Skip to main content

Design and Analysis of Ultra-Low Power QCA Parity Generator Circuit

  • Chapter
  • First Online:
Advances in Power Systems and Energy Management

Part of the book series: Lecture Notes in Electrical Engineering ((LNEE,volume 436))

Abstract

Quantum-dot cellular automata (QCA) are a new paradigm in nanoscale technology with high frequency and low power consumption capabilities. This work presents a low complexity two-input XOR gate, which achieves low power consumption compared to prior ones using an efficient five-input majority gate. To show the novelty of this structure, different bits even parity generators are addressed. The result shows proposed parity generators are more superior over the existing designs. We show a 32-bit even parity generator, which requires 40% less cell count and saves 50% area occupation over the previous best design. QCA Designer-2.0.3 and QCA Pro have been considered to evaluate the accuracy of presented designs and to evaluate the power dissipation respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Zhang, R., Walus, K., Wang, W., Jullien, G.A.: A method of majority logic reduction for quantum cellular automata. IEEE Trans. Nanotechnol. 3, 443–450 (2004)

    Article  Google Scholar 

  2. Orlov, A.O., Amlani, I., Bernstein, G.H., Lent, C.S., Snider, G.L.: Realization of a functional cell for quantum-dot cellular automata. Science 277, 928–930 (1997)

    Article  Google Scholar 

  3. Tougaw, P.D., Lent, C.S.: Logical devices implemented using quantum cellular automata. Appl. Phys. 75, 1818–1824 (1994)

    Article  Google Scholar 

  4. Lent, C.S., Tougaw, P.D., Porod, W., Bernstein, G.H.: Quantum cellular automata. Nanotechnology 4, 49–57 (1993)

    Article  Google Scholar 

  5. Hossein, A., Behjat, F., Ali, A.K.: High-performance low-leakage regions of nano-scaled CMOS digital gates under variations of threshold voltage and mobility. J. Zhejiang Univ. Sci C 13, 460–471 (2012)

    Article  Google Scholar 

  6. Timler, J., Lent, C.S.: Power gain and dissipation in quantum-dot cellular automata. J. Appl. Phys. 91, 823–831 (2002)

    Article  Google Scholar 

  7. Lent, C.S., Tougaw, P.D.: A device architecture for computing with quantum dots. Proc. IEEE 85, 541–557 (1997)

    Article  Google Scholar 

  8. Toth, G., Lent, C.S.: Quasi adiabatic switching for metal-island quantum-dot cellular automata. J. Appl. Phys. 85, 2977–2984 (1999)

    Article  Google Scholar 

  9. Sasamal, T.N., Singh, A.K., Mohan, A.: An optimal design of full adder based on 5-input majority gate in coplanar quantum-dot cellular automata. Optik 127(20), 8576–8591 (2016)

    Article  Google Scholar 

  10. Srivastava, S., Asthana, A., Bhanja, S., Sarkar, S.: QCA Pro-an error power estimation tool for QCA circuit design, In: IEEE International Symposium Circuits System, pp. 2377–2380 (2011)

    Google Scholar 

  11. Sheikhfaal, S., Angizi, S., Sarmadi, S., Moaiyeri, M.H., Sayedsalehi, S.: Designing efficient QCA logical circuits with power dissipation analysis. Microelectron. J. 46, 462–471 (2015)

    Article  Google Scholar 

  12. Mustafa, M., Beigh, M.R.: Design and implementation of quantum cellular automata based novel parity generator and checker circuits with minimum complexity and cell count. Indian J. Pure Appl. Phys. 51, 60–66 (2013)

    Google Scholar 

  13. Angizi, S., Alkaldy, E., Bagherzadeh, N., Navi, K.: Novel robust single layer wire crossing approach for exclusive or sum of products logic design with quantum-dot cellular automata. J. Low Power Electron. 10, 259–271 (2014)

    Article  Google Scholar 

  14. Beigh, M.R., Mustafa, M., Ahmad, F.: Performance evaluation of efficient XOR structures in quantum-dot cellular automata (QCA). Circuits Syst. 4, 147–156 (2013)

    Article  Google Scholar 

  15. Walus, K., Dysart, T.J., Jullien, G.A., Budiman, R.A.: QCA designer: a rapid design and simulation tool for quantum-dot cellular automata. IEEE Trans. Nanotechnol. 3, 26–31 (2004)

    Article  Google Scholar 

  16. Niemier, M.T.: Designing digital systems in quantum cellular automata master’s thesis. University of Notre Dame, Notre Dame, Indiana, USA (2004)

    Google Scholar 

  17. Hashemi, S., Farazkish, R., Navi, K.: New quantum dot cellular automata cell arrangements. J. Comput. Theor. Nanosci. 10, 798–809 (2013)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Trailokya Nath Sasamal .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Sasamal, T.N., Singh, A.K., Ghanekar, U. (2018). Design and Analysis of Ultra-Low Power QCA Parity Generator Circuit. In: Garg, A., Bhoi, A., Sanjeevikumar, P., Kamani, K. (eds) Advances in Power Systems and Energy Management. Lecture Notes in Electrical Engineering, vol 436. Springer, Singapore. https://doi.org/10.1007/978-981-10-4394-9_35

Download citation

  • DOI: https://doi.org/10.1007/978-981-10-4394-9_35

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-10-4393-2

  • Online ISBN: 978-981-10-4394-9

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics