Skip to main content

Raman Characterization of Gallium Nitride Nanowires Deposited by Chemical Vapor Deposition

  • Chapter
  • First Online:
Advances in Power Systems and Energy Management

Part of the book series: Lecture Notes in Electrical Engineering ((LNEE,volume 436))

Abstract

Gallium Nitride Nanowires (GaN-NWs) were synthesized on p-type c-Si(100) by thermal chemical vapor deposition (CVD) using Ag, Fe, In, Ni as catalysts. These NWs were synthesized with variation of H2 flow rate from 40 to 120 standard cubic per centimeter (sccm) while maintaining constant flow of N2 gas at 120 sccm. FESEM, FTIR, Raman and photoluminescence spectroscopy were used to characterize the GaN-NWs for microstructure, vibrational and optical properties. The microstructure of GaN-NWs reveals thin and hairy nanowires for Ag and In catalysts while long and thick NWs were observed for Fe and Ni catalyst. Raman spectra reveal that the peak position of A1(LO), A1(TO) phonon shifted to higher frequency from 705.37 to 716.58 and 520.94 to 528.71 cm−1, whereas E1(TO) phonon shows pronounced red shift from 544.36 to 540.60 cm−1. In a similar sideline, fwhm of A1(LO), A1(TO) phonon increases from 13.11 to 21.01 cm−1 and 16.99 to 20.78 cm−1, whereas fwhm decreases for E1(LO) and E1(TO) phonon. We have found Surface Optic (SO) phonon of GaN-NWs at 610 cm−1 in FTIR spectra. Room temperature photoluminescence (PL) spectra show a prominent blue luminescence from GaN-NWs.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Schafer, M., Gunther, M., Langer, C., Mubener, J., Feneberg, M., Uredat, P., Elm, M.T., Hille, P., Schormann, J., Teubert, J., Henning, T., Klar, P.J., Eickhoff, M.: Electrical transport properties of Ge-doped GaN nanowires. Nanotechnology 26, 135704–135712 (2015)

    Google Scholar 

  2. Patsha, A., Amirthapandian, S., Pandian, R., Bera, S., Bhattacharya, A., Dhara, S.: Direct evidence of Mg incorporation pathway in vapor–liquid–solid grown p-type nonpolar GaN nanowires. J. Phys. Chem. C 118, 24165–24172 (2014)

    Google Scholar 

  3. Kuykendall, T., Pauzauskie, P., Lee, S., Zhang, Y., Goldberger, J., Yang, P.: Metalorganic chemical vapor deposition route to GaN nanowires with triangular cross sections. Nano Lett. 3, 1063–1066 (2008)

    Google Scholar 

  4. Johnson, J.C., Choi, H.J., Knutsen, K.P., Schaller, R.D., Yang, P., Saykally, R.J.: Single gallium nitride nanowire lasers. Nat. Mater. 1, 106–110 (2002)

    Google Scholar 

  5. Stach, E.A., Pauzauskie, P.J., Kuykendall, T., Goldberger, J., He, R.R., Yang, P.: Watching GaN nanowires grow. Nano Lett. 3, 867–869 (2003).

    Google Scholar 

  6. Hong, J., Chang, Y., Ding, Y., Wang, Z.L., Snyder, R.L.: Growth of GaN films with controlled out-of-plane texture on Si wafers. Thin Solid Films 519, 3608–3611 (2011)

    Google Scholar 

  7. Lee, D.S., Stekl, A.J.: Room-temperature grown rare-earth-doped GaN luminescence thin films. Appl. Phys. Lett. 79, 1962–1964 (2001)

    Google Scholar 

  8. Biswas, S., Kar, S., Ghosal, T., Ashok, V.D., Chakrabarti, S., Chaudhuri, S.: Fabrication of GaN nanowires and nanoribbons by a catalyst assisted vapor–liquid–solid process. Mater. Res. Bull. 42, 428–436 (2007)

    Google Scholar 

  9. Zhang, J., Zhang, L.: Growth of semiconductor gallium nitride nanowires with different catalysts. J. Vac. Sci. Technol. B 21, 2415–2419 (2003)

    Google Scholar 

  10. Wang, Y.Q., Wang, R.Z., Zhu, M.K., Wang, B.B., Yan, H.: Structure and surface effect of field emission from gallium nitride nanowires. Appl. Surf. Sci. 285, 115–119 (2013)

    Google Scholar 

  11. Samanta, C., Chander, D.S., Ramkumar, J., Dhamodaran, S.: Catalyst and its diameter dependent growth kinetics of CVD grown GaN nanowires. Mater. Res. Bull. 47, 952–956 (2012)

    Google Scholar 

  12. Ambacher, O., Angerer, H., Dimitrov, R., Rieger, W., Stutzmann, M., Dollinger, G., Bergmaier, A.: Hydrogen in gallium nitride grown by MOCVD. Physica Status Solidi 159, 105–119 (1997)

    Google Scholar 

  13. Zhang, Y., Li, J.K., Liu, Q.L., Xiao, Y.G., Zhang, Q., Sun, B.J, Rao, G.H.: Phase relations of the Ag–Ga–N system. J. Alloys Compd. 429, 184–188 (2007)

    Google Scholar 

  14. Cheeze, C., Geeldhar, L., Trampert, A., Brandt, O., Riechert, H.: Collector phase transitions during vapor−solid−solid nucleation of GaN nanowires. Nano Lett. 10, 3426 (2010)

    Google Scholar 

  15. Okamoto, H.: Bull. Alloy. Phase Diagram 11, 576–580 (1990)

    Google Scholar 

  16. Anderson, T.J., Ansara, I.: The Ga-In (gallium-indium) system. J. Phase Equilib. 12, 64 (1991)

    Google Scholar 

  17. Cao, G.: Nanostructure and Nanomaterials: Synthesis, Properties and Applications. Imperial College Press (2004)

    Google Scholar 

  18. Tekker, K.: Density and morphology adjustments of gallium nitride nanowires. Appl. Surf. Sci. 283, 1065 (2013)

    Google Scholar 

  19. Purushothaman, V., Jeganathan, K.: Investigations on the role of Ni-catalyst for the VLS growth of quasi-aligned GaN nanowires by chemical vapor deposition. J. Nanopart. Res. 15, 1789 (2013)

    Google Scholar 

  20. Tang, W.C., Hong, F.C.N.: Growths of indium gallium nitride nanowires by plasma-assisted chemical vapor deposition. Thin Solid Films 570, 315 (2014)

    Google Scholar 

  21. Wang, C., Chang, D., Tang, C., Su, J., Zhang, Y.: Single Adatom Adsorption and Diffusion on Fe Surfaces. J. Modern Phys. 2, 1067 (2011)

    Google Scholar 

  22. Sun, R., Zhang, H.Y., Wang, G.G., Han, J.C., Zhu, C., Liu, X.P., Cui, L.: Selective growth and characterization of gallium nitride nanowires through an N-Ga2O3 layer. Ceram. Int. 40, 13967 (2014)

    Google Scholar 

  23. Ji, H., Kuball, M., Burke, R.A., Redwing, J.M.: Vibrational and optical properties of GaN nanowires synthesized by Ni-assisted catalytic growth. Nanotechnology 18, 445704 (2007)

    Google Scholar 

  24. Miyazaki, T., Takada, K., Adachi, S., Ohtsuka, K.: Properties of radio-frequency-sputter- deposited GaN films in a nitrogen/hydrogen mixed gas. J. Appl. Phys. 97, 093516 (2005)

    Google Scholar 

  25. Shaoo, P., Dhara, S., Dash, S., Tyagi, A.K.: One dimensional GaN Nanostructures: Growth Kinetics and Applications, Nanosci. Nanotechnol Asia 2, 140   (2011)

    Google Scholar 

  26. Liu, H.L., Chen, C.C., Chia, C.T., Yeh, C.C., Chen, C.H., Yu, M.Y., Keller, S., Denbaars, S. P.: Infrared and Raman-scattering studies in single-crystalline GaN nanowires, Chem. Phys. Lett. 345, 245 (2001)

    Google Scholar 

  27. Richter, H., Wang, Z.P., Ley, L.: The one phonon Raman spectrum in microcrystalline silicon Solid State Commun. 39, 625 (1981)

    Google Scholar 

  28. Narayanamurthi, V.: Phonon optics and phonon propagation in semiconductors. Science 213, 717 (1981)

    Google Scholar 

  29. Wu, Z., Hahm, M.G., Jung, Y.J., Menon, L.: Epitaxially grown GaN nanowire networks. J. Mat. Chem. 19, 463 (2009)

    Google Scholar 

  30. Chang, K.W., Wu, J.J.: Low-Temperature catalytic synthesis of gallium nitride nanowires. J. Phys. Chem. B. 106, 7796 (2002)

    Google Scholar 

  31. Kushwaha, A., Aslam, M.: Hydrogen-incorporated ZnO nanowire films: stable and high electrical conductivity. J. Phys. D Appl. Phys. 46, 4851041–4851048 (2013)

    Google Scholar 

  32. Wang, H., Ferrio, K., Steel, D.G., Hu, Y.Z., Binder, R., Koch, S.W.: Transient nonlinear optical response from excitation induced dephasing in GaAs. Phys. Rev. Lett. 71, 1261 (1993)

    Google Scholar 

  33. Cao, L., Meziani, M.J., Sahu, S., Sun, Y.P.: Photoluminescence properties of graphene versus other carbon nanomaterials. Acc. Chem. Res. 46, 171 (2013)

    Google Scholar 

Download references

Acknowledgements

This study was financially supported by the Department of Science and Technology (Project No: SB/FTP/ETA-295/2011) and Department of Biotechnology (Project No: BCIL/NER-BPMC/2012/650), Govt. of India. Umesh Rizal acknowledges financial support from JRF scheme under the Department of Biotechnology, Government of India.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bibhu P. Swain .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Rizal, U., Swain, B.P. (2018). Raman Characterization of Gallium Nitride Nanowires Deposited by Chemical Vapor Deposition. In: Garg, A., Bhoi, A., Sanjeevikumar, P., Kamani, K. (eds) Advances in Power Systems and Energy Management. Lecture Notes in Electrical Engineering, vol 436. Springer, Singapore. https://doi.org/10.1007/978-981-10-4394-9_6

Download citation

  • DOI: https://doi.org/10.1007/978-981-10-4394-9_6

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-10-4393-2

  • Online ISBN: 978-981-10-4394-9

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics