Advertisement

Crystallization Behavior of Ti–Sb–Te Alloy

Chapter
  • 277 Downloads
Part of the Springer Theses book series (Springer Theses)

Abstract

This chapter illustrates the change of crystallization behavior of Ti-doped Sb2Te3 from growth-dominated one to nucleation-dominated one with the increase in the doped Ti concentration. The reasons are found by a combination of the real-time radial distribution function and molecular dynamics simulations.

Keywords

Crystallization Behavior Radial Distribution Function Phase Change Material Electron Irradiation Select Area Electron Diffraction Pattern 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    S. Mann, D.D. Archibald, J.M. Didymus, T. Douglas, B.R. Heywood, F.C. Meldrum, N.J. Reeves, Science 261, 1286 (1993)ADSCrossRefGoogle Scholar
  2. 2.
    S. Aure, D. Frenkel, Nature 2001, 409 (1020)Google Scholar
  3. 3.
    S.E. Offerman, N.H.V. Dijk, J. Sietsma, S. Grigull, E.M. Lauridsen, L. Margulies, H.F. Poulsen, MTh Rekveldt, S.V.D. Zwaag, Science 2002, 298 (1003)Google Scholar
  4. 4.
    S.R. Ovshinsky, Phys. Rev. Lett. 21, 1450 (1986)ADSCrossRefGoogle Scholar
  5. 5.
    M. Wuttig, N. Yamada, Nature Mater. 6, 824 (2007)ADSCrossRefGoogle Scholar
  6. 6.
    N. Yamada, E. Ohno, K. Kishiuchi, N. Akahira, M. Takao, J. Appl. Phys. 69, 2849 (1991)ADSCrossRefGoogle Scholar
  7. 7.
    M. Salinga, E. Carria, A. Kaldenbach, M. Bornhofft, J. Benke, J. Mayer, M. Wuttig, Nature Commun. 4, 2371 (2014)Google Scholar
  8. 8.
    A.V. Kolobov, P. Fons, A.I. Frenkel, A. Ankudinov, J. Tominaga, T. Uruga, Nature Mater. 3, 703 (2004)ADSCrossRefGoogle Scholar
  9. 9.
    S.J. Ahn, Y.J. Song, C.W. Jeong, J.M. Shin, Y. Fai, Y.N. Hwang, S.H. Lee, K.C. Ryoo, S.Y. Lee, J.H. Park, IEDM Tech. Dig., 907–910 (2004)Google Scholar
  10. 10.
    J.W. Christian, The Theory of Transformations in Metals and Alloys (Pergaon, Oxford, 1981)Google Scholar
  11. 11.
    C. Zener, J. Appl. Phys. 20, 950 (1949)ADSCrossRefGoogle Scholar
  12. 12.
    S. Kohara, K. Kato, S. Kimura, H. Tanaka, T. Usuki, K. Suzuya, H. Tanaka, Y. Moritomo, T. Matsunaga, N. Yamada, Y. Tanaka, H. Suematsu, M. Takata, Appl. Phys. Lett. 89, 201910 (2006)ADSCrossRefGoogle Scholar
  13. 13.
    J. Akola, R.O. Jones, Phys. Rev. B 76, 235201 (2007)ADSCrossRefGoogle Scholar
  14. 14.
    J. Hegedus, S.R. Elliott, Nature Mater. 7, 399 (2008)ADSCrossRefGoogle Scholar
  15. 15.
    T.H. Lee, S.R. Elliott, Phys. Rev. Lett. 107, 145702 (2011)ADSCrossRefGoogle Scholar
  16. 16.
    B.J. Kooi, W.M.G. Groot, JThM De Hosson, J. Appl. Phys. 95, 924 (2004)ADSCrossRefGoogle Scholar
  17. 17.
    G.F. Zhou, Mater. Sci. Engin. A304, 73 (2001)CrossRefGoogle Scholar
  18. 18.
    E.R. Meinders, A.V. Mijiritskii, L.V. Pieterson, M. Wutting, Optical Data Storage-Phase-Change Media and Recording (Springer, The Netherlans, 2006)Google Scholar
  19. 19.
    C.E. Krill, L. Helfen, D. Michels, H. Natter, A. Fitch, O. Masson, R. Biringer, Phys. Rev. Lett. 86, 842 (2001)ADSCrossRefGoogle Scholar
  20. 20.
    B.-S. Lee, G.W. Burr, R.M. Shelby, S. Raoux, C.T. Rettner, S.N. Bogle, K. Darmawikarta, S.G. Bishop, J.R. Abelson, Science 13, 980 (2009)ADSCrossRefGoogle Scholar
  21. 21.
    F.M. Michel, S.M. Antao, P.J. Chupas, P.L. Lee, J.B. Parise, M.A.A. Schoonen, Chem. Mater. 17, 6246 (2005)CrossRefGoogle Scholar
  22. 22.
    V.I. Korsunskiy, R.B. neder, A. Hofmann, S. Dembski, C. Graf, E. Ruhl, J. Appl. Crys., 40, 975 (2007)Google Scholar
  23. 23.
    D.R.G. Mitchell, T.C. Petersen, Micro. Res. Tech. 75, 153 (2012)CrossRefGoogle Scholar
  24. 24.
    P. Hohenberg, W. Kohn, Phy. Rev. 136, B864 (1964)ADSCrossRefGoogle Scholar
  25. 25.
    G. Kresse, J. Hafner, Phys. Rev. B 47, 558 (1993)ADSCrossRefGoogle Scholar
  26. 26.
    P.E. Blochl, Phys. Rev. B 50, 17953 (1994)ADSCrossRefGoogle Scholar
  27. 27.
    J.P. Perdew, K. Burke, M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996)ADSCrossRefGoogle Scholar
  28. 28.
    M.H.R. Lankhorst, L.V. Pieterson, M.V. Schijndel, B.A.J. Jacobs, J.C.N. Rijpers, Jpn. J. Appl. Phys. 42, 863 (2003)ADSCrossRefGoogle Scholar
  29. 29.
    B.-S. Lee, R.M. Shelby, S. Raoux, C.T. Retter, G.W. Burr, S.N. Bogle, K. Darmawikarta, S.G. Bishop, J.R. Abelson, J. Appl. Phys. 115, 063506 (2014)ADSCrossRefGoogle Scholar
  30. 30.
    M. Xia, M. Zhu, Y. Wang, Z. Song, F. Rao, L. Wu, Y. Cheng, S. Song, A.C.S. Appl, Mater. Inter. 7, 7627–7634 (2015)CrossRefGoogle Scholar
  31. 31.
    M. Zhu, M. Xia, F. Rao, X. Li, L. Wu, X. Ji, S. Lv, Z. Song, S. Feng, H. Sun, S. Zhang, Nat. Commun. 5, 4086 (2014)ADSGoogle Scholar
  32. 32.
    M.M.J. Treacy, J.M. Gibson, L. Fan, D.J. Paterson, I. McNulty, Rep. Prog. Phys. 68, 2899 (2005)ADSCrossRefGoogle Scholar
  33. 33.
    T.L. Anderson, H.B. Krause, Acta Cryst. B30, 1307 (1974)CrossRefGoogle Scholar
  34. 34.
    K. Tani, N. Yiwata, M. Harigaya, S. Emura, Y. Nakata, J. Synchrotron Rad. 8, 749 (2001)CrossRefGoogle Scholar
  35. 35.
    S. Caravati, M. Bernasconi, M. Parrinello, Phys. Rev. B 81, 014201 (2010)ADSCrossRefGoogle Scholar
  36. 36.
    Y. Arnaud, M. Chevreton, J. Solid State Chem. 30(2), 230 (1981)ADSCrossRefGoogle Scholar
  37. 37.
    J. Gibbs, The Scientific papers of J (Willard Gibbs. Dover Publications, New York, 1961)zbMATHGoogle Scholar
  38. 38.
    F.-C. Pang, D. Wang, N.-K. Chen, S.-Y. Xie, X. Meng, C.-S. Huo, H. Yang, X.-P. Su, W.-Q. Wang, H.-L. Tu, Comput. Mater. Sci. 61, 287 (2012)CrossRefGoogle Scholar
  39. 39.
    K. Kifune, Y. Kubota, T. Matsunaga, N. Yamada, Acta Crystallogr. Sect. B: Struct. Sci. B 61, 492 (2005)CrossRefGoogle Scholar
  40. 40.
    B.-K. Cheong, S. Lee, J.-H. Jeong, S. Park, S. Han, Z. Wu, D.-H. Ahn, Phys. Status Solidi B 2012, 249 (1985)Google Scholar
  41. 41.
    Y. Chen, G. Wang, J. Li, X. Shen, T. Xu, R. Wang, Y. Lu, X. Wang, S. Dai, Q. Nie, Appl. Phys. Exp. 7, 105801 (2014)ADSCrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2017

Authors and Affiliations

  1. 1.Shanghai Institute of Microsystem and Information TechnologyChinese Academy of SciencesShanghaiChina

Personalised recommendations