Skip to main content

Part of the book series: Springer Theses ((Springer Theses))

  • 409 Accesses

Abstract

This chapter goes into the physics behind Ti0.43Sb2Te3-based PCM in more depth to explain the high performances. Through Cs-corrected TEM, Ti atoms in Ti0.43Sb2Te3 alloy are observed evidently to substitute part of Sb atoms in the quintuple atomic layers (…Te-Sb (Ti)-Te-Sb-Te…), forming six bonds with adjacent Te atoms. These Ti-centered octahedral local structures are just slightly distorted after amorphization, which may be responsible for the significantly improved performances.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. M. Wuttig, N. Yamada, Nature Mater. 6(11), 824–832 (2007)

    Article  ADS  Google Scholar 

  2. M. Xia, M. Zhu, Y. Wang, Z. Song, F. Rao, L. Wu, Y. Cheng, S. Song, A.C.S. Appl, Mater. Inter. 7, 7627–7634 (2015)

    Article  Google Scholar 

  3. M. Zhu, M. Xia, F. Rao, X. Li, L. Wu, X. Ji, S. Lv, Z. Song, S. Feng, H. Sun, S. Zhang, Nature Comms. 5, 4086 (2014)

    ADS  Google Scholar 

  4. P. Hohenbery, W. Kohn, Phys. Rev. 136, B864–B871 (1964)

    Article  ADS  Google Scholar 

  5. G. Kresse, J. Hafner, Phys. Rev. B, B 47, 558–561 (1993)

    Google Scholar 

  6. P.E. Blochl, Phys. Rev. B, B 50, 17953–17979 (1994)

    Google Scholar 

  7. J.P. Perdew, K. Burke, M. Ernzerhof, Phys. Rev. Lett. 77, 3865–3868 (1996)

    Article  ADS  Google Scholar 

  8. J. L. F. Da Silva, A. Walsh, & H. Lee, Phys. Rev. B, B 78, 224111 (2008)

    Google Scholar 

  9. F. Rao, Z. Song, K. Ren, X. Zhou, Y. Cheng, L. Wu, B. Liu, Nanotechnology 22, 145702 (2011)

    Article  ADS  Google Scholar 

  10. C. Peng, Z. Song, F. Rao, L. Wu, M. Zhu, H. Song, X. Zhou, P. Yao, D. Yao, P. Yang, J. Chu, Appl. Phys. Lett. 99(4), 043105 (2011)

    Article  ADS  Google Scholar 

  11. S. Raoux, M. Salinga, J.L.J. Sweet, A. Kellock, J. Appl. Phys. 101, 044909 (2007)

    Article  ADS  Google Scholar 

  12. D.L. Greenaway, R. Nitsche, J. Phys. Chem. Solids, 26, 270–272 (1965)

    Google Scholar 

  13. B.A. Schmid, R. Rostek, C. Mortensen, D.C. Johnson, ICT Thermo, 270–272 (2005)

    Google Scholar 

  14. T.L. Anderson, H.B. Krause, Acta Cryst., B 30, 1307–1310 (1974)

    Google Scholar 

  15. F. Rao, Z. Song, Y. Cheng, X. Liu, M. Xia, W. Li, K. Ding, X. Feng, M. Zhu, S. Feng, Nature Comms. 6, 10040 (2015)

    Article  ADS  Google Scholar 

  16. A.V. Kolobov, P. Fons, J. Tominaga, S.R. Ovshinsky, Phy. Rev. B 87(16), 165206 (2013)

    Article  ADS  Google Scholar 

  17. Y.-S. Kim, M. Mizuno, L. Tanaka, H. Adachi, Jap. J. Appl. Phys. 37, 4878–4883 (1998)

    Article  ADS  Google Scholar 

  18. Y. Jiang, Y. Wang, J. Sagendorf, D. West, X. Kou, X. Wei, L. He, K.L. Wang, S. Zhang, Z. Zhang, Nano Lett. 13, 2851–2856 (2013)

    Article  ADS  Google Scholar 

  19. K. Lu, L. Lu, S. Suresh, Science 324, 349–352 (2009)

    Article  ADS  Google Scholar 

  20. D.L. Medlin, N.Y.C. Yang, J. Electr. Mater. 41(6), 1456–1464 (2012)

    Article  ADS  Google Scholar 

  21. A.V. Kolobov, P. Fons, A.I. Frenkel, A.L. Ankudinov, J. Tominaga, T. Uruga, Nature Mater. 3, 703–708 (2004)

    Article  ADS  Google Scholar 

  22. M. Krbal, A.V. Kolobov, P. Fons, J. Tominaga, S.R. Elliott, J. Hegedus, T. Uruga, Phys. Rev. B 86, 054203 (2011)

    Article  ADS  Google Scholar 

  23. J. Akola, R.O. Jones, Phys. Rev. B 76, 235201 (2007)

    Article  ADS  Google Scholar 

  24. J. Hegedus, S.R. Elliott, Nature Mater. 7, 399–405 (2008)

    Article  ADS  Google Scholar 

  25. M. Zhu, M. Xia, Z. Song, Y. Cheng, L. Wu, F. Rao, S. Song, M. Wang, Y. Lu, S. Feng, Nanoscale 7, 9935–9944 (2015)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Min Zhu .

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Nature Singapore Pte Ltd.

About this chapter

Cite this chapter

Zhu, M. (2017). Phase Change Mechanism of Ti–Sb–Te Alloy . In: Ti-Sb-Te Phase Change Materials: Component Optimisation, Mechanism and Applications. Springer Theses. Springer, Singapore. https://doi.org/10.1007/978-981-10-4382-6_6

Download citation

Publish with us

Policies and ethics