Skip to main content

Diabetes and Endothelial Dysfunction

  • Chapter
  • First Online:
Diabetes and Aging-related Complications

Abstract

In patients with diabetes mellitus, endothelial dysfunction is the initial step in the process of atherosclerosis and plays an important role in the development of this condition, leading to diabetic vascular complications. Oxidative stress induced by hyperglycemia and acute glucose fluctuations are associated with endothelial dysfunction through inactivating nitric oxide (NO) by excess production of reactive oxygen species (ROS). Under the condition of insulin resistance, NO production is selectively impaired, whereas endothelin-1 (ET-1) secretion is preferentially activated in endothelial cells, leading to endothelial dysfunction in obese or overweight diabetic patients. On the other hand, endothelial dysfunction might contribute to insulin resistance in skeletal muscle. Reduced NO production through oxidative stress and selective insulin resistance in endothelial cells contributes to decreased glucose uptake by skeletal muscle due to a delayed increase in insulin concentration in the interstitium of the skeletal muscle. Therefore, insulin resistance is further exacerbated through a vicious cycle of endothelial dysfunction and reduced glucose uptake by skeletal muscle. From a clinical perspective, it is important to select an appropriate intervention that is effective in improving endothelial dysfunction for treatment of patients with diabetes mellitus.

In addition to lifestyle modifications, antidiabetic agents that improve insulin sensitivity are anticipated to improve endothelial function and prevent cardiovascular events in patients with diabetes mellitus.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bardenheier BH, Lin J, Zhuo X, Ali MK, Thompson TJ, Cheng YJ, et al. Disability-free life-years lost among adults aged >/=50 years with and without diabetes. Diabetes Care. 2016;39(7):1222–9. doi:10.2337/dc15-1095.

    Article  PubMed  Google Scholar 

  2. Morrish NJ, Wang SL, Stevens LK, Fuller JH, Keen H. Mortality and causes of death in the WHO Multinational Study of Vascular Disease in Diabetes. Diabetologia. 2001;44(Suppl 2):S14–21.

    Article  PubMed  Google Scholar 

  3. Higashi Y, Noma K, Yoshizumi M, Kihara Y. Endothelial function and oxidative stress in cardiovascular diseases. Circ J. 2009;73(3):411–8.

    Article  CAS  PubMed  Google Scholar 

  4. Lerman A, Zeiher AM. Endothelial function: cardiac events. Circulation. 2005;111(3):363–8. doi:10.1161/01.CIR.0000153339.27064.14.

    Article  PubMed  Google Scholar 

  5. Williams SB, Cusco JA, Roddy MA, Johnstone MT, Creager MA. Impaired nitric oxide-mediated vasodilation in patients with non-insulin-dependent diabetes mellitus. J Am Coll Cardiol. 1996;27(3):567–74.

    Article  CAS  PubMed  Google Scholar 

  6. Henry RM, Ferreira I, Kostense PJ, Dekker JM, Nijpels G, Heine RJ, et al. Type 2 diabetes is associated with impaired endothelium-dependent, flow-mediated dilation, but impaired glucose metabolism is not; The Hoorn Study. Atherosclerosis. 2004;174(1):49–56. doi:10.1016/j.atherosclerosis.2004.01.002.

    Article  CAS  PubMed  Google Scholar 

  7. Vane JR, Anggard EE, Botting RM. Regulatory functions of the vascular endothelium. N Engl J Med. 1990;323(1):27–36. doi:10.1056/NEJM199007053230106.

    Article  CAS  PubMed  Google Scholar 

  8. McVeigh GE, Brennan GM, Johnston GD, McDermott BJ, McGrath LT, Henry WR, et al. Impaired endothelium-dependent and independent vasodilation in patients with type 2 (non-insulin-dependent) diabetes mellitus. Diabetologia. 1992;35(8):771–6.

    CAS  PubMed  Google Scholar 

  9. Johnstone MT, Creager SJ, Scales KM, Cusco JA, Lee BK, Creager MA. Impaired endothelium-dependent vasodilation in patients with insulin-dependent diabetes mellitus. Circulation. 1993;88(6):2510–6.

    Article  CAS  PubMed  Google Scholar 

  10. Forstermann U, Sessa WC. Nitric oxide synthases: regulation and function. Eur Heart J. 2012;33(7):829–37, 37a–37d. doi:10.1093/eurheartj/ehr304.

  11. Brownlee M. Biochemistry and molecular cell biology of diabetic complications. Nature. 2001;414(6865):813–20. doi:10.1038/414813a.

    Article  CAS  PubMed  Google Scholar 

  12. Ceriello A. The emerging role of post-prandial hyperglycaemic spikes in the pathogenesis of diabetic complications. Diabet Med. 1998;15(3):188–93. doi:10.1002/(SICI)1096-9136(199803)15:3<188::AID-DIA545>3.0.CO;2-V.

    Article  CAS  PubMed  Google Scholar 

  13. Risso A, Mercuri F, Quagliaro L, Damante G, Ceriello A. Intermittent high glucose enhances apoptosis in human umbilical vein endothelial cells in culture. Am J Physiol Endocrinol Metab. 2001;281(5):E924–30.

    CAS  PubMed  Google Scholar 

  14. Quagliaro L, Piconi L, Assaloni R, Martinelli L, Motz E, Ceriello A. Intermittent high glucose enhances apoptosis related to oxidative stress in human umbilical vein endothelial cells: the role of protein kinase C and NAD(P)H-oxidase activation. Diabetes. 2003;52(11):2795–804.

    Article  CAS  PubMed  Google Scholar 

  15. Monnier L, Mas E, Ginet C, Michel F, Villon L, Cristol JP, et al. Activation of oxidative stress by acute glucose fluctuations compared with sustained chronic hyperglycemia in patients with type 2 diabetes. JAMA. 2006;295(14):1681–7. doi:10.1001/jama.295.14.1681.

    Article  CAS  PubMed  Google Scholar 

  16. Torimoto K, Okada Y, Mori H, Tanaka Y. Relationship between fluctuations in glucose levels measured by continuous glucose monitoring and vascular endothelial dysfunction in type 2 diabetes mellitus. Cardiovasc Diabetol. 2013;12:1. doi:10.1186/1475-2840-12-1.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Cardillo C, Nambi SS, Kilcoyne CM, Choucair WK, Katz A, Quon MJ, et al. Insulin stimulates both endothelin and nitric oxide activity in the human forearm. Circulation. 1999;100(8):820–5.

    Article  CAS  PubMed  Google Scholar 

  18. Barrett EJ, Eggleston EM, Inyard AC, Wang H, Li G, Chai W, et al. The vascular actions of insulin control its delivery to muscle and regulate the rate-limiting step in skeletal muscle insulin action. Diabetologia. 2009;52(5):752–64. doi:10.1007/s00125-009-1313-z.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Laakso M, Edelman SV, Brechtel G, Baron AD. Impaired insulin-mediated skeletal muscle blood flow in patients with NIDDM. Diabetes. 1992;41(9):1076–83.

    Article  CAS  PubMed  Google Scholar 

  20. Duplain H, Burcelin R, Sartori C, Cook S, Egli M, Lepori M, et al. Insulin resistance, hyperlipidemia, and hypertension in mice lacking endothelial nitric oxide synthase. Circulation. 2001;104(3):342–5.

    Article  CAS  PubMed  Google Scholar 

  21. Nathan DM, Cleary PA, Backlund JY, Genuth SM, Lachin JM, Orchard TJ, et al. Intensive diabetes treatment and cardiovascular disease in patients with type 1 diabetes. N Engl J Med. 2005;353(25):2643–53. doi:10.1056/NEJMoa052187.

    Article  PubMed  Google Scholar 

  22. Nolan CJ, Ruderman NB, Kahn SE, Pedersen O, Prentki M. Insulin resistance as a physiological defense against metabolic stress: implications for the management of subsets of type 2 diabetes. Diabetes. 2015;64(3):673–86. doi:10.2337/db14-0694.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Fujishima S, Ohya Y, Nakamura Y, Onaka U, Abe I, Fujishima M. Troglitazone, an insulin sensitizer, increases forearm blood flow in humans. Am J Hypertens. 1998;11(9):1134–7.

    Article  CAS  PubMed  Google Scholar 

  24. Hidaka T, Nakagawa K, Goto C, Soga J, Fujii Y, Hata T, et al. Pioglitazone improves endothelium-dependent vasodilation in hypertensive patients with impaired glucose tolerance in part through a decrease in oxidative stress. Atherosclerosis. 2010;210(2):521–4. doi:10.1016/j.atherosclerosis.2009.12.011.

    Article  CAS  PubMed  Google Scholar 

  25. Yu JG, Javorschi S, Hevener AL, Kruszynska YT, Norman RA, Sinha M, et al. The effect of thiazolidinediones on plasma adiponectin levels in normal, obese, and type 2 diabetic subjects. Diabetes. 2002;51(10):2968–74.

    Article  CAS  PubMed  Google Scholar 

  26. Maeda N, Takahashi M, Funahashi T, Kihara S, Nishizawa H, Kishida K, et al. PPARgamma ligands increase expression and plasma concentrations of adiponectin, an adipose-derived protein. Diabetes. 2001;50(9):2094–9.

    Article  CAS  PubMed  Google Scholar 

  27. Mather KJ, Verma S, Anderson TJ. Improved endothelial function with metformin in type 2 diabetes mellitus. J Am Coll Cardiol. 2001;37(5):1344–50.

    Article  CAS  PubMed  Google Scholar 

  28. Kato T, Inoue T, Node K. Postprandial endothelial dysfunction in subjects with new-onset type 2 diabetes: an acarbose and nateglinide comparative study. Cardiovasc Diabetol. 2010;9:12. doi:10.1186/1475-2840-9-12.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Matsubara J, Sugiyama S, Akiyama E, Iwashita S, Kurokawa H, Ohba K, et al. Dipeptidyl peptidase-4 inhibitor, sitagliptin, improves endothelial dysfunction in association with its anti-inflammatory effects in patients with coronary artery disease and uncontrolled diabetes. Circ J. 2013;77(5):1337–44.

    Article  CAS  PubMed  Google Scholar 

  30. Nakamura K, Oe H, Kihara H, Shimada K, Fukuda S, Watanabe K, et al. DPP-4 inhibitor and alpha-glucosidase inhibitor equally improve endothelial function in patients with type 2 diabetes: EDGE study. Cardiovasc Diabetol. 2014;13:110. doi:10.1186/s12933-014-0110-2.

    Article  PubMed  PubMed Central  Google Scholar 

  31. Shimabukuro M, Higa N, Chinen I, Yamakawa K, Takasu N. Effects of a single administration of acarbose on postprandial glucose excursion and endothelial dysfunction in type 2 diabetic patients: a randomized crossover study. J Clin Endocrinol Metab. 2006;91(3):837–42. doi:10.1210/jc.2005-1566.

    Article  CAS  PubMed  Google Scholar 

  32. Ayaori M, Iwakami N, Uto-Kondo H, Sato H, Sasaki M, Komatsu T, et al. Dipeptidyl peptidase-4 inhibitors attenuate endothelial function as evaluated by flow-mediated vasodilatation in type 2 diabetic patients. J Am Heart Assoc. 2013;2(1):e003277. doi:10.1161/JAHA.112.003277.

    Article  PubMed  PubMed Central  Google Scholar 

  33. Maruhashi T, Higashi Y, Kihara Y, Yamada H, Sata M, Ueda S, et al. Long-term effect of sitagliptin on endothelial function in type 2 diabetes: a sub-analysis of the PROLOGUE study. Cardiovasc Diabetol. 2016;15(1):134. doi:10.1186/s12933-016-0438-x.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Gaede P, Vedel P, Larsen N, Jensen GV, Parving HH, Pedersen O. Multifactorial intervention and cardiovascular disease in patients with type 2 diabetes. N Engl J Med. 2003;348(5):383–93. doi:10.1056/NEJMoa021778.

    Article  PubMed  Google Scholar 

  35. Higashi Y, Sasaki S, Nakagawa K, Ueda T, Yoshimizu A, Kurisu S, et al. A comparison of angiotensin-converting enzyme inhibitors, calcium antagonists, beta-blockers and diuretic agents on reactive hyperemia in patients with essential hypertension: a multicenter study. J Am Coll Cardiol. 2000;35(2):284–91.

    Article  CAS  PubMed  Google Scholar 

  36. Ghiadoni L, Virdis A, Magagna A, Taddei S, Salvetti A. Effect of the angiotensin II type 1 receptor blocker candesartan on endothelial function in patients with essential hypertension. Hypertension. 2000;35(1 Pt 2):501–6.

    Article  CAS  PubMed  Google Scholar 

  37. Wolfrum S, Jensen KS, Liao JK. Endothelium-dependent effects of statins. Arterioscler Thromb Vasc Biol. 2003;23(5):729–36. doi:10.1161/01.ATV.0000063385.12476.A7.

    Article  CAS  PubMed  Google Scholar 

  38. Higashi Y, Sasaki S, Kurisu S, Yoshimizu A, Sasaki N, Matsuura H, et al. Regular aerobic exercise augments endothelium-dependent vascular relaxation in normotensive as well as hypertensive subjects: role of endothelium-derived nitric oxide. Circulation. 1999;100(11):1194–202.

    Article  CAS  PubMed  Google Scholar 

  39. Sasaki S, Higashi Y, Nakagawa K, Kimura M, Noma K, Sasaki S, et al. A low-calorie diet improves endothelium-dependent vasodilation in obese patients with essential hypertension. Am J Hypertens. 2002;15(4 Pt 1):302–9.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Tatsuya Maruhashi M.D., Ph.D. or Yukihito Higashi M.D., Ph.D., F.A.H.A. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Singapore Pte Ltd.

About this chapter

Cite this chapter

Maruhashi, T., Kihara, Y., Higashi, Y. (2018). Diabetes and Endothelial Dysfunction. In: Yamagishi, Si. (eds) Diabetes and Aging-related Complications. Springer, Singapore. https://doi.org/10.1007/978-981-10-4376-5_4

Download citation

  • DOI: https://doi.org/10.1007/978-981-10-4376-5_4

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-10-4375-8

  • Online ISBN: 978-981-10-4376-5

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics