takahashi
    • 2
  • Shigeyoshi Oba
    • 2
  • Hiroaki Nishimatsu
    • 3
  1. 1.Institute of Medical Science, St. Marianna University School of MedicineKawasakiJapan
  2. 2.Faculty of Medicine, The Department of Internal MedicineUniversity of TokyoTokyoJapan
  3. 3.Faculty of Medicine, The Department of UrologyUniversity of TokyoTokyoJapan

Personalised recommendations