Advertisement

The Multifaceted Functions of Exosomes in Health and Disease: An Overview

  • Claudia ArenaccioEmail author
  • Maurizio Federico
Chapter
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 998)

Abstract

Exosomes are extracellular vesicles of 50–150 nm in diameter secreted by basically all cell types. They mediate micro-communication among cells, tissues, and organs under both healthy and disease conditions by virtue of their ability to deliver macromolecules to target cells. Research on exosomes is a rapidly growing field, however many aspects of their biogenesis and functions still await a complete clarification. In our review we summarize most recent findings regarding biogenesis, structure, and functions of exosomes. In addition, an overview regarding the role of exosomes in both infectious and non-infectious diseases is provided. Finally, the use of exosomes as biomarkers and delivery tools for therapeutic molecules is addressed. Considering the body of literature data, exosomes have to be considered key components of the intercellular communication in both health and disease.

Keywords

Exosomes Multivesicular bodies Intraluminal vesicles Extracellular vesicles 

References

  1. 1.
    Novick P, Field C, Schekman R (1980) Identification of 23 complementation groups required for post-translational events in the yeast secretory pathway. Cell 21(1):205–215PubMedCrossRefGoogle Scholar
  2. 2.
    Balch WE, Dunphy WG, Braell WA, Rothman JE (1984) Reconstitution of the transport of protein between successive compartments of the Golgi measured by the coupled incorporation of N-acetylglucosamine. Cell 39(2 Pt 1):405–416PubMedCrossRefGoogle Scholar
  3. 3.
    Raposo G, Stoorvogel W (2013) Extracellular vesicles: exosomes, microvesicles, and friends. J Cell Biol 200(4):373PubMedPubMedCentralCrossRefGoogle Scholar
  4. 4.
    Johnstone RM, Adam M, Hammond JR, Orr L, Turbide C (1987) Vesicle formation during reticulocyte maturation. Association of plasma membrane activities with released vesicles (exosomes). J Biol Chem 262(19):9412–9420PubMedGoogle Scholar
  5. 5.
    Bobrie A, Colombo M, Raposo G, Thery C (2011) Exosome secretion: molecular mechanisms and roles in immune responses. Traffic 12(12):1659–1668PubMedCrossRefGoogle Scholar
  6. 6.
    Eder C (2009) Mechanisms of interleukin-1beta release. Immunobiology 214(7):543–553PubMedCrossRefGoogle Scholar
  7. 7.
    Li J, Liu K, Liu Y, Xu Y, Zhang F, Yang H, Liu J, Pan T, Chen J, Wu M, Zhou X, Yuan Z (2013) Exosomes mediate the cell-to-cell transmission of IFN-alpha-induced antiviral activity. Nat Immunol 14(8):793–803PubMedCrossRefGoogle Scholar
  8. 8.
    Cossetti C, Iraci N, Mercer TR, Leonardi T, Alpi E, Drago D, Alfaro-Cervello C, Saini HK, Davis MP, Schaeffer J, Vega B, Stefanini M, Zhao C, Muller W, Garcia-Verdugo JM, Mathivanan S, Bachi A, Enright AJ, Mattick JS, Pluchino S (2014) Extracellular vesicles from neural stem cells transfer IFN-gamma via Ifngr1 to activate Stat1 signaling in target cells. Mol Cell 56(2):193–204PubMedPubMedCentralCrossRefGoogle Scholar
  9. 9.
    Wiley RD, Gummuluru S (2006) Immature dendritic cell-derived exosomes can mediate HIV-1 trans infection. Proc Natl Acad Sci U S A 103(3):738PubMedPubMedCentralCrossRefGoogle Scholar
  10. 10.
    Bukong TN, Momen-Heravi F, Kodys K, Bala S, Szabo G (2014) Exosomes from hepatitis C infected patients transmit HCV infection and contain replication competent viral RNA in complex with Ago2-miR122-HSP90. PLoS Pathog 10(10):e1004424PubMedPubMedCentralCrossRefGoogle Scholar
  11. 11.
    Longatti A, Boyd B, Chisari FV (2015) Virion-independent transfer of replication-competent hepatitis C virus RNA between permissive cells. J Virol 89(5):2956–2961PubMedCrossRefGoogle Scholar
  12. 12.
    Fevrier B, Vilette D, Archer F, Loew D, Faigle W, Vidal M, Laude H, Raposo G (2004) Cells release prions in association with exosomes. Proc Natl Acad Sci U S A 101(26):9683–9688PubMedPubMedCentralCrossRefGoogle Scholar
  13. 13.
    Al-Nedawi K, Meehan B, Rak J (2009) Microvesicles: messengers and mediators of tumor progression. Cell Cycle 8(13):2014–2018PubMedCrossRefGoogle Scholar
  14. 14.
    Peinado H, Alečković M, Lavotshkin S, Matei I, Costa-Silva B, Moreno-Bueno G, Hergueta-Redondo M, Williams C, García-Santos G, Ghajar C (2012) Melanoma exosomes educate bone marrow progenitor cells toward a pro-metastatic phenotype through MET. Nat Med 18(6):883PubMedPubMedCentralCrossRefGoogle Scholar
  15. 15.
    Colombo M, Raposo G, Thery C (2014) Biogenesis, secretion, and intercellular interactions of exosomes and other extracellular vesicles. Annu Rev Cell Dev Biol 30:255–289PubMedCrossRefGoogle Scholar
  16. 16.
    Trams EG, Lauter CJ, Salem SN Jr, Heine U (1981) Exfoliation of membrane ecto-enzymes in the form of micro-vesicles. Biochim Biophys Acta 645(1):63–70PubMedCrossRefGoogle Scholar
  17. 17.
    Conde-Vancells J, Rodriguez-Suarez E, Embade N, Gil D, Matthiesen R, Valle M, Elortza F, Lu SC, Mato JM, Falcon-Perez JM (2008) Characterization and comprehensive proteome profiling of exosomes secreted by hepatocytes. J Proteome Res 7(12):5157–5166PubMedPubMedCentralCrossRefGoogle Scholar
  18. 18.
    Stoorvogel W, Kleijmeer MJ, Geuze HJ, Raposo G (2002) The biogenesis and functions of exosomes. Traffic 3(5):321–330PubMedCrossRefGoogle Scholar
  19. 19.
    Rusten TE, Vaccari T, Stenmark H (2011) Shaping development with ESCRTs. Nat Cell Biol 14(1):38–45PubMedCrossRefGoogle Scholar
  20. 20.
    Hurley JH, Hanson PI (2010) Membrane budding and scission by the ESCRT machinery: it’s all in the neck. Nat Rev Mol Cell Biol 11(8):556–566PubMedPubMedCentralCrossRefGoogle Scholar
  21. 21.
    Stuffers S, Sem WC, Stenmark H, Brech A (2009) Multivesicular endosome biogenesis in the absence of ESCRTs. Traffic 10(7):925–937PubMedCrossRefGoogle Scholar
  22. 22.
    Poteryaev D, Datta S, Ackema K, Zerial M, Spang A (2010) Identification of the switch in early-to-late endosome transition. Cell 141(3):497–508PubMedCrossRefGoogle Scholar
  23. 23.
    Trajkovic K, Hsu C, Chiantia S, Rajendran L, Wenzel D, Wieland F, Schwille P, Brügger B, Simons M (2008) Ceramide triggers budding of exosome vesicles into multivesicular endosomes. Science 319(5867):1244–1247PubMedCrossRefGoogle Scholar
  24. 24.
    Hsu C, Morohashi Y, Yoshimura S, Manrique-Hoyos N, Jung S, Lauterbach MA, Bakhti M, Gronborg M, Mobius W, Rhee J, Barr FA, Simons M (2010) Regulation of exosome secretion by Rab35 and its GTPase-activating proteins TBC1D10A-C. J Cell Biol 189(2):223–232PubMedPubMedCentralCrossRefGoogle Scholar
  25. 25.
    Ostrowski M, Carmo NB, Krumeich S, Fanget I, Raposo G, Savina A, Moita CF, Schauer K, Hume AN, Freitas RP (2009) Rab27a and Rab27b control different steps of the exosome secretion pathway. Nat Cell Biol 12(1):19–30PubMedCrossRefGoogle Scholar
  26. 26.
    Fang Y, Wu N, Gan X, Yan W, Morrell JC, Gould SJ (2007) Higher-order oligomerization targets plasma membrane proteins and HIV gag to exosomes. PLoS Biol 5(6):e158PubMedPubMedCentralCrossRefGoogle Scholar
  27. 27.
    Booth AM, Fang Y, Fallon JK, Yang JM, Hildreth JE, Gould SJ (2006) Exosomes and HIV Gag bud from endosome-like domains of the T cell plasma membrane. J Cell Biol 172(6):923–935PubMedPubMedCentralCrossRefGoogle Scholar
  28. 28.
    Romancino DP, Paterniti G, Campos Y, De LA, Di FV, D’Azzo A, Bongiovanni A (2013) Identification and characterization of the nano-sized vesicles released by muscle cells. FEBS Lett 587(9):1379–1384PubMedPubMedCentralCrossRefGoogle Scholar
  29. 29.
    Forterre A, Jalabert A, Berger E, Baudet M, Chikh K, Errazuriz E, De Larichaudy J, Chanon S, Weiss-Gayet M, Hesse AM, Record M, Geloen A, Lefai E, Vidal H, Coute Y, Rome S (2014) Proteomic analysis of C2C12 myoblast and myotube exosome-like vesicles: a new paradigm for myoblast-myotube cross talk? PLoS One 9(1):e84153PubMedPubMedCentralCrossRefGoogle Scholar
  30. 30.
    Kalra H, Simpson RJ, Ji H, Aikawa E, Altevogt P, Askenase P, Bond VC, Borras FE, Breakefield X, Budnik V, Buzas E, Camussi G, Clayton A, Cocucci E, Falcon-Perez JM, Gabrielsson S, Gho YS, Gupta D, Harsha HC, Hendrix A, Hill AF, Inal JM, Jenster G, Kramer-Albers EM, Lim SK, Llorente A, Lotvall J, Marcilla A, Mincheva-Nilsson L, Nazarenko I, Nieuwland R, Nolte-'t Hoen EN, Pandey A, Patel T, Piper MG, Pluchino S, Prasad TS, Rajendran L, Raposo G, Record M, Reid GE, Sanchez-Madrid F, Schiffelers RM, Siljander P, Stensballe A, Stoorvogel W, Taylor D, Thery C, Valadi H, van Balkom BW, Vazquez J, Vidal M, Wauben MH, Yanez-Mo M, Zoeller M, Mathivanan S (2012) Vesiclepedia: a compendium for extracellular vesicles with continuous community annotation. PLoS Biol 10(12):e1001450PubMedPubMedCentralCrossRefGoogle Scholar
  31. 31.
    Simpson RJ, Kalra H, Mathivanan S (2012) ExoCarta as a resource for exosomal research. J Extracell Vesicles 1:10.3402CrossRefGoogle Scholar
  32. 32.
    Mathivanan S, Fahner CJ, Reid GE, Simpson RJ (2012) ExoCarta 2012: database of exosomal proteins, RNA and lipids. Nucleic Acids Res 40:1241–1244CrossRefGoogle Scholar
  33. 33.
    Mathivanan S, Ji H, Simpson RJ (2010) Exosomes: extracellular organelles important in intercellular communication. J Proteome 73(10):1907–1920CrossRefGoogle Scholar
  34. 34.
    Théry C, Ostrowski M, Segura E (2009) Membrane vesicles as conveyors of immune responses. Nat Rev Immunol 9(8):581PubMedCrossRefGoogle Scholar
  35. 35.
    Logozzi M, De Milito A, Lugini L, Borghi M, Calabro L, Spada M, Perdicchio M, Marino ML, Federici C, Iessi E, Brambilla D, Venturi G, Lozupone F, Santinami M, Huber V, Maio M, Rivoltini L, Fais S (2009) High levels of exosomes expressing CD63 and caveolin-1 in plasma of melanoma patients. PLoS One 4(4):e5219PubMedPubMedCentralCrossRefGoogle Scholar
  36. 36.
    Saunderson SC, Dunn AC, Crocker PR, Mclellan AD (2014) CD169 mediates the capture of exosomes in spleen and lymph node. Blood 123(2):208–216PubMedPubMedCentralCrossRefGoogle Scholar
  37. 37.
    Laulagnier K, Motta C, Hamdi S, Roy S, Fauvelle F, Pageaux JF, Kobayashi T, Salles JP, Perret B, Bonnerot C, Record M (2004) Mast cell- and dendritic cell-derived exosomes display a specific lipid composition and an unusual membrane organization. Biochem J 380(Pt 1):161–171PubMedPubMedCentralCrossRefGoogle Scholar
  38. 38.
    Matsuo H, Chevallier J, Mayran N, Le Blanc I, Ferguson C, Faure J, Blanc NS, Matile S, Dubochet J, Sadoul R, Parton RG, Vilbois F, Gruenberg J (2004) Role of LBPA and Alix in multivesicular liposome formation and endosome organization. Science 303(5657):531–534PubMedCrossRefGoogle Scholar
  39. 39.
    Brouwers JF, Aalberts M, Jansen JW, van Niel G, Wauben MH, Stout TA, Helms JB, Stoorvogel W (2013) Distinct lipid compositions of two types of human prostasomes. Proteomics 13(10–11):1660–1666PubMedCrossRefGoogle Scholar
  40. 40.
    Subra C, Grand D, Laulagnier K, Stella A, Lambeau G, Paillasse M, De MP, Monsarrat B, Perret B, Silvente-Poirot S (2010) Exosomes account for vesicle-mediated transcellular transport of activatable phospholipases and prostaglandins. J Lipid Res 51(8):2105PubMedPubMedCentralCrossRefGoogle Scholar
  41. 41.
    Witwer KW, Buzás EI, Bemis LT, Bora A, Lässer C, Lötvall J, Hoen ENNT, Piper MG, Sivaraman S, Skog J (2013) Standardization of sample collection, isolation and analysis methods in extracellular vesicle research. J Extracell Vesicles 2:1–25CrossRefGoogle Scholar
  42. 42.
    Lotvall J, Hill AF, Hochberg F, Buzas EI, Di Vizio D, Gardiner C, Gho YS, Kurochkin IV, Mathivanan S, Quesenberry P, Sahoo S, Tahara H, Wauben MH, Witwer KW, Thery C (2014) Minimal experimental requirements for definition of extracellular vesicles and their functions: a position statement from the International Society for Extracellular Vesicles. J Extracell Vesicles 3:26913PubMedCrossRefGoogle Scholar
  43. 43.
    Mittelbrunn M, Gutierrez-Vazquez C, Villarroya-Beltri C, Gonzalez S, Sanchez-Cabo F, Gonzalez MA, Bernad A, Sanchez-Madrid F (2011) Unidirectional transfer of microRNA-loaded exosomes from T cells to antigen-presenting cells. Nat Commun 2:282PubMedPubMedCentralCrossRefGoogle Scholar
  44. 44.
    Ratajczak J, ., Miekus K, ., Kucia M, ., Zhang J, ., Reca R, ., Dvorak P, ., Ratajczak MZ (2006) Embryonic stem cell-derived microvesicles reprogram hematopoietic progenitors: evidence for horizontal transfer of mRNA and protein delivery. Leukemia 20 (5):847–856.PubMedCrossRefGoogle Scholar
  45. 45.
    Pegtel DM, Kieff E (2010) Functional delivery of viral miRNAs via exosomes. Proc Natl Acad Sci U S A 107(14):6328–6333PubMedPubMedCentralCrossRefGoogle Scholar
  46. 46.
    Bellingham SA, Coleman BM, Hill AF (2012) Small RNA deep sequencing reveals a distinct miRNA signature released in exosomes from prion-infected neuronal cells. Nucleic Acids Res 40(21):10937–10949PubMedPubMedCentralCrossRefGoogle Scholar
  47. 47.
    Huang X, Yuan T, Tschannen M, Sun Z, Jacob H, Du M, Liang M, Dittmar RL, Liu Y, Liang M, Kohli M, Thibodeau SN, Boardman L, Wang L (2013) Characterization of human plasma-derived exosomal RNAs by deep sequencing. BMC Genomics 14:319PubMedPubMedCentralCrossRefGoogle Scholar
  48. 48.
    Vojtech L, Woo S, Hughes S, Levy C, Ballweber L, Sauteraud RP, Strobl J, Westerberg K, Gottardo R, Tewari M, Hladik F (2014) Exosomes in human semen carry a distinctive repertoire of small non-coding RNAs with potential regulatory functions. Nucleic Acids Res 42(11):7290–7304PubMedPubMedCentralCrossRefGoogle Scholar
  49. 49.
    Villarroya-Beltri C, Gutiérrez-Vázquez C, Sánchez-Cabo F, Pérez-Hernández D, Vázquez J, Martin-Cofreces N, Martinez-Herrera DJ, Pascual-Montano A, Mittelbrunn M, Sánchez-Madrid F (2011) Sumoylated hnRNPA2B1 controls the sorting of miRNAs into exosomes through binding to specific motifs. Nat Commun 4(1):2980Google Scholar
  50. 50.
    Santangelo L, Giurato G, Cicchini C, Montaldo C, Mancone C, Tarallo R, Battistelli C, Alonzi T, Weisz A, Tripodi M (2016) The RNA-binding protein SYNCRIP is a component of the hepatocyte exosomal machinery controlling microRNA sorting. Cell Rep 17(3):799PubMedCrossRefGoogle Scholar
  51. 51.
    Lee TH, D’Asti E, Magnus N, Al-Nedawi K, Meehan B, Rak J (2011) Microvesicles as mediators of intercellular communication in cancer—the emerging science of cellular ‘debris’. Semin Immunopathol 33(5):455–467PubMedCrossRefGoogle Scholar
  52. 52.
    Thakur BK, Zhang H, Becker A, Matei I, Huang Y, Costasilva B, Zheng Y, Hoshino A, Brazier H, Xiang J (2014) Double-stranded DNA in exosomes: a novel biomarker in cancer detection. Cell Res 24(6):766PubMedPubMedCentralCrossRefGoogle Scholar
  53. 53.
    Minciacchi VR, You S, Spinelli C, Morley S, Zandian M, Aspuria PJ, Cavallini L, Ciardiello C, Reis Sobreiro M, Morello M, Kharmate G, Jang SC, Kim DK, Hosseini-Beheshti E, Tomlinson Guns E, Gleave M, Gho YS, Mathivanan S, Yang W, Freeman MR, Di Vizio D (2015) Large oncosomes contain distinct protein cargo and represent a separate functional class of tumor-derived extracellular vesicles. Oncotarget 6(13):11327–11341PubMedPubMedCentralCrossRefGoogle Scholar
  54. 54.
    Klibi J, Niki T, Riedel A, Pioche-Durieu C, Souquere S, Rubinstein E, Le Moulec S, Guigay J, Hirashima M, Guemira F, Adhikary D, Mautner J, Busson P (2009) Blood diffusion and Th1-suppressive effects of galectin-9-containing exosomes released by Epstein-Barr virus-infected nasopharyngeal carcinoma cells. Blood 113(9):1957–1966PubMedCrossRefGoogle Scholar
  55. 55.
    Silverman JM, Clos J, De'Oliveira CC, Shirvani O, Fang Y, Wang C, Foster LJ, Reiner NE (2010) An exosome-based secretion pathway is responsible for protein export from Leishmania and communication with macrophages. J Cell Sci 123(Pt 6):842–852PubMedCrossRefGoogle Scholar
  56. 56.
    Keller S, Ridinger J, Rupp AK, Janssen JW, Altevogt P (2011) Body fluid derived exosomes as a novel template for clinical diagnostics. J Transl Med 9:86PubMedPubMedCentralCrossRefGoogle Scholar
  57. 57.
    Valadi H, Ekström K, Bossios A, Sjöstrand M, Lee JJ, Lötvall JO (2007) Exosome-mediated transfer of mRNAs and microRNAs is a novel mechanism of genetic exchange between cells. Nat Cell Biol 9(9):654–659PubMedCrossRefGoogle Scholar
  58. 58.
    Svensson KJ, Christianson HC, Wittrup A, Bourseauguilmain E, Lindqvist E, Svensson LM, Mörgelin M, Belting M (2013) Exosome uptake depends on ERK1/2-heat shock protein 27 signaling and lipid raft-mediated endocytosis negatively regulated by caveolin-1. J Biol Chem 288(24):17713PubMedPubMedCentralCrossRefGoogle Scholar
  59. 59.
    Fitzner D, Schnaars M, van Rossum D, Krishnamoorthy G, Dibaj P, Bakhti M, Regen T, Hanisch UK, Simons M (2011) Selective transfer of exosomes from oligodendrocytes to microglia by macropinocytosis. J Cell Sci 124(Pt 3):447–458PubMedCrossRefGoogle Scholar
  60. 60.
    Montecalvo A, Larregina AT, Shufesky WJ, Stolz DB, Sullivan ML, Karlsson JM, Baty CJ, Gibson GA, Erdos G, Wang Z, Milosevic J, Tkacheva OA, Divito SJ, Jordan R, Lyons-Weiler J, Watkins SC, Morelli AE (2012) Mechanism of transfer of functional microRNAs between mouse dendritic cells via exosomes. Blood 119(3):756–766PubMedPubMedCentralCrossRefGoogle Scholar
  61. 61.
    Tian T, Zhu YL, Hu FH, Wang YY, Huang NP, Xiao ZD (2013) Dynamics of exosome internalization and trafficking. J Cell Physiol 228(7):1487–1495PubMedCrossRefGoogle Scholar
  62. 62.
    Tian T, Wang Y, Wang H, Zhu Z, Xiao Z (2010) Visualizing of the cellular uptake and intracellular trafficking of exosomes by live-cell microscopy. J Cell Biochem 111(2):488–496PubMedCrossRefGoogle Scholar
  63. 63.
    Feng D, Zhao WL, Ye YY, Bai XC, Liu RQ, Chang LF, Zhou Q, Sui SF (2010) Cellular internalization of exosomes occurs through phagocytosis. Traffic 11(5):675–687PubMedCrossRefGoogle Scholar
  64. 64.
    Franzen CA, Simms PE, Van Huis AF, Foreman KE, Kuo PC, Gupta GN (2014) Characterization of uptake and internalization of exosomes by bladder cancer cells. Biomed Res Int 2014:619829PubMedPubMedCentralCrossRefGoogle Scholar
  65. 65.
    Raposo G, Nijman HW, Stoorvogel W, Liejendekker R, Harding CV, Melief CJ, Geuze HJ (1996) B lymphocytes secrete antigen-presenting vesicles. J Exp Med 183(3):1161–1172PubMedCrossRefGoogle Scholar
  66. 66.
    Faure J, Lachenal G, Court M, Hirrlinger J, Chatellard-Causse C, Blot B, Grange J, Schoehn G, Goldberg Y, Boyer V, Kirchhoff F, Raposo G, Garin J, Sadoul R (2006) Exosomes are released by cultured cortical neurones. Mol Cell Neurosci 31(4):642–648PubMedCrossRefGoogle Scholar
  67. 67.
    Berckmans RJ, Sturk A, van Tienen LM, Schaap MC, Nieuwland R (2011) Cell-derived vesicles exposing coagulant tissue factor in saliva. Blood 117(11):3172–3180PubMedCrossRefGoogle Scholar
  68. 68.
    Biro E, Sturk-Maquelin KN, Vogel GM, Meuleman DG, Smit MJ, Hack CE, Sturk A, Nieuwland R (2003) Human cell-derived microparticles promote thrombus formation in vivo in a tissue factor-dependent manner. J Thromb Haemost 1(12):2561–2568PubMedCrossRefGoogle Scholar
  69. 69.
    Sullivan R, Saez F, Girouard J, Frenette G (2005) Role of exosomes in sperm maturation during the transit along the male reproductive tract. Blood Cells Mol Dis 35(1):1–10PubMedCrossRefGoogle Scholar
  70. 70.
    Taylor DD, Akyol S, Gercel-Taylor C (2006) Pregnancy-associated exosomes and their modulation of T cell signaling. J Immunol 176(3):1534–1542PubMedCrossRefGoogle Scholar
  71. 71.
    Hanahan D, Weinberg RA (2011) Hallmarks of cancer: the next generation. Cell 144(5):646–674PubMedCrossRefGoogle Scholar
  72. 72.
    Buzas EI, Gyorgy B, Nagy G, Falus A, Gay S (2014) Emerging role of extracellular vesicles in inflammatory diseases. Nat Rev Rheumatol 10(6):356–364PubMedCrossRefGoogle Scholar
  73. 73.
    Silverman JM, Reiner NE (2011) Exosomes and other microvesicles in infection biology: organelles with unanticipated phenotypes. Cell Microbiol 13(13):1–9PubMedCrossRefGoogle Scholar
  74. 74.
    Angela S, Meyering SS, Ben L, Sergey I, Van HML, Hakami RM, Fatah K (2015) Extracellular vesicles from infected cells: potential for direct pathogenesis. Front Microbiol 6:1132Google Scholar
  75. 75.
    Stepanian A (2013) Microparticle increase in severe obesity: not related to metabolic syndrome and unchanged after massive weight loss. Obesity 21(11):2236–2243PubMedCrossRefGoogle Scholar
  76. 76.
    Emanueli C, Shearn AI, Angelini GD, Sahoo S (2015) Exosomes and exosomal miRNAs in cardiovascular protection and repair. Vasc Pharmacol 71:24–30CrossRefGoogle Scholar
  77. 77.
    Rak J (2010) Microparticles in cancer. Semin Thromb Hemost 36(8):888–906PubMedCrossRefGoogle Scholar
  78. 78.
    Kim HK, Song KS, Park YS, Kang YH, Lee YJ, Lee KR, Kim HK, Ryu KW, Bae JM, Kim S (2003) Elevated levels of circulating platelet microparticles, VEGF, IL-6 and RANTES in patients with gastric cancer: possible role of a metastasis predictor. Eur J Cancer 39(2):184–191PubMedCrossRefGoogle Scholar
  79. 79.
    Antonyak MA, Li B, Boroughs LK, Johnson JL, Druso JE, Bryant KL, Holowka DA, Cerione RA (2011) Cancer cell-derived microvesicles induce transformation by transferring tissue transglutaminase and fibronectin to recipient cells. Proc Natl Acad Sci U S A 108(12):4852–4857PubMedPubMedCentralCrossRefGoogle Scholar
  80. 80.
    Taylor DD, Gerceltaylor C (2011) Exosomes/microvesicles: mediators of cancer-associated immunosuppressive microenvironments. Semin Immunopathol 33(5):441–454PubMedCrossRefGoogle Scholar
  81. 81.
    Higginbotham JN, Demory Beckler M, Gephart JD, Franklin JL, Bogatcheva G, Kremers GJ, Piston DW, Ayers GD, McConnell RE, Tyska MJ, Coffey RJ (2011) Amphiregulin exosomes increase cancer cell invasion. Curr Biol 21(9):779–786PubMedPubMedCentralCrossRefGoogle Scholar
  82. 82.
    Park JE, Tan HS, Datta A, Lai RC, Zhang H, Meng W, Lim SK, Sze SK (2010) Hypoxic tumor cell modulates its microenvironment to enhance angiogenic and metastatic potential by secretion of proteins and exosomes. Mol Cell Proteomics 9(6):1085PubMedPubMedCentralCrossRefGoogle Scholar
  83. 83.
    Hood JL, Pan H, Lanza GM, Wickline SA, Consortium for Translational Research in Advanced Imaging and Nanomedicine (2009) Paracrine induction of endothelium by tumor exosomes. Lab Investig 89(11):1317–1328PubMedPubMedCentralCrossRefGoogle Scholar
  84. 84.
    Sobo-Vujanovic A, Munich S, Vujanovic NL (2014) Dendritic-cell exosomes cross-present Toll-like receptor-ligands and activate bystander dendritic cells. Cell Immunol 289(1–2):119–127PubMedPubMedCentralCrossRefGoogle Scholar
  85. 85.
    Jaworski E, Narayanan A, Van Duyne R, Shabbeer-Meyering S, Iordanskiy S, Saifuddin M, Das R, Afonso PV, Sampey GC, Chung M, Popratiloff A, Shrestha B, Sehgal M, Jain P, Vertes A, Mahieux R, Kashanchi F (2014) Human T-lymphotropic virus type 1-infected cells secrete exosomes that contain Tax protein. J Biol Chem 289(32):22284–22305PubMedPubMedCentralCrossRefGoogle Scholar
  86. 86.
    Mori Y, Koike M, Moriishi E, Kawabata A, Tang H, Oyaizu H, Uchiyama Y, Yamanishi K (2008) Human herpesvirus-6 induces MVB formation, and virus egress occurs by an exosomal release pathway. Traffic 9(10):1728–1742PubMedPubMedCentralCrossRefGoogle Scholar
  87. 87.
    Kalamvoki M, Du T, Roizman B (2014) Cells infected with herpes simplex virus 1 export to uninfected cells exosomes containing STING, viral mRNAs, and microRNAs. Proc Natl Acad Sci U S A 111(46):E4991–E4996PubMedPubMedCentralCrossRefGoogle Scholar
  88. 88.
    Ariza ME, Rivailler P, Glaser R, Chen M, Williams MV (2013) Epstein-Barr virus encoded dUTPase containing exosomes modulate innate and adaptive immune responses in human dendritic cells and peripheral blood mononuclear cells. PLoS One 8(7):e69827PubMedPubMedCentralCrossRefGoogle Scholar
  89. 89.
    Lenassi M, Cagney G, Liao M, Vaupotic T, Bartholomeeusen K, Cheng Y, Krogan NJ, Plemenitas A, Peterlin BM (2010) HIV Nef is secreted in exosomes and triggers apoptosis in bystander CD4+ T cells. Traffic 11(1):110–122PubMedPubMedCentralCrossRefGoogle Scholar
  90. 90.
    Columba Cabezas S, Federico M (2013) Sequences within RNA coding for HIV-1 Gag p17 are efficiently targeted to exosomes. Cell Microbiol 15(3):412–429PubMedCrossRefGoogle Scholar
  91. 91.
    Muratori C, Cavallin LE, Kratzel K, Tinari A, De Milito A, Fais S, D’Aloja P, Federico M, Vullo V, Fomina A, Mesri EA, Superti F, Baur AS (2009) Massive secretion by T cells is caused by HIV Nef in infected cells and by Nef transfer to bystander cells. Cell Host Microbe 6(3):218–230PubMedCrossRefGoogle Scholar
  92. 92.
    Gray LR, Gabuzda D, Cowley D, Ellett A, Chiavaroli L, Wesselingh SL, Churchill MJ, Gorry PR (2011) CD4 and MHC class 1 down-modulation activities of nef alleles from brain- and lymphoid tissue-derived primary HIV-1 isolates. J Neurovirol 17(1):82–91PubMedCrossRefGoogle Scholar
  93. 93.
    Lee JH, Wittki S, Brau T, Dreyer FS, Kratzel K, Dindorf J, Johnston IC, Gross S, Kremmer E, Zeidler R, Schlotzer-Schrehardt U, Lichtenheld M, Saksela K, Harrer T, Schuler G, Federico M, Baur AS (2013) HIV Nef, paxillin, and Pak1/2 regulate activation and secretion of TACE/ADAM10 proteases. Mol Cell 49(4):668–679PubMedCrossRefGoogle Scholar
  94. 94.
    Gooz M (2010) ADAM-17: the enzyme that does it all. Crit Rev Biochem Mol Biol 45(2):146–169PubMedPubMedCentralCrossRefGoogle Scholar
  95. 95.
    Arenaccio C, Chiozzini C, Columba-Cabezas S, Manfredi F, Affabris E, Baur A, Federico M (2014) Exosomes from human immunodeficiency virus type 1 (HIV-1)-infected cells license quiescent CD4+ T lymphocytes to replicate HIV-1 through a Nef- and ADAM17-dependent mechanism. J Virol 88(19):11529–11539PubMedPubMedCentralCrossRefGoogle Scholar
  96. 96.
    Arenaccio C, Chiozzini C, Columba-Cabezas S, Manfredi F, Federico M (2014) Cell activation and HIV-1 replication in unstimulated CD4+ T lymphocytes ingesting exosomes from cells expressing defective HIV-1. Retrovirology 11:46PubMedPubMedCentralCrossRefGoogle Scholar
  97. 97.
    Arenaccio C, Anticoli S, Manfredi F, Chiozzini C, Olivetta E, Federico M (2015) Latent HIV-1 is activated by exosomes from cells infected with either replication-competent or defective HIV-1. Retrovirology 12:87PubMedPubMedCentralCrossRefGoogle Scholar
  98. 98.
    Ferrante SC, Nadler EP, Pillai DK, Hubal MJ, Wang Z, Wang JM, Gordish-Dressman H, Koeck E, Sevilla S, Wiles AA, Freishtat RJ (2015) Adipocyte-derived exosomal miRNAs: a novel mechanism for obesity-related disease. Pediatr Res 77(3):447–454PubMedCrossRefGoogle Scholar
  99. 99.
    Potolicchio I, Carven GJ, Xu X, Stipp C, Riese RJ, Stern LJ, Santambrogio L (2005) Proteomic analysis of microglia-derived exosomes: metabolic role of the aminopeptidase CD13 in neuropeptide catabolism. J Immunol 175(4):2237PubMedCrossRefGoogle Scholar
  100. 100.
    Taylor AR, Robinson MB, Gifondorwa DJ, Tytell M, Milligan CE (2007) Regulation of heat shock protein 70 release in astrocytes: role of signaling kinases. Dev Neurobiol 67(13):1815–1829PubMedCrossRefGoogle Scholar
  101. 101.
    Kramer-Albers EM, Bretz N, Tenzer S, Winterstein C, Mobius W, Berger H, Nave KA, Schild H, Trotter J (2007) Oligodendrocytes secrete exosomes containing major myelin and stress-protective proteins: trophic support for axons? Proteomics Clin Appl 1(11):1446–1461PubMedCrossRefGoogle Scholar
  102. 102.
    Marzesco AM, Janich P, Wilsch-Brauninger M, Dubreuil V, Langenfeld K, Corbeil D, Huttner WB (2005) Release of extracellular membrane particles carrying the stem cell marker prominin-1 (CD133) from neural progenitors and other epithelial cells. J Cell Sci 118(Pt 13):2849–2858PubMedCrossRefGoogle Scholar
  103. 103.
    Lakhal S, Wood MJ (2011) Exosome nanotechnology: an emerging paradigm shift in drug delivery: exploitation of exosome nanovesicles for systemic in vivo delivery of RNAi heralds new horizons for drug delivery across biological barriers. BioEssays 33(10):737–741PubMedCrossRefGoogle Scholar
  104. 104.
    Roger VL, Go AS, Lloyd-Jones DM, Benjamin EJ, Berry JD, Borden WB, Bravata DM, Dai S, Ford ES, Fox CS, Fullerton HJ, Gillespie C, Hailpern SM, Heit JA, Howard VJ, Kissela BM, Kittner SJ, Lackland DT, Lichtman JH, Lisabeth LD, Makuc DM, Marcus GM, Marelli A, Matchar DB, Moy CS, Mozaffarian D, Mussolino ME, Nichol G, Paynter NP, Soliman EZ, Sorlie PD, Sotoodehnia N, Turan TN, Virani SS, Wong ND, Woo D, Turner MB, American Heart Association Statistics Committee and Stroke Statistics Subcommittee (2012) Executive summary: heart disease and stroke statistics—2012 update: a report from the American Heart Association. Circulation 125(1):188–197PubMedCrossRefGoogle Scholar
  105. 105.
    Ailawadi S, Wang X, Gu H, Fan GC (2015) Pathologic function and therapeutic potential of exosomes in cardiovascular disease. BBA-Biomembranes 1852(1):1–11PubMedGoogle Scholar
  106. 106.
    Gupta S, Knowlton AA (2007) HSP60 trafficking in adult cardiac myocytes: role of the exosomal pathway. Am J Physiol Heart Circ Physiol 292(6):H3052–H3056PubMedCrossRefGoogle Scholar
  107. 107.
    Kim SC, Stice JP, Chen L, Jung JS, Gupta S, Wang Y, Baumgarten G, Trial J, Knowlton AA (2009) Extracellular heat shock protein 60, cardiac myocytes, and apoptosis. Circ Res 105(12):1186–1195PubMedPubMedCentralCrossRefGoogle Scholar
  108. 108.
    Tian J, Guo X, Liu XM, Liu L, Weng QF, Dong SJ, Knowlton AA, Yuan WJ, Lin L (2013) Extracellular HSP60 induces inflammation through activating and up-regulating TLRs in cardiomyocytes. Cardiovasc Res 98(3):391–401PubMedCrossRefGoogle Scholar
  109. 109.
    Chistiakov DA, Orekhov AN, Bobryshev YV (2016) The role of cardiac fibroblasts in post-myocardial heart tissue repair. Exp Mol Pathol 101(2):231–240PubMedCrossRefGoogle Scholar
  110. 110.
    Ibrahim AG, Cheng K, Marban E (2014) Exosomes as critical agents of cardiac regeneration triggered by cell therapy. Stem Cell Rep 2(5):606–619CrossRefGoogle Scholar
  111. 111.
    Barile L, Lionetti V, Cervio E, Matteucci M, Gherghiceanu M, Popescu LM, Torre T, Siclari F, Moccetti T, Vassalli G (2014) Extracellular vesicles from human cardiac progenitor cells inhibit cardiomyocyte apoptosis and improve cardiac function after myocardial infarction. Cardiovasc Res 103(4):530–541PubMedCrossRefGoogle Scholar
  112. 112.
    Schorey JS, Bhatnagar S (2008) Exosome function: from tumor immunology to pathogen biology. Traffic 9(6):871PubMedPubMedCentralCrossRefGoogle Scholar
  113. 113.
    Azmi AS, Bao B, Sarkar FH (2013) Exosomes in cancer development, metastasis, and drug resistance: a comprehensive review. Cancer Metastasis Rev 32(3–4):623–642PubMedCrossRefGoogle Scholar
  114. 114.
    Skog J, Würdinger T, Van RS, Meijer DH, Gainche L, Sena-Esteves M, Curry WT Jr, Carter BS, Krichevsky AM, Breakefield XO (2008) Glioblastoma microvesicles transport RNA and proteins that promote tumour growth and provide diagnostic biomarkers. Nat Cell Biol 10(12):1470–1476PubMedPubMedCentralCrossRefGoogle Scholar
  115. 115.
    Kuwabara Y, Ono K, Horie T, Nishi H, Nagao K, Kinoshita M, Watanabe S, Baba O, Kojima Y, Shizuta S, Imai M, Tamura T, Kita T, Kimura T (2011) Increased microRNA-1 and microRNA-133a levels in serum of patients with cardiovascular disease indicate myocardial damage. Circ Cardiovasc Genet 4(4):446–454PubMedCrossRefGoogle Scholar
  116. 116.
    Matsumoto S, Sakata Y, Suna S, Nakatani D, Usami M, Hara M, Kitamura T, Hamasaki T, Nanto S, Kawahara Y, Komuro I (2013) Circulating p53-responsive microRNAs are predictive indicators of heart failure after acute myocardial infarction. Circ Res 113(3):322–326PubMedCrossRefGoogle Scholar
  117. 117.
    Jansen F, Yang X, Proebsting S, Hoelscher M, Przybilla D, Baumann K, Schmitz T, Dolf A, Endl E, Franklin BS, Sinning JM, Vasa-Nicotera M, Nickenig G, Werner N (2014) MicroRNA expression in circulating microvesicles predicts cardiovascular events in patients with coronary artery disease. J Am Heart Assoc 3(6):e001249PubMedPubMedCentralCrossRefGoogle Scholar
  118. 118.
    Sun D, Zhuang X, Xiang X, Liu Y, Zhang S, Liu C, Barnes S, Grizzle W, Miller D, Zhang HG (2010) A novel nanoparticle drug delivery system: the anti-inflammatory activity of curcumin is enhanced when encapsulated in exosomes. Mol Ther 18(9):1606–1614PubMedPubMedCentralCrossRefGoogle Scholar
  119. 119.
    Morse MA, Garst J, Osada T, Khan S, Hobeika A, Clay TM, Valente N, Shreeniwas R, Sutton MA, Delcayre A, Hsu DH, Le Pecq JB, Lyerly HK (2005) A phase I study of dexosome immunotherapy in patients with advanced non-small cell lung cancer. J Transl Med 3(1):9PubMedPubMedCentralCrossRefGoogle Scholar
  120. 120.
    Di Bonito P, Ridolfi B, Columba-Cabezas S, Giovannelli A, Chiozzini C, Manfredi F, Anticoli S, Arenaccio C, Federico M (2015) HPV-E7 delivered by engineered exosomes elicits a protective CD8(+) T cell-mediated immune response. Viruses 7(3):1079–1099PubMedPubMedCentralCrossRefGoogle Scholar
  121. 121.
    Wu X, Zheng T, Zhang B (2016) Exosomes in Parkinson’s disease. Neurosci Bull 7:501. doi: 10.1007/s12264-016-0092-z Google Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2017

Authors and Affiliations

  1. 1.National Center for Global Health, Istituto Superiore di SanitàRomeItaly

Personalised recommendations