Component Optimization of Ti for Ti–Sb–Te Alloy

Part of the Springer Theses book series (Springer Theses)


This chapter addresses the influence of Ti concentration on the material and device performances of Ti-doped Sb2Te3 based PCM, including thermal stability, density change, thermal conductivity, crystalline structure, required voltage, and endurance characteristic. Ti0.43Sb2Te3 material has been proved to the optimal component to ensure good overall properties of PCM.


Resistance Ratio Operation Voltage Reset Voltage High Aspect Ratio Structure Fast Switching Speed 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    M. Zhu, L.C. Wu, Z.T. Song, F. Rao, D. Cai, C. Peng, X.L. Zhou, K. Ren, S.N. Song, B. Liu, S.L. Feng, Appl. Phys. Lett. 100, 122101 (2012)ADSCrossRefGoogle Scholar
  2. 2.
    M. Zhu, L. Wu, F. Rao, Z. Song, X. Ji, D. Yao, Y. Cheng, S. Lv, S. Song, B. Liu, Xu Ling, J. Appl. Phys. 114, 124302 (2013)ADSCrossRefGoogle Scholar
  3. 3.
    M. Xia, M. Zhu, Y. Wang, Z. Song, F. Rao, L. Wu, F. Rao, S. Song, ACS Appl. Mater. Interfaces 7, 7627–7634 (2015)Google Scholar
  4. 4.
    N. Yamada, E. Ohno, K. Nishiuchi, N. Akahlra, M. Takao, J. Appl. Phys. 69, 2849–2856 (1991)ADSCrossRefGoogle Scholar
  5. 5.
    O.W. Kading, H. Skurk, K.E. Goodson, Appl. Phys. Lett. 65, 1629–1631 (1994)ADSCrossRefGoogle Scholar
  6. 6.
    I. Friedrich, V. Weidenhof, W. Njoroge, P. Franz, M. Wuttig, J. Appl. Phys. 87, 4130–4134 (2000)ADSCrossRefGoogle Scholar
  7. 7.
    W.K. Njoroge, H.-W. Wöltgens, M. Wuttig, J. Vac. Sci. Technol., A 20, 230–233 (2002)ADSCrossRefGoogle Scholar
  8. 8.
    M. Bjorck, G. Andersson, J. Appl. Cryst. 40, 1174–1178 (2007)CrossRefGoogle Scholar
  9. 9.
    A. Braslau, P.S. Pershan, G. Swislow, Phy. Rev. A 38, 2457–2470 (1998)ADSCrossRefGoogle Scholar
  10. 10.
    J.S. Dyck, W. Chen, C. Uher, C. Drasar, P. Lostak, Phys. Rev. B 66, 125206 (2002)ADSCrossRefGoogle Scholar
  11. 11.
    S. Ryu, H. Lyeo, J. Lee, Y. Ahn, G. Kim, C. Kim, S. Kim, S. Lee, K. Kim, J. Kim, W. Kim, C. Hwang, H. Kim, Nanotechnology 22, 254005 (2011)ADSCrossRefGoogle Scholar
  12. 12.
    J. Chen, T. Sun, D. Sim, H. Peng, H. Wang, S. Fan, H.H. Hng, J. Ma, F.Y.C. Boey, S. Li, Chem. Mater. 22, 3086–3092 (2010)CrossRefGoogle Scholar
  13. 13.
    Y. Cheng, Z. Song, Y. Gu, S. Song, F. Rao, L. Wu, B. Liu, S. Feng, Appl. Phys. Lett. 99, 261914 (2011)ADSCrossRefGoogle Scholar
  14. 14.
    B. Siemensmeyer, K. Bade, J.W. Schultze, Phys. Chem. 95, 1461–1469 (1991)Google Scholar
  15. 15.
    A. S. Shkvarin, Y. M. Yarmoshenko, N. A. Skorikov N A, M. V. Yablonskikh, A. I. Merentsov, E. G. Shkvarina, A. N. Titov, J. Expe. Theo. Phys. 114, 150–156 (2012)Google Scholar
  16. 16.
    W.J. Wang, P.L. Shi, R. Zhao, K.G. Lim, H.K. Lee, T.C. Chong, Y.H. Wu, Appl. Phys. Lett. 93, 043121 (2008)ADSCrossRefGoogle Scholar
  17. 17.
    J. Akola, R.O. Jones, Phys. Rev. B 76, 235201 (2007)ADSCrossRefGoogle Scholar
  18. 18.
    M. Zhu, L. Wu, F. Rao, Z. Song, M. Xia, X. Ji, S. Lv, S. Feng, Appl. Phys. Lett. 104, 063105 (2014)ADSCrossRefGoogle Scholar
  19. 19.
    S.-H. Hong, H. Lee, Jpn. J. Appl. Phys. 45, 3372–3375 (2008)ADSCrossRefGoogle Scholar
  20. 20.
    H. Y. Cheng, M. Brightsky, S. Raoux, C. F. Chen, P. Y. Du, J. Y. Wu, Y. Y. Lin, T. Hsu, Y. Zhu, S. Kim, C. M. Lin, A. Ray, H. L. Lung, C. Lam, IEEE Int. Electron Devices Meet., 30.6.1–30.6.4 (2013)Google Scholar
  21. 21.
    I. S. Kim, S. L. Cho, D. H. Im, E. H. Cho, D. H. Kim, G. H. Oh, D. H. Ahn, S. O. Park, S. W. Nam, J. T. Moon, C. H. Chung, Symp. On VLSI Technol., Dig. Technol. Pap. 19.3, 203–204 (2010)Google Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2017

Authors and Affiliations

  1. 1.Shanghai Institute of Microsystem and Information TechnologyChinese Academy of SciencesShanghaiChina

Personalised recommendations