Advertisement

Vascular Calcification Regulation by Exosomes in the Vascular Wall

  • Marcel Liberman
  • Luciana Cavalheiro MartiEmail author
Chapter
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 998)

Abstract

Vascular calcification is a tightly regulated process that increases during ageing and occurs mainly in patients with diabetes and chronic renal failure. Exosomes are small membrane vesicles that are synthesized in a particular population of endosomes, also called multivesicular bodies, by inside budding into the lumen of the compartment. After fusion of exosome with the plasma membrane, these internal vesicles are secreted. Exosomes have a defined set of membrane and cytosolic proteins. The physiological function of exosomes is still a matter of debate. Investigators implicated microvesicles/exosomes as a specific signaling mechanism to induce vascular mineralization during vascular smooth muscle cells phenotypic transition. Vascular wall from healthy individual exhibit exosomes loaded with calcification inhibitors such as Fetuin A and MGP. Conversely, calcifying conditions induce secretion of exosomes, characterized by decreased calcifying inhibitors and increased phosphatidyl serine and Annexin A6 content, which serves as a nidus for vascular calcification.

Keywords

Vascular Calcification Exosome Vesicles Fetuin A 

References

  1. 1.
    Trams EG, Lauter CJ, Salem N Jr, Heine U (1981) Exfoliation of membrane ecto-enzymes in the form of micro-vesicles. Biochim Biophys Acta 645(1):63–70CrossRefPubMedGoogle Scholar
  2. 2.
    Harding C, Heuser J, Stahl P (1983) Receptor-mediated endocytosis of transferrin and recycling of the transferrin receptor in rat reticulocytes. J Cell Biol 97(2):329–339CrossRefPubMedGoogle Scholar
  3. 3.
    Pan BT, Teng K, Wu C, Adam M, Johnstone RM (1985) Electron microscopic evidence for externalization of the transferrin receptor in vesicular form in sheep reticulocytes. J Cell Biol 101(3):942–948CrossRefPubMedGoogle Scholar
  4. 4.
    Johnstone RM, Adam M, Hammond JR, Orr L, Turbide C (1987) Vesicle formation during reticulocyte maturation. Association of plasma membrane activities with released vesicles (exosomes). J Biol Chem 262(19):9412–9420PubMedGoogle Scholar
  5. 5.
    Johnstone RM, Bianchini A, Teng K (1989) Reticulocyte maturation and exosome release: transferrin receptor containing exosomes shows multiple plasma membrane functions. Blood 74(5):1844–1851PubMedGoogle Scholar
  6. 6.
    Peters PJ, Geuze HJ, Van der Donk HA, Slot JW, Griffith JM, Stam NJ, Clevers HC, Borst J (1989) Molecules relevant for T cell-target cell interaction are present in cytolytic granules of human T lymphocytes. Eur J Immunol 19(8):1469–1475CrossRefPubMedGoogle Scholar
  7. 7.
    Raposo G, Nijman HW, Stoorvogel W, Liejendekker R, Harding CV, Melief CJ, Geuze HJ (1996) B lymphocytes secrete antigen-presenting vesicles. J Exp Med 183(3):1161–1172CrossRefPubMedGoogle Scholar
  8. 8.
    Raposo G, Tenza D, Mecheri S, Peronet R, Bonnerot C, Desaymard C (1997) Accumulation of major histocompatibility complex class II molecules in mast cell secretory granules and their release upon degranulation. Mol Biol Cell 8(12):2631–2645CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Thery C, Regnault A, Garin J, Wolfers J, Zitvogel L, Ricciardi-Castagnoli P, Raposo G, Amigorena S (1999) Molecular characterization of dendritic cell-derived exosomes. Selective accumulation of the heat shock protein hsc73. J Cell Biol 147(3):599–610CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Heijnen HF, Schiel AE, Fijnheer R, Geuze HJ, Sixma JJ (1999) Activated platelets release two types of membrane vesicles: microvesicles by surface shedding and exosomes derived from exocytosis of multivesicular bodies and alpha-granules. Blood 94(11):3791–3799PubMedGoogle Scholar
  11. 11.
    Thery C, Boussac M, Veron P, Ricciardi-Castagnoli P, Raposo G, Garin J, Amigorena S (2001) Proteomic analysis of dendritic cell-derived exosomes: a secreted subcellular compartment distinct from apoptotic vesicles. J Immunol 166(12):7309–7318CrossRefPubMedGoogle Scholar
  12. 12.
    Skokos D, Le Panse S, Villa I, Rousselle JC, Peronet R, David B, Namane A, Mecheri S (2001) Mast cell-dependent B and T lymphocyte activation is mediated by the secretion of immunologically active exosomes. J Immunol 166(2):868–876CrossRefPubMedGoogle Scholar
  13. 13.
    Martinez-Lorenzo MJ, Anel A, Gamen S, Monle n I, Lasierra P, Larrad L, Pineiro A, Alava MA, Naval J (1999) Activated human T cells release bioactive Fas ligand and APO2 ligand in microvesicles. J Immunol 163(3):1274–1281PubMedGoogle Scholar
  14. 14.
    Blanchard N, Lankar D, Faure F, Regnault A, Dumont C, Raposo G, Hivroz C (2002) TCR activation of human T cells induces the production of exosomes bearing the TCR/CD3/zeta complex. J Immunol 168(7):3235–3241CrossRefPubMedGoogle Scholar
  15. 15.
    Wolfers J, Lozier A, Raposo G, Regnault A, Thery C, Masurier C, Flament C, Pouzieux S, Faure F, Tursz T, Angevin E, Amigorena S, Zitvogel L (2001) Tumor-derived exosomes are a source of shared tumor rejection antigens for CTL cross-priming. Nat Med 7(3):297–303CrossRefPubMedGoogle Scholar
  16. 16.
    van Niel G, Raposo G, Candalh C, Boussac M, Hershberg R, Cerf-Bensussan N, Heyman M (2001) Intestinal epithelial cells secrete exosome-like vesicles. Gastroenterology 121(2):337–349CrossRefPubMedGoogle Scholar
  17. 17.
    Kapustin AN, Shanahan CM (2016) Emerging roles for vascular smooth muscle cell exosomes in calcification and coagulation. J Physiol 594(11):2905–2914CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Davis JQ, Dansereau D, Johnstone RM, Bennett V (1986) Selective externalization of an ATP-binding protein structurally related to the clathrin-uncoating ATPase/heat shock protein in vesicles containing terminal transferrin receptors during reticulocyte maturation. J Biol Chem 261(33):15368–15371PubMedGoogle Scholar
  19. 19.
    Gambim MH, do Carmo Ade O, Marti L, Verissimo-Filho S, Lopes LR, Janiszewski M (2007) Platelet-derived exosomes induce endothelial cell apoptosis through peroxynitrite generation: experimental evidence for a novel mechanism of septic vascular dysfunction. Crit Care 11(5):R107CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Escola JM, Kleijmeer MJ, Stoorvogel W, Griffith JM, Yoshie O, Geuze HJ (1998) Selective enrichment of tetraspan proteins on the internal vesicles of multivesicular endosomes and on exosomes secreted by human B-lymphocytes. J Biol Chem 273(32):20121–20127CrossRefPubMedGoogle Scholar
  21. 21.
    Rabesandratana H, Toutant JP, Reggio H, Vidal M (1998) Decay-accelerating factor (CD55) and membrane inhibitor of reactive lysis (CD59) are released within exosomes during In vitro maturation of reticulocytes. Blood 91(7):2573–2580PubMedGoogle Scholar
  22. 22.
    Shanahan CM, Crouthamel MH, Kapustin A, Giachelli CM (2011) Arterial calcification in chronic kidney disease: key roles for calcium and phosphate. Circ Res 109(6):697–711CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Nadra I, Mason JC, Philippidis P, Florey O, Smythe CD, McCarthy GM, Landis RC, Haskard DO (2005) Proinflammatory activation of macrophages by basic calcium phosphate crystals via protein kinase C and MAP kinase pathways: a vicious cycle of inflammation and arterial calcification? Circ Res 96(12):1248–1256CrossRefPubMedGoogle Scholar
  24. 24.
    Ewence AE, Bootman M, Roderick HL, Skepper JN, McCarthy G, Epple M, Neumann M, Shanahan CM, Proudfoot D (2008) Calcium phosphate crystals induce cell death in human vascular smooth muscle cells: a potential mechanism in atherosclerotic plaque destabilization. Circ Res 103(5):e28–e34CrossRefPubMedGoogle Scholar
  25. 25.
    Sage AP, Lu J, Tintut Y, Demer LL (2011) Hyperphosphatemia-induced nanocrystals upregulate the expression of bone morphogenetic protein-2 and osteopontin genes in mouse smooth muscle cells in vitro. Kidney Int 79(4):414–422CrossRefPubMedGoogle Scholar
  26. 26.
    Hutcheson JD, Maldonado N, Aikawa E (2014) Small entities with large impact: microcalcifications and atherosclerotic plaque vulnerability. Curr Opin Lipidol 25(5):327–332CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Shanahan CM, Cary NR, Metcalfe JC, Weissberg PL (1994) High expression of genes for calcification-regulating proteins in human atherosclerotic plaques. J Clin Invest 93(6):2393–2402CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Rong JX, Shapiro M, Trogan E, Fisher EA (2003) Transdifferentiation of mouse aortic smooth muscle cells to a macrophage-like state after cholesterol loading. Proc Natl Acad Sci U S A 100(23):13531–13536CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Shankman LS, Gomez D, Cherepanova OA, Salmon M, Alencar GF, Haskins RM, Swiatlowska P, Newman AA, Greene ES, Straub AC, Isakson B, Randolph GJ, Owens GK (2015) KLF4-dependent phenotypic modulation of smooth muscle cells has a key role in atherosclerotic plaque pathogenesis. Nat Med 21(6):628–637CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Vengrenyuk Y, Nishi H, Long X, Ouimet M, Savji N, Martinez FO, Cassella CP, Moore KJ, Ramsey SA, Miano JM, Fisher EA (2015) Cholesterol loading reprograms the microRNA-143/145-myocardin axis to convert aortic smooth muscle cells to a dysfunctional macrophage-like phenotype. Arterioscler Thromb Vasc Biol 35(3):535–546CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    Tanimura A, McGregor DH, Anderson HC (1983) Matrix vesicles in atherosclerotic calcification. Proc Soc Exp Biol Med 172(2):173–177CrossRefPubMedGoogle Scholar
  32. 32.
    Reynolds JL, Joannides AJ, Skepper JN, McNair R, Schurgers LJ, Proudfoot D, Jahnen-Dechent W, Weissberg PL, Shanahan CM (2004) Human vascular smooth muscle cells undergo vesicle-mediated calcification in response to changes in extracellular calcium and phosphate concentrations: a potential mechanism for accelerated vascular calcification in ESRD. J Am Soc Nephrol 15(11):2857–2867CrossRefPubMedGoogle Scholar
  33. 33.
    New SE, Goettsch C, Aikawa M, Marchini JF, Shibasaki M, Yabusaki K, Libby P, Shanahan CM, Croce K, Aikawa E (2013) Macrophage-derived matrix vesicles: an alternative novel mechanism for microcalcification in atherosclerotic plaques. Circ Res 113(1):72–77CrossRefPubMedPubMedCentralGoogle Scholar
  34. 34.
    Garnier D, Magnus N, Lee TH, Bentley V, Meehan B, Milsom C, Montermini L, Kislinger T, Rak J (2012) Cancer cells induced to express mesenchymal phenotype release exosome-like extracellular vesicles carrying tissue factor. J Biol Chem 287(52):43565–43572CrossRefPubMedPubMedCentralGoogle Scholar
  35. 35.
    Reynolds JL, Skepper JN, McNair R, Kasama T, Gupta K, Weissberg PL, Jahnen-Dechent W, Shanahan CM (2005) Multifunctional roles for serum protein fetuin-a in inhibition of human vascular smooth muscle cell calcification. J Am Soc Nephrol 16(10):2920–2930CrossRefPubMedGoogle Scholar
  36. 36.
    Shroff RC, Shah V, Hiorns MP, Schoppet M, Hofbauer LC, Hawa G, Schurgers LJ, Singhal A, Merryweather I, Brogan P, Shanahan C, Deanfield J, Rees L (2008) The circulating calcification inhibitors, fetuin-A and osteoprotegerin, but not matrix Gla protein, are associated with vascular stiffness and calcification in children on dialysis. Nephrol Dial Transplant 23(10):3263–3271CrossRefPubMedGoogle Scholar
  37. 37.
    Bostrom KI, Rajamannan NM, Towler DA (2011) The regulation of valvular and vascular sclerosis by osteogenic morphogens. Circ Res 109(5):564–577CrossRefPubMedPubMedCentralGoogle Scholar
  38. 38.
    Bobryshev YV, Killingsworth MC, Huynh TG, Lord RS, Grabs AJ, Valenzuela SM (2007) Are calcifying matrix vesicles in atherosclerotic lesions of cellular origin? Basic Res Cardiol 102(2):133–143CrossRefPubMedGoogle Scholar
  39. 39.
    Kapustin AN, Davies JD, Reynolds JL, McNair R, Jones GT, Sidibe A, Schurgers LJ, Skepper JN, Proudfoot D, Mayr M, Shanahan CM (2011) Calcium regulates key components of vascular smooth muscle cell-derived matrix vesicles to enhance mineralization. Circ Res 109(1):e1–e12CrossRefPubMedGoogle Scholar
  40. 40.
    Kapustin AN, Chatrou ML, Drozdov I, Zheng Y, Davidson SM, Soong D, Furmanik M, Sanchis P, De Rosales RT, Alvarez-Hernandez D, Shroff R, Yin X, Muller K, Skepper JN, Mayr M, Reutelingsperger CP, Chester A, Bertazzo S, Schurgers LJ, Shanahan CM (2015) Vascular smooth muscle cell calcification is mediated by regulated exosome secretion. Circ Res 116(8):1312–1323CrossRefPubMedGoogle Scholar
  41. 41.
    Raposo G, Stoorvogel W (2013) Extracellular vesicles: exosomes, microvesicles, and friends. J Cell Biol 200(4):373–383CrossRefPubMedPubMedCentralGoogle Scholar
  42. 42.
    Trajkovic K, Hsu C, Chiantia S, Rajendran L, Wenzel D, Wieland F, Schwille P, Brugger B, Simons M (2008) Ceramide triggers budding of exosome vesicles into multivesicular endosomes. Science 319(5867):1244–1247CrossRefPubMedGoogle Scholar
  43. 43.
    Genge BR, Wu LN, Wuthier RE (2007) In vitro modeling of matrix vesicle nucleation: synergistic stimulation of mineral formation by annexin A5 and phosphatidylserine. J Biol Chem 282(36):26035–26045CrossRefPubMedGoogle Scholar
  44. 44.
    Kirsch T, Nah HD, Shapiro IM, Pacifici M (1997) Regulated production of mineralization-competent matrix vesicles in hypertrophic chondrocytes. J Cell Biol 137(5):1149–1160CrossRefPubMedPubMedCentralGoogle Scholar
  45. 45.
    Wang W, Kirsch T (2002) Retinoic acid stimulates annexin-mediated growth plate chondrocyte mineralization. J Cell Biol 157(6):1061–1069CrossRefPubMedPubMedCentralGoogle Scholar
  46. 46.
    Anderson HC (1995) Molecular biology of matrix vesicles. Clin Orthop Relat Res (314):266–280Google Scholar
  47. 47.
    Auge N, Nikolova-Karakashian M, Carpentier S, Parthasarathy S, Negre-Salvayre A, Salvayre R, Merrill AH Jr, Levade T (1999) Role of sphingosine 1-phosphate in the mitogenesis induced by oxidized low density lipoprotein in smooth muscle cells via activation of sphingomyelinase, ceramidase, and sphingosine kinase. J Biol Chem 274(31):21533–21538CrossRefPubMedGoogle Scholar
  48. 48.
    Tellier E, Negre-Salvayre A, Bocquet B, Itohara S, Hannun YA, Salvayre R, Auge N (2007) Role for furin in tumor necrosis factor alpha-induced activation of the matrix metalloproteinase/sphingolipid mitogenic pathway. Mol Cell Biochem 27(8):2997–3007CrossRefGoogle Scholar
  49. 49.
    Cinq-Frais C, Coatrieux C, Savary A, D’Angelo R, Bernis C, Salvayre R, Negre-Salvayre A, Auge N (2015) Annexin II-dependent actin remodelling evoked by hydrogen peroxide requires the metalloproteinase/sphingolipid pathway. Redox Biol 4:169–179CrossRefPubMedGoogle Scholar
  50. 50.
    Savina A, Fader CM, Damiani MT, Colombo MI (2005) Rab11 promotes docking and fusion of multivesicular bodies in a calcium-dependent manner. Traffic 6(2):131–143CrossRefPubMedGoogle Scholar
  51. 51.
    Mellgren RL, Zhang W, Miyake K, McNeil PL (2007) Calpain is required for the rapid, calcium-dependent repair of wounded plasma membrane. J Biol Chem 282(4):2567–2575CrossRefPubMedGoogle Scholar
  52. 52.
    Chen NX, O’Neill KD, Chen X, Moe SM (2008) Annexin-mediated matrix vesicle calcification in vascular smooth muscle cells. J Bone Miner Res 23(11):1798–1805CrossRefPubMedPubMedCentralGoogle Scholar
  53. 53.
    Hutcheson JD, Goettsch C, Pham T, Iwashita M, Aikawa M, Singh SA, Aikawa E (2014) Enrichment of calcifying extracellular vesicles using density-based ultracentrifugation protocol. J Extracell Vesicles 3:25129CrossRefPubMedGoogle Scholar
  54. 54.
    Chae YM, Heo SH, Kim JY, Lee JM, Ryoo HM, Cho JY (2009) Upregulation of smpd3 via BMP2 stimulation and Runx2. BMB Rep 42(2):86–90CrossRefPubMedGoogle Scholar
  55. 55.
    Kakoi H, Maeda S, Shinohara N, Matsuyama K, Imamura K, Kawamura I, Nagano S, Setoguchi T, Yokouchi M, Ishidou Y, Komiya S (2014) Bone morphogenic protein (BMP) signaling up-regulates neutral sphingomyelinase 2 to suppress chondrocyte maturation via the Akt protein signaling pathway as a negative feedback mechanism. J Biol Chem 289(12):8135–8150CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2017

Authors and Affiliations

  1. 1.Experimental Research DepartmentHospital Israelita Albert EinsteinSão PauloBrazil

Personalised recommendations